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Abstract

Instrumental variable (IV) regression is a standard strategy for learning
causal relationships between confounded treatment and outcome variables
from observational data by utilizing an instrumental variable, which af-
fects the outcome only through the treatment. In classical IV regression,
learning proceeds in two stages: stage 1 performs linear regression from the
instrument to the treatment; and stage 2 performs linear regression from
the treatment to the outcome, conditioned on the instrument. We propose
a novel method, deep feature instrumental variable regression (DFIV), to
address the case where relations between instruments, treatments, and
outcomes may be nonlinear. In this case, deep neural nets are trained to
define informative nonlinear features on the instruments and treatments.
We propose an alternating training regime for these features to ensure good
end-to-end performance when composing stages 1 and 2, thus obtaining
highly flexible feature maps in a computationally efficient manner. DFIV
outperforms recent state-of-the-art methods on challenging IV benchmarks,
including settings involving high dimensional image data. DFIV also exhibits
competitive performance in off-policy policy evaluation for reinforcement
learning, which can be understood as an IV regression task.

1 Introduction

The aim of supervised learning is to obtain a model based on samples observed from some
data generating process, and to then make predictions about new samples generated from
the same distribution. If our goal is to predict the effect of our actions on the world, however,
our aim becomes to assess the influence of interventions on this data generating process.
To answer such causal questions, a supervised learning approach is inappropriate, since our
interventions, called treatments, may affect the underlying distribution of the variable of
interest, which is called the outcome.

To answer these counterfactual questions, we need to learn how treatment variables causally
affect the distribution process of outcomes, which is expressed in a structural function.
Learning a structural function from observational data (that is, data where we can observe,
but not intervene) is known to be challenging if there exists an unmeasured confounder,
which influences both treatment and outcome. To illustrate: suppose we are interested in
predicting sales of airplane tickets given price. During the holiday season, we would observe
the simultaneous increase in sales and prices. This does not mean that raising the prices
causes the sales to increase. In this context, the time of the year is a confounder, since it
affects both the sales and the prices, and we need to correct the bias caused by it.

One way of correcting such bias is via instrumental variable (IV) regression (Stock and
Trebbi, 2003). Here, the structural function is learned using instrumental variables, which
only affect the treatment directly but not the outcome. In the sales prediction scenario,
we can use supply cost shifters as the instrumental variable since they only affect the price
(Wright, 1928; Blundell et al., 2012). Instrumental variables can be found in many contexts,
and IV regression is extensively used by economists and epidemiologists. For example, IV
regression is used for measuring the effect of a drug in the scenario of imperfect compliance
(Angrist et al., 1996), or the influence of military service on lifetime earnings (Angrist, 1990).
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In this work, we propose a novel IV regression method, which can discover non-linear causal
relationships using deep neural networks.

Classically, IV regression is solved by the two-stage least squares (2SLS) algorithm; we learn
a mapping from the instrument to the treatment in the first stage and learn the structural
function in the second stage as the mapping from the conditional expectation of the treatment
given the instrument (obtained from stage 1) to the outcome. Originally, 2SLS assumes
linear relationships in both stages, but this has been recently extended to non-linear settings.

One approach has been to use non-linear feature maps. Sieve IV (Newey and Powell, 2003;
Chen and Christensen, 2018) uses a finite number of basis functions explicitly specified.
Kernel IV (KIV) (Singh et al., 2019) and Dual IV regression (Muandet et al., 2019) extend
sieve IV to allow for an infinite number of basis functions using reproducing kernel Hibert
spaces (RKHS). Although these methods enjoy desirable theoretical properties, the flexibility
of the model is limited, since all existing work uses the prespecified features.

Another approach is to perform the stage 1 regression through conditional density estimation
(Carrasco et al., 2007; Darolles et al., 2011; Hartford et al., 2017). One advantage of this
approach is that it allows for flexible models, including deep neural nets, as proposed in
the DeepIV algorithm of (Hartford et al., 2017). It is known, however, that conditional
density estimation is costly and often suffers from high variance when the treatment is
high-dimensional.

More recently, Bennett et al. (2019) have proposed DeepGMM, a method inspired by the
optimally weighted Generalized Method of Moments (GMM) (Hansen, 1982) to find a
structural function ensuring that the regression residual and the instrument are independent.
Although this approach can handle high-dimensional treatment variables and deep NNs as
feature extractors, the learning procedure might not be as stable as 2SLS approach, since it
involves solving a smooth zero-sum game as when training Generative Adversarial Networks
(Wiatrak et al., 2019).

In this paper, we propose Deep Feature Instrumental Variable Regression (DFIV), which
aims to combine the advantages of all previous approaches, while avoiding their limitations.
In DFIV, we use deep neural nets to adaptively learn feature maps in the 2SLS approach,
which allows us to fit highly nonlinear structural functions, as in DeepGMM and DeepIV.
Unlike DeepIV, DFIV does not rely on conditional density estimation. Like sieve IV and
KIV, DFIV learns the conditional expectation of the feature maps in stage 1 and uses the
predicted features in stage 2, but with the additional advantage of learned features. We
empirically show that DFIV performs better than other methods on several IV benchmarks,
and apply DFIV successfully to off-policy policy evaluation, which is a fundamental problem
in Reinforcement Learning (RL).

The paper is structured as follows. In Section 2, we formulate the IV regression problem and
introduce two-stage least-squares regression. In Section 3, we give a detailed description of
our DFIV method. We demonstrate the empirical performance of DFIV in Section 4, covering
three settings: a classical demand prediction example from econometrics, a challenging IV
setting where the treatment consists of high-dimensional image data, and the problem of
off-policy policy evaluation in reinforcement learning.

2 Preliminaries

2.1 Problem Setting of Instrumental Variable Regression

X YZ

"

Figure 1: Causal Graph.

We begin with a description of the IV setting. We observe
a treatment X 2 X , where X ⇢ RdX , and an outcome Y 2

Y, where Y ⇢ R. We also have an unobserved confounder
that affects both X and Y . This causal relationship can be
represented with the following structural causal model:

Y = fstruct(X) + ", E ["] = 0, E ["|X] 6= 0, (1)
where fstruct is called the structural function, which we assume
to be continuous, and " is an additive noise term. This specific
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confounding assumption is necessary for the IV problem. In Bareinboim and Pearl (2012), it
is shown that we cannot learn fstruct if we allow any type of confounders. The challenge is
that E ["|X] 6= 0, which reflects the existence of a confounder. Hence, we cannot use ordinary
supervised learning techniques since fstruct(x) 6= E [Y |X = x]. Here, we assume there is no
observable confounder but we may easily include this, as discussed in Appendix B.

To deal with the hidden confounder ", we assume to have access to an instrumental variable
Z 2 Z which satisfies the following assumption.
Assumption 1. The conditional distribution P (X|Z) is not constant in Z and E ["|Z] = 0.

Intuitively, Assumption 1 means that the instrument Z induces variation in the treatment
X but is uncorrelated with the hidden confounder ". Again, for simplicity, we assume
Z ⇢ RdZ . The causal graph describing these relationships is shown in Figure 11. Note that
the instrument Z cannot have an incoming edge from the latent confounder that is also a
parent of the outcome.

Given Assumption 1, we can see that the function fstruct satisfies the operator equation
E [Y |Z] = E [fstruct(X)|Z] by taking expectation conditional on Z of both sides of (1).
Newey and Powell (2003) provide necessary and sufficient conditions to ensure identifiability
of fstruct(X). Solving this equation, however, is known to be ill-posed (Nashed and Wahba,
1974). To address this, recent works (Carrasco et al., 2007; Darolles et al., 2011; Muandet
et al., 2019; Singh et al., 2019) minimize the following regularized loss L to obtain the
estimate f̂struct:

f̂struct = argmin
f2F

L(f), L(f) = EY Z

⇥
(Y � EX|Z [f(X)])2

⇤
+ ⌦(f), (2)

where F is an arbitrary space of continuous functions and ⌦(f) is a regularizer on f .

2.2 Two Stage Least Squares Regression

A number of works (Newey and Powell, 2003; Singh et al., 2019) tackle the minimization
problem (2) using two-stage least squares (2SLS) regression, in which the structural function
is modeled as fstruct(x) = u> (x), where u is a learnable weight vector and  (x) is a vector
of fixed basis functions. For example, linear 2SLS used the identity map  (x) = x, while
sieve IV (Newey and Powell, 2003) uses Hermite polynomials.

In the 2SLS approach, an estimate û is obtained by solving two regression problems succes-
sively. In stage 1, we estimate the conditional expectation EX|z [ (X)] as a function of z.
Then in stage 2, as EX|z [f(X)] = u>EX|z [ (X)], we minimize L with EX|z [f(X)] being
replaced by the estimate obtained in stage 1.

Specifically, we model the conditional expectation as EX|z [ (X)] = V �(z), where �(z) is
another vector of basis functions and V is a matrix to be learned. Again, there exist many
choices for �(z), which can be infinite-dimensional, but we assume the dimensions of  (x)
and �(z) to be d1, d2 <1 respectively.

In stage 1, the matrix V is learned by minimizing the following loss,
V̂ = argmin

V 2Rd1⇥d2

L1(V ), L1(V ) = EX,Z

⇥
k (X)� V �(Z)k2

⇤
+ �1kV k

2
, (3)

where �1 > 0 is a regularization parameter. This is a linear ridge regression problem with
multiple targets, which can be solved analytically. In stage 2, given V̂ , we can obtain u by
minimizing the loss

û = argmin
u2Rd1

L2(u), L2(u) = EY,Z

h
kY � u>V̂ �(Z)k2

i
+ �2kuk

2
, (4)

where �2 > 0 is another regularization parameter. Stage 2 corresponds to a ridge linear
regression from V̂ �(Z) to Y , and also enjoys a closed-form solution. Given the learned
weights û, the estimated structural function is f̂struct(x) = û> (x).

1
We show the simplest causal graph in Figure 1. It entails Z ?? ", but we only require Z and "

to be uncorrelated in Assumption 1. Of course, this graph also says that Z is not independent of "
when conditioned on observations X.
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3 DFIV Algorithm

In this section, we develop the DFIV algorithm. Similarly to Singh et al. (2019), we assume
that we do not necessarily have access to observations from the joint distribution of (X,Y, Z).
Instead, we are given m observations of (X,Z) for stage 1 and n observations of (Y, Z) for
stage 2. We denote the stage 1 observations as (xi, zi) and the stage 2 observations as (ỹi, z̃i).
If observations of (X,Y, Z) are given for both stages, we can evaluate the out-of-sample
losses, and these losses can be used for hyper-parameter tuning of �1,�2 (Appendix A).

DFIV uses the following models

fstruct(x) = u> ✓X
(x) and EX|z [ ✓X

(X)] = V �✓Z
(z), (5)

where u 2 Rd1 and V 2 Rd1⇥d2 are the parameters, and  ✓X
(x) 2 Rd1 and �✓Z

(z) 2 Rd2 are
the neural nets parameterised by ✓X and ✓Z , respectively. As in the original 2SLS algorithm,
we learn EX|z [ ✓X

(X)] in stage 1 and fstruct(x) in stage 2. In addition to the weights u
and V , however, we also learn the parameters of the feature maps, ✓X and ✓Z . Hence, we
need to alternate between stages 1 and 2, since the conditional expectation EX|z [ ✓X

(X)]
changes during training.

Stage 1 Regression The goal of stage 1 is to estimate the conditional expectation
EX|z [ ✓X

(X)] ' V  ✓Z
(z) by learning the matrix V and parameter ✓Z , with ✓X = ✓̂X given

and fixed. Given the stage 1 data (xi, zi), this can be done by minimizing the empirical
estimate of L1,

V̂ (m)
, ✓̂Z = argmin

V ,✓Z

L
(m)

1
(V , ✓Z), L

(m)

1
=

1

m

mX

i=1

k 
✓̂X

(xi)� V �✓Z
(zi)k

2 + �1kV k
2
. (6)

Note that the feature map  
✓̂X

(X) is fixed during stage 1, since this is the “target variable.”
If we fix ✓Z , the minimization problem (6) reduces to a linear ridge regression problem with
multiple targets, whose solution as a function of ✓X and ✓Z is given analytically by

V̂ (m)(✓X , ✓Z) =  
>
1
�1(�

>
1
�1 +m�1I)

�1
, (7)

where �1, 1 are feature matrices defined as  1 = [ ✓X
(x1), . . . , ✓X

(xm)]> 2 Rm⇥d1

and �1 = [�✓Z
(z1), . . . ,�✓Z

(zm)]> 2 Rm⇥d2 . We can then learn the parameters ✓Z of the
adaptive features  ✓Z

by minimizing the loss L
(m)

1
at V = V̂ (m)(✓̂X , ✓Z) using gradient

descent. For simplicity, we introduce a small abuse of notation by denoting as ✓̂Z the result
of a user-chosen number of gradient descent steps on the loss (6) with V̂ (m)(✓̂X , ✓Z) from
(7), even though ✓̂Z need not attain the minimum of the non-convex loss (6). We then write
V̂ (m) := V̂ (m)(✓̂X , ✓̂Z). While this trick of using an analytical estimate of the linear output
weights of a deep neural network might not lead to significant gains in standard supervised
learning, it turns out to be very important in the development of our 2SLS algorithm. As
shown in the following section, the analytical estimate V̂ (m)(✓X , ✓̂Z) (now considered as a
function of ✓X) will be used to backpropagate to ✓X in stage 2.

Stage 2 Regression In stage 2, we learn the structural function by computing the weight
vector u and parameter ✓X while fixing ✓Z = ✓̂Z , and thus the corresponding feature map
�

✓̂Z
(z). Given the data (ỹi, z̃i), we can minimize the empirical version of L2, defined as

û(n)
, ✓̂X = argmin

u2Rd1 ,✓X

L
(n)

2
(u, ✓X), L

(n)

2
=

1

n

nX

i=1

(ỹi � u>V̂ (m)�
✓̂Z
(z̃i))

2 + �2kuk
2
. (8)

Again, for a given ✓X , we can solve the minimization problem (8) for u as a function of
V̂ (m) := V̂ (m)(✓X , ✓̂Z) by a linear ridge regression

û(n)(✓X , ✓̂Z) =
⇣
V̂ (m)�>

2
�2(V̂

(m))> + n�2I

⌘�1

V̂ (m)�>
2
y2, (9)
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where �2 = [�
✓̂Z
(z̃1), . . . ,�✓̂Z

(z̃n)]> 2 Rn⇥d2 and y2 = [ỹ1, . . . , ỹn]> 2 Rn
.

The loss L
(n)

2
explicitly depends on the parameters ✓X and we can backpropagate it to ✓X

via V̂ (m)(✓X , ✓̂Z), even though the samples of the treatment variable X do not appear in
stage 2 regression. We again introduce a small abuse of notation for simplicity, and denote by
✓̂X the estimate obtained after a few gradient steps on (8) with û(n)(✓X , ✓̂Z) from (9), even
though ✓̂X need not minimize the non-convex loss (8). We then have û(n) = û(n)(✓̂X , ✓̂Z).
After updating ✓̂X , we need to update ✓̂Z accordingly. We do not attempt to backpropagate
through the estimate ✓̂Z to do this, however, as this would be too computationally expensive;
instead, we alternate stages 1 and 2. We also considered updating ✓̂X and ✓̂Z jointly to
optimize the loss L

(n)

2
, but this fails, as discussed in Appendix E.

Computational Complexity The computational complexity of the algorithm is
O(md1d2+d

3
2
) for stage 1, while stage 2 requires additional O(nd1d2+d

3
1
) computations. This

is small compared to KIV (Singh et al., 2019), which takes O(m3) and O(n3), respectively.
We can further speed up the learning by using mini-batch training as shown in Algorithm 1.

Algorithm 1 Deep Feature Instrumental Variable Regression
Input: Stage 1 data (xi, zi), Stage 2 data (ỹiz̃i), Regularization parameters (�1,�2). Initial

values ✓̂X , ✓̂Z . Mini-batch size (mb, nb). Number of updates in each stage (T1, T2).
Output: Estimated structural function f̂struct(x)
1: repeat

2: Sample mb stage 1 data (x(b)

i
, z

(b)

i
) and nb stage 2 data (ỹ(b)

i
, z̃

(b)

i
).

3: for t = 1 to T1 do

4: Return function V̂ (mb)(✓̂X , ✓Z) in (7) using (x(b)

i
, z

(b)

i
)

5: Update ✓̂Z  ✓̂Z � ↵r✓Z
L
(mb)

1
(V̂ (mb)(✓̂X , ✓Z), ✓Z)|✓Z=✓̂Z

\\ Stage 1 learning
6: end for

7: for t = 1 to T2 do

8: Return function û(nb)(✓X , ✓̂Z) in (9) using (ỹ(b)
i

, z̃
(b)

i
) and function V̂ (mb)(✓X , ✓̂Z)

9: Update ✓̂X  ✓̂X � ↵r✓X
L
(nb)

2
(û(nb)(✓X , ✓̂Z), ✓X)|

✓X=✓̂X
\\ Stage 2 learning

10: end for

11: until convergence

12: Compute û(n) := û(n)(✓̂X , ✓̂Z) from (9) using entire dataset.
13: return f̂struct(x) = (û(n))> 

✓̂X
(x)

Here, V̂ (mb) and û(nb) are the functions given by (7) and (9) calculated using mini-batches
of data. Similarly, L(mb)

1
and L

(nb)

1
are the stage 1 and 2 losses for the mini-batches. We

recommend setting the batch size large enough so that V̂ (mb), û(nb) do not diverge from
V̂ (m)

, û(n) computed on the entire dataset. Furthermore, we observe that setting T1 > T2,
i.e. updating ✓Z more frequently than ✓X , stabilizes the learning process.

4 Experiments

In this section, we report the empirical performance of the DFIV method. The evaluation
considers both low and high-dimensional treatment variables. We used the demand design
dataset of Hartford et al. (2017) for benchmarking in the low and high-dimensional cases,
and we propose a new setting for the high-dimensional case based on the dSprites dataset
(Matthey et al., 2017). In the deep RL context, we also apply DFIV to perform off-policy
policy evaluation (OPE). The network architecture and hyper-parameters are provided in
Appendix F. The algorithms in the first two experiments are implemented using PyTorch
(Paszke et al., 2019) and the OPE experiments are implemented using TensorFlow (Abadi
et al., 2015) and the Acme RL framework (Hoffman et al., 2020). The code is included in
the supplemental material.
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Figure 2: MSE for demand design dataset with low dimensional confounders.

4.1 Demand Design Experiments

The demand design dataset is a synthetic dataset introduced by Hartford et al. (2017) that
is now a standard benchmarking dataset for testing nonlinear IV methods. In this dataset,
we aim to predict the demands on airplane tickets Y given the price of the tickets P . The
dataset contains two observable confounders, which are the time of year T 2 [0, 10] and
customer groups S 2 {1, ..., 7} that are categorized by the levels of price sensitivity. Further,
the noise in Y and P is correlated, which indicates the existence of an unobserved confounder.
The strength of the correlation is represented by ⇢ 2 [0, 1]. To correct the bias caused by
this hidden confounder, the fuel price C is introduced as an instrumental variable. Details of
the data generation process can be found in Appendix D.1. In DFIV notation, the treatment
is X = P , the instrument is Z = C, and (T, S) are the observable confounders.

We compare the DFIV method to three leading modern competitors, namely KIV (Singh
et al., 2019), DeepIV (Hartford et al., 2017), and DeepGMM (Bennett et al., 2019). We used
the DFIV method with observable confounders, as introduced in Appendix B. Note that
DeepGMM does not have an explicit mechanism for incorporating observable confounders.
The solution we use, proposed by Bennett et al. (2019, p. 2), is to incorporate these observables
in both instrument and treatment; hence we apply DeepGMM with treatment X = (P, T, S)
and instrumental variable Z = (C, T, S). Although this approach is theoretically sound,
this makes the problem unnecessary difficult since it ignores the fact that we only need to
consider the conditional expectation of P given Z.

We used a network with a similar number of parameters to DeepIV as the feature maps in
DFIV and models in DeepGMM. We tuned the regularizers �1,�2 as discussed in Appendix A,
with the data evenly split for stage 1 and stage 2. We varied the correlation parameter ⇢ and
dataset size, and ran 20 simulations for each setting. Results are summarized in Figure 2. We
also evaluated the performance via the estimation of average treatment effect and conditional
average treatment effect, which is presented in Appendix D.2

Next, we consider a case, introduced by Hartford et al. (2017), where the customer type
S 2 {1, . . . , 7} is replaced with an image of the corresponding handwritten digit from the
MNIST dataset (LeCun and Cortes, 2010). This reflects the fact that we cannot know the
exact customer type, and thus we need to estimate it from noisy high-dimensional data.
Note that although the confounder is high-dimensional, the treatment variable is still real-
valued, i.e. the price P of the tickets. Figure 3 presents the results for this high-dimensional
confounding case. Again, we train the networks with a similar number of learnable parameters
to DeepIV in DFIV and DeepGMM, and hyper-parameters are set in the way discussed in
Appendix A. We ran 20 simulations with data size n+m = 5000 and report the mean and
standard error.

Our first observation from Figure 2 and 3 is that the level ⇢ of correlation has no significant
impact on the error under any of the IV methods, indicating that all approaches correctly
account for the effect of the hidden confounder. This is consistent with earlier results on
this dataset using DeepIV and KIV (Hartford et al., 2017; Singh et al., 2019). We note
that DeepGMM does not perform well in this demand design problem. This may be due to
the current DeepGMM approach to handling observable confounders, which might not be
optimal. KIV performed reasonably well for small sample sizes and low-dimensional data,
but it did less well in the high-dimensional MNIST case due to its less expressive features.
In high dimensions, DeepIV performed well, since the treatment variable is unidimensional.
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Figure 3: MSE for demand design dataset
with high dimensional observed confounders.

Figure 4: MSE for dSprite dataset. DeepIV
did not yield meaningful predictions for this
experiment.

However, DFIV performed consistently better than all other methods in both low and high
dimensions, which suggests it can learn a flexible structural function in a stable manner.

4.2 dSprites Experiments

Figure 5: dSprite image

To test the performance of DFIV methods for a high dimensional
treatment variable, we utilized the dSprites dataset (Matthey
et al., 2017). This is an image dataset described by five latent
parameters (shape, scale, rotation, posX and posY). The
images are 64⇥ 64 = 4096-dimensional. In this experiment, we
fixed the shape parameter to heart, i.e. we only used heart-
shaped images. An example is shown in Figure 5.

From this dataset, we generated data for IV regression in which
we use each figure as treatment variable X. Hence, the treatment
variable is 4096-dimensional in this experiment. To make the task
more challenging, we used posY as the hidden confounder, which
is not revealed to the model. We used the other three latent
variables as the instrument variables Z. The structural function
fstruct and outcome Y are defined as

fstruct(X) =
kAXk

2
2
� 5000

1000
, Y = fstruct(X) + 32(posY� 0.5) + ", " ⇠ N (0, 0.5),

where each element of the matrix A 2 R10⇥4096 is generated from Unif(0.0, 1.0) and fixed
throughout the experiment. See Appendix D.3 for the detailed data generation process.

We tested the performance of DFIV with KIV and DeepGMM, where the hyper-parameters
are determined as in the demand design problem. The results are displayed in Figure 4.
DFIV consistently yields the best performance of all the methods. DeepIV is not included in
the figure because it fails to give meaningful predictions due to the difficulty of performing
conditional density estimation for the high-dimensional treatment variable. The performance
of KIV suffers since it lacks the feature richness to express a high-dimensional complex
structural function. Although DeepGMM performs comparatively to DFIV, we observe some
instability during the training, see Appendix D.4.

4.3 Off-Policy Policy Evaluation Experiments

We apply our IV methods to the off-policy policy evaluation (OPE) problem (Sutton and
Barto, 2018), which is one of the fundamental problems of deep RL. In particular, it has
been realized by Bradtke and Barto (1996) that 2SLS could be used to estimate a linearly
parameterized value function, and we use this reasoning as the basis of our approach. Let us
consider the RL environment hS,A, P,R, ⇢0, �i, where S is the state space, A is the action
space, P : S ⇥A⇥S ! [0, 1] is the transition function, R : S ⇥A⇥S ⇥R! R is the reward
distribution, ⇢0 : S ! [0, 1] is the initial state distribution, and discount factor � 2 (0, 1].
Let ⇡ be a policy, and we denote ⇡(a|s) as the probability of selecting action a in stage s 2 S.
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Figure 6: Error of offline policy evaluation.

Given policy ⇡, the Q-function is defined as

Q
⇡(s, a) = E

" 1X

t=0

�
t
rt

�����s0 = s, a0 = a

#

with at ⇠ ⇡(· | st), st+1 ⇠ P (·|st, at), rt ⇠ R(·|st, at, st+1). The goal of OPE is to evaluate
the expectation of the Q-function with respect to the initial state distribution for a given
target policy ⇡, Es⇠⇢0,a|s⇠⇡[Q

⇡(s, a)], learned from a fixed dataset of transitions (s, a, r, s0),
where s and a are sampled from some potentially unknown distribution µ and behavioral
policy ⇡b(·|s) respectively. Using the Bellman equation satisfied by Q

⇡, we obtain a structural
causal model of the form (1),

r =

structural function fstruct(s,a,s
0
,a

0
)

z }| {
Q

⇡(s, a)� �Q
⇡(s0, a0) (10)

+ �
�
Q

⇡(s0, a0)� Es0⇠P (·|s,a),a0⇠⇡(·|s0) [Q
⇡(s0, a0)]

�
+ r � Er⇠R(·|s,a,s0) [r]| {z }

confounder "

,

where X = (s, a, s0, a0), Z = (s, a), Y = r. We have that E ["] = 0,E ["|X] 6= 0, and
Assumption 1 is verified. Minimizing the loss (2) for the structural causal model (10)
corresponds to minimizing the following loss LOPE

LOPE = Es,a,r

h�
r + �Es0⇠P (·|s,a),a0⇠⇡(·|s0) [Q

⇡(s0, a0)]�Q
⇡(s, a)

�2i
, (11)

and we can apply any IV regression method to achieve this. In Appendix C, we show
that minimizing LOPE corresponds to minimizing the mean squared Bellman error (MSBE)
(Sutton and Barto, 2018, p. 268) and we detail the DFIV algorithm for OPE. Note that
MBSE is also the loss minimized by the residual gradient (RG) method proposed in (Baird,
1995) to estimate Q-functions. However, this method suffers from the “double-sample” issue,
i.e. it requires two independent samples of s0 starting from the same (s, a) due to the inner
conditional expectation (Baird, 1995), whereas IV regression methods do not suffer from
this issue.

We evaluate DFIV on three BSuite (Osband et al., 2019) tasks: catch, mountain car, and
cartpole. See Section D.6.1 for a description of those tasks. The original system dynamics
are deterministic. To create a stochastic environment, we randomly replace the agent action
by a uniformly sampled action with probability p 2 [0, 0.5]. The noise level p controls the
level of confounding effect. The target policy is trained using DQN (Mnih et al., 2015),
and we subsequently generate an offline dataset for OPE by executing the policy in the
same environment with a random action probability of 0.2 (on top of the environment’s
random action probability p). We compare DFIV with KIV, DeepIV, and DeepGMM; as
well as Fitted Q Evaluation (FQE) (Le et al., 2019; Voloshin et al., 2019), a specialized
approach designed for the OPE setting, which serves as our “gold standard” baseline (Paine
et al., 2020) (see Section D.6.2 for details). All methods use the same network for value
estimation. Figure 6 shows the absolute error of the estimated policy value by each method
with a standard deviation from 5 runs. In catch and mountain car, DFIV comes closest in
performance to FQE, and even matches it for some noise settings, whereas DeepGMM is
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somewhat worse in catch, and significantly worse in mountain car. In the case of cartpole,
DeepGMM performs somewhat better than DFIV, although both are slightly worse than
FQE. DeepIV and KIV both do poorly across all RL benchmarks.

5 Conclusion

We have proposed a novel method for instrumental variable regression, Deep Feature IV
(DFIV), which performs two-stage least squares regression on flexible and expressive features
of the instrument and treatment. As a contribution to the IV literature, we showed how to
adaptively learn these feature maps with deep neural networks. We also showed that the
off-policy policy evaluation (OPE) problem in deep RL can be interpreted as a nonlinear IV
regression, and that DFIV performs competitively in this domain. This work thus brings the
research worlds of deep offline RL and causality from observational data closer.

In terms of future work, it would be interesting to adapt the ideas from (Angrist and
Krueger, 1995; Angrist et al., 1999; Hansen and Kozbur, 2014) to select the regularization
hyperparameters of DFIV as well as investigate generalizations of DFIV beyond the additive
model (1) as considered in (Carrasco et al., 2007, Section 5.4). In RL, problems with
additional confounders are common, see e.g. (Namkoong et al., 2020; Shang et al., 2019),
and we believe that adapting DFIV to this setting will be of great value.
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