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Abstract

Medical datasets often face the problem of data scarcity, as ground truth labels1

must be generated by medical professionals. One mitigation strategy is to pretrain2

deep learning models on large, unlabelled datasets with self-supervised learning3

(SSL), but this introduces the issue of domain shift if the pretraining and task4

dataset distributions differ. Data augmentations are essential for improving the5

generalizability of SSL-pretrained models, but they tend to be either handcrafted6

or randomly applied. We use an adversarial model to generate masks as augmen-7

tations for 12-lead electrocardiogram (ECG) data, where masks learn to occlude8

diagnostically-relevant regions 1. Compared to random augmentations, adversarial9

masking reaches better accuracy on a downstream arrhythmia classification task10

under a domain shift condition and in data-scarce regimes. Adversarial masking11

is competitive with, and even reaches further improvements when combined with12

state-of-art ECG augmentation methods, 3KG and random lead masking.13

1 Introduction14

Across medical applications, deep learning is increasingly used to automate disease diagnosis Miotto15

et al. [2018]. In some cases, neural networks have even reached or exceeded the performance of16

expert physicians [Hannun et al., 2019]. One such application is with 12-lead electrocardiogram17

(ECG) data, which is commonly collected to screen for various cardiovascular disorders [Fesmire18

et al., 1998]. There has been a recent surge in ECG-based deep learning research, largely enabled19

by challenges like the annual PhysioNet/Computing in Cardiology Challenge [Perez Alday et al.,20

Reyna et al., 2021]. While these research outcomes show substantial progress within the field, their21

performance only reflects training on large-scale, labelled dataset. In contrast, real world medical22

datasets are likely much smaller due to the extensive resources required to collect medical labels.23

Data scarcity is a well-documented issues that effect deep learning training. Models trained on small24

datasets lack generalizability to unseen data and cannot be deployed reliably [Kelly et al., 2019]. To25

mitigate issues associated with small training datasets, large yet unlabelled dataset can be leveraged26

to pretrain deep learning models with robust representations, which is commonly done in the ECG27

domain [Sarkar and Etemad, 2020, Weimann and Conrad, 2021, Liu et al., 2021, Kiyasseh et al., 2021,28

Diamant et al., 2022, Mehari and Strodthoff, 2022, Oh et al., 2022]. However, if the two datasets are29

collected under different environments, with different sensors, or across different populations, the30

transferrability of the model to the downstream task can be greatly impacted [Koh et al., 2021].31

Contrastive self-supervised learning (SSL) is a pretraining technique that does not require a labelled32

dataset and can induce robust representations in the model Chen et al. [2020a]. The encoding model33

is trained to maximize the similarity between latent representations of augmented pairs of data,34
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Figure 1: Adversarial masking pretraining and downstream transfer phases.

while separating from the representations of other data samples. SLL-pretrained models learn the35

underlying structure of the data invariant to the augmentations, which means that selecting good36

augmentations is crucial for learning useful representations. State-of-art within the ECG domain37

is patient-level contrastive SSL (PL-SSL), where pairs of data are taken from the same patient at38

different points in time Kiyasseh et al. [2021], Diamant et al. [2022]. The performance of PL-SSL39

techniques are powerful, but can be improved in combination with other augmentations.40

For time-series data, augmentations are typically selected from a standard pool like noise injection,41

baseline shift, time-domain masking, and more [Wen et al., 2021]. A recent work 3KG develops42

physiologically-consistent spatial augmentations for ECGs that reach good performance on small43

datasets [Gopal et al., 2021]. Another introduces random lead masking (RLM), where leads of the44

ECG are fully masked out at random Oh et al. [2022]. However, such augmentations are either45

handcrafted with manually tuned parameters per dataset or randomly applied, while we investigate46

the use of an adversarial method to optimize augmentation parameters.47

In this work, we elect to focus on time-domain masking, a type of augmentation with high potential48

but is underexploited for periodic time-series data like ECGs:49

• We adapt the image-based adversarial masking method of Shi et al. [2022] to generate masks50

as augmentations for each given ECG sample during PL-SSL pretraining. To our knowledge,51

this is the first work to implement adversarial masking for time-series data.52

• We show that incorporating adversarial masking improves performance in a downstream53

heart arrhythmia classification task compared to baseline augmentations. We also find54

orthogonal benefits when combined with state-of-art ECG augmentations, 3KG and RLM.55

2 Methods56

The overview of the adversarial masking pretraining framework with the encoding model E and57

adversarial masking model A and the downstream transfer learning step is show in Figure 1.58

2.1 Self-Supervised Pretraining59

CMSC Objective: We use Contrastive Multi-segment Coding (CMSC) as the PL-SSL strategy60

from Kiyasseh et al. [2021]. Given a batch of data
{
x ∈ RD

}B
i=1

, the positive pair is created as61

xi = x1..D2 ,x′
i = x

D
2 ..D, where xi,x

′
i represent temporally non-overlapping ECG segments from62

the same patient. We further transform a data sample x′
i = T (x′

i), where T represents one or63

more augmentations. The encoding model E is trained to align the feature representations of the64

positive pair of data, hi = E(xi) and h′
i = E(x′

i), while separating them from all other negative65

samples within the batch where xi ̸= xj . We perform training with the SimCLR objective [Chen66

et al., 2020b], described in Equation 1, where τ = 0.1 is a temperature scaling term.67
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LSimCLR(x;E) = log
exp(sim(hi,h

′
i)/τ)∑

i̸=j exp(sim (hi,h
′
j) /τ)

(1)

Adversarial Objective: We add an adversarial masking model A that generates a set of N masks68

for a given data sample mi ∈ RNxD = A(xi). Having multiple masks ensures that the masked69

regions of the ECG are alternated, as only one mask is sampled and applied in each training step. The70

masking model A acts in opposition to the encoding model E by generating difficult augmentations,71

hence maximizing the SimCLR objective. We also adapt the sparse penalty from Shi et al. [2022] to72

limit the amount of masking, described by Equation 2 with α = 0.1 as a weighting term. The full73

min-max loss objective for E and A is described by Equation 3:74

Lsparse(x;A) = α sin

(
π

D

D∑
d=1

md

)−1

(2)

min
E

max
A

LSSL(E ,A)− Lsparse(A) (3)

Architectures: The encoder backbone is a 1D ResNet-18 [He et al., 2016], the best performing75

architecture in multiple ECG diagnostic tasks [Nonaka and Seita, 2021]. The masking model is a76

1D U-Net [Ronneberger et al., 2015] with four downsampling and upsampling layers. If the number77

of masks N = 1, the output function is a sigmoid. If N > 1, the output function is softmax, which78

enforces that each mask covers different regions. A mask is randomly sampled, binarized, and applied79

with probability p = 0.8 to the corresponding sample of the batch. Further details are in Appendix A.80

2.2 Downstream Transfer Learning81

We transfer the encoding models’s learned representations to a downstream classification task and82

measure the classification accuracy as the benchmarking metric. In linear evaluation, the pretrained83

encoding model’s weights are frozen and a linear output layer is trained on the classification task. In84

finetuning, the weights of both the encoding model and the linear layer are trained and updated. We85

use a standard cross-entropy loss for training.86

3 Results87

3.1 Transfer Task Performance88

CMSC pretraining is performed with 12-lead ECG datasets from the PhysioNet/Computing in89

Cardiology Challenge 2020 [Perez Alday et al.], which comprises over 66 thousand patient recordings90

from six institutions in four countries. The downstream transfer task is arrhythmia classification with91

the 12-lead Chapman-Shaoxing ECG dataset, which has over 10 thousand patients and four classes92

of cardiac rhythm labels [Zheng et al., 2020]. There are no overlaps between the pretraining and93

downstream datasets, so our transfer learning setup constitutes a domain shift.94

We present transfer learning results with linear evaluation and finetuning transfer conditions using a95

train-validation-test split of 80%, 20% and 20%. We simulate real world data scarcity conditions by96

reducing the transfer training dataset to 100%, 10%, and 1% of the original size (8516 samples). Table97

1 shows the prediction accuracy and standard deviation of the arrhythmia classification task with98

models pretrained on all baseline and adversarial augmentations (details of the baseline augmentation99

in Appendix B). The size of the test set is held constant despite the reduced training datasets and100

the test accuracy for all experiments is reported as the average across 3 random seeds. The best101

performing results are in bold. Results from a Scratch baseline with a random encoding model is also102

reported. Adversarial masking (Adv Mask) results are reported with N = 2, which performs the best.103

Adversarial masking yields superior results to most baseline augmentations across all training dataset104

sizes, including other random masking techniques. It is competitive to but does not consistently105

outperform 3KG [Gopal et al., 2021] and RLM [Oh et al., 2022], two methods which are specific to106

ECGs and encourages learning invariances across leads. However, Adv Mask combined with 3KG107
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Table 1: Downstream classification accuracy across multiple dataset sizes reported for encoders
pretrained on multiple augmentations and a Scratch baseline, using CMSC pretraining strategy.

100% Training Dataset 10% Training Dataset 1% Training Dataset
Linear Finetune Linear Finetune Linear Finetune

Scratch 49.88 ± 1.87 70.99 ± 1.59 38.77 ± 4.16 63.92 ± 1.97 22.31 ± 0.12 34.89 ± 0.54

Gaussian 79.82 ± 0.481 78.04 ± 0.61 71.06 ± 0.98 70.34 ± 1.11 59.82 ± 0.29 60.39 ± 1.48

Powerline 79.07 ± 2.07 78.22 ± 1.3 69.84 ± 1.88 69.68 ± 2.31 58.73 ± 1.04 58.92 ± 0.79

STFT 79.6 ± 1.37 78.16 ± 1.37 70.62 ± 1.01 70.27 ± 1.48 60.92 ± 1.32 60.64 ± 2.74

Wander 79.41 ± 0.65 77.94 ± 0.55 71.12 ± 0.33 70.74 ± 0.24 59.61 ± 1.37 59.39 ± 1.39

Shift 80.44 ± 1.58 79.44 ± 1.67 70.74 ± 1.12 70.81 ± 1.52 60.04 ± 2.26 59.73 ± 1.34

Mask 72.58 ± 4.55 72.18 ± 2.44 68.54 ± 4.29 68.03 ± 3.48 54.85 ± 4.86 53.57 ± 3.39

Blockmask 84.01 ± 2.31 82.85 ± 2.12 74.22 ± 0.79 74.25 ± 0.84 64.61 ± 1.14 63.17 ± 0.90

3KG 91.55 ± 0.93 91.74 ± 0.78 86.2 ± 1.05 86.58 ± 1.33 75.72 ± 1.03 76.44 ± 1.08

RLM 90.58 ± 0.12 91.86 ± 1.42 87.48 ± 0.56 87.98 ± 0.67 76.03 ± 1.16 76.94 ± 0.65

Adv Mask (AM) 90.11 ± 0.38 88.96 ± 0.32 86.05 ± 1.58 85.58 ± 2.24 76.66 ± 3.59 75.88 ± 4.14

AM + 3KG 92.87 ± 1.08 92.65 ± 0.85 90.58 ± 1.27 90.8 ± 1.19 82.54 ± 1.94 81.88 ± 1.54

AM + RLM 93.27 ± 0.77 93.21 ± 0.50 91.24 ± 0.76 91.18 ± 0.48 82.76 ± 1.12 83.92 ± 0.66

Figure 2: N=2 adversarially generated masks overlaying Lead II of the ECG sample.

and RLM shows significant improvements over the respective augmentations on their own, with Adv108

Mask + RLM reaching the best performance in all transfer trials. This shows that benefits introduced109

by adversarial masking is orthogonal to other augmentations and consistent in data scarcity.110

3.2 Analysis of Augmentations111

We visualize the generated masks in Figure 2, with more examples in Appendix C. Lead II of the ECG112

is displayed in red and overlaid with blue masked regions (the values of which are set to 0 in training).113

With N = 2, one mask consistently covers the QRS complex and T-wave, while the other mask covers114

the remaining areas. We hypothesize this is similar to capturing diagnostically-relevant “semantic"115

content of the ECG, in the same way that Shi et al. [2022] demonstrates adversarial image masks116

cover semantically-coherent regions of the image. According to an analysis of the salient regions of117

ECG data, the QRS complex often carry high levels of disease-diagnostic information [Jones et al.,118

2020]. This suggests that the encoding model emphasizes learning the structual information of the119

highly salient regions of the ECGs during pretraining.120

4 Conclusions and Future Work121

We show that meaningful masking for ECG data can be utilized positively in SSL pretraining of deep122

learning models. Such models learn generalizable representations for downstream transfer learning in123

highly data-scarce and domain-shifted tasks. Furthermore, adversarial masking as an augmentation124

scheme is agnostic to the choice of architecture and training technique, so the method can be extended125

to other SSL frameworks and to other time-series data modalities. Future work includes evaluating126

the types of downstream tasks that adversarial masking brings the most benefit to.127
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(d) Have you read the ethics review guidelines and ensured that your paper conforms to226

them? [Yes]227

2. If you are including theoretical results...228

(a) Did you state the full set of assumptions of all theoretical results? [N/A]229

(b) Did you include complete proofs of all theoretical results? [N/A]230

3. If you ran experiments...231

(a) Did you include the code, data, and instructions needed to reproduce the main experi-232

mental results (either in the supplemental material or as a URL)? [Yes] Link in footnote233

of abstract (first page).234

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they235

were chosen)? [Yes] Details in Appendix A and B.236

(c) Did you report error bars (e.g., with respect to the random seed after running experi-237

ments multiple times)? [Yes] Standard deviations are provided across 3 seeds.238

(d) Did you include the total amount of compute and the type of resources used (e.g., type239

of GPUs, internal cluster, or cloud provider)? [Yes] Details in Appendix A.240

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...241

(a) If your work uses existing assets, did you cite the creators? [Yes] Specified in codebase242

or references.243

(b) Did you mention the license of the assets? [N/A]244

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]245

(d) Did you discuss whether and how consent was obtained from people whose data246

you’re using/curating? [N/A] Not discussed, but datasets used are open source and247

anonymized.248

(e) Did you discuss whether the data you are using/curating contains personally identifiable249

information or offensive content? [No]250

5. If you used crowdsourcing or conducted research with human subjects...251

(a) Did you include the full text of instructions given to participants and screenshots, if252

applicable? [N/A]253

(b) Did you describe any potential participant risks, with links to Institutional Review254

Board (IRB) approvals, if applicable? [N/A]255

(c) Did you include the estimated hourly wage paid to participants and the total amount256

spent on participant compensation? [N/A]257

A Architecture and Training258

All models are implemented with PyTorch Lightning. Training and testing are performed with a259

single NVIDIA Volta V100 GPU on the MIT Supercloud Reuther et al. [2018].260

Encoding Model: We adapt the ResNet-18 architecture used by Nonaka and Seita [2021] in their261

benchmarking study, which had superior performance out of eight backbones. The hidden dimension262

is 512. We also use a two-layer projection head typical in the contrastive SSL framework [Chen et al.,263

2020b] to convert the encoder’s outputs to a 128-dimension space. This detail was omitted from the264

main paper for simplicity and the projector is not transferred to the downstream task.265

Adversarial Model: We adapt an open-source 1D U-Net implementation with four downsampling266

layers, each layer comprising three consecutive Conv1d and BatchNorm blocks and two Linear layers267

with ReLU activation. A shallower version of the U-Net with three downsampling layers was also268

tested, but it yielded poorer results. The hidden representation is upsampled with four Upsample and269

Conv1D blocks. The last layer is a Conv1D layer with the number of out channels being the number270

of masks N. The outputs are passed through either a softmax or sigmoid function depending on N.271
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Pretraining Conditions: In pretraining, we use a learning rate of 0.0001 and an Adam optimizer272

for both the encoding model and adversarial model. The models are updated one after another with273

their respective losses within the same batch. The batch size is 32 with gradient accumulation over 4274

batches, which is equivalent to an effective batch size of 128. To reduce computation efforts, we also275

use mixed precision training. An early stopping condition based on minimizing LSSL is implemented276

to lower training time — typically training terminates in 20-40 epochs.277

As mentioned in the main text, N=2 was found to consistently achieve the best results, as we believe278

it is due to the masked regions being alternated during training. To overcome potential issues with279

catastrophic forgetting due to overactive masking of the training data, we only apply the sampled280

mask with a probability of p=0.8.281

As the pretraining dataset is labelled, we also attempted to incorporate the classification accuracy of282

the pretraining dataset into the min-max objective, as described in the modified objective in Equation283

4. However, this had a slight negative impact the transfer performance so its results are not reported.284

min
E

max
A

LSSL(E ,A) + Lclassification(E)− Lsparse(A) (4)

Transfer Conditions: Transfer learning is performed with a batch size of 256 (or the full dataset in285

the case of the 1% training dataset size trials), learning rate of 0.01, and an Adam optimizer. A single286

Linear layer projects the output dimension of the encoding model to the number of output classes.287

B Augmentations288

The baseline augmentations are sourced from ECG deep learning research. While the list is not289

exhaustive, we aim to be representative of typical random ECG augmentation techniques used in290

existing works. Note that a limitation of our results is that we only test with isolated augmentations,291

whereas combining two or more augmentations may intuitively yield better results.292

Gaussian Noise: A vector of noise v(t) ∼ N (0, 0.05) is sampled and added to each lead of293

the ECG. Gaussian noise injection is a very common augmentation used in SSL training for both294

time-series and image data.295

Powerline Noise: Powerline noise n(t) = αcos(2πtkfp + ϕ), with α ∼ U(0, 0.5), ϕ ∼ N (0, 2π),296

and fp = 50Hz is added to each lead of the ECG [Mehari and Strodthoff, 2022, Oh et al., 2022].297

Short-time Fourier Transform: STFT involves computing the Fourier transform of short segments298

of the time-series signal to generate a spectrogram. A random mask with values sampled from a beta299

distribution B(α = 5, β = 2) is applied to the spectrogram. Finally, the STFT operation is inversed300

to recover the time domain signal.301

Baseline Wander: The ECG signal is perturbed with a very low frequency signal to simulate drift-302

ing: n(t) = C
∑K

k=1 a cos (2πtk∆f + ϕ), with C ∼ N (1, 0.52), α ∼ U(0, 0.5), ϕ ∼ N (0, 2π),303

and ∆f ∼ U(0.01, 0.2) [Mehari and Strodthoff, 2022, Oh et al., 2022].304

Baseline Shift: A fraction p = 0.2 of the baseline of each lead of the ECG signal is shifted305

positively or negatively by a factor of α ∼ N (−0.5, 0.5) [Mehari and Strodthoff, 2022, Oh et al.,306

2022].307

Mask: Two types of random masking are implemented, where Mask refers to any timestep being308

masked out to 0 with the probability p = 0.2.309

Blockmask: Blockmask masks out a continuous portion p = 0.2 of each lead to 0. The main310

difference is that Blockmask would occlude larger structural regions of the ECG, whereas Mask only311

occludes local details.312
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Figure 3: N=1 adversarially generated masks overlaying Lead I of the ECG sample.

Figure 4: N=3 adversarially generated masks overlaying Lead I of the ECG sample.

3KG: Developed by Gopal et al. [2021], 3KG augments the 3D spatial representation of the ECG in313

vectorcardiogram (VCG) space and reprojects it back into ECG space, mimicking natural variations314

in cardiac structure and orientation. We take the best parameters reported in the paper, a random315

rotation −45◦ ≤ θ ≤ 45◦ and a scaling factor 1 ≤ s ≤ 1.5.316

RLM: Introduced by Oh et al. [2022], RLM fully occludes individual ECG leads with probability317

p=0.5, which was the parameter used in their paper. This reduces the dependency on requiring all 12318

leads to extract useful information.319

C Adversarial Masks320

Figures 3-5 depict more examples of adversarially generated masks with N = 1, 3, 12. When N < 12,321

one mask is randomly sampled and applied to all leads of the ECG. When N = 12, each mask is322

applied separately to each lead. As mentioned in the paper, N ̸= 2 trials saw reduced performance so323

their results are not reported.324

What should be noted is that the adversarial masking technique is extremely good at identifying peaks325

in the ECG (primarily the QRS complex and T-wave). Increasing N does not seem to be helpful326

as masks tend to cover either peaks or flat regions, which can be achieved with N=2. When there327

are N=12 masks, we note that the same regions of each lead are masked, showing that lead-specific328

masks are redundant.329
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Figure 5: N=12 adversarially generated masks overlaying Lead I of the ECG sample.
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