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Abstract

Denoising diffusion probabilistic models (DDPMs) [14] have shown impressive1

results on image and waveform generation in continuous state spaces. Here, we2

introduce Discrete Denoising Diffusion Probabilistic Models (D3PMs), diffusion-3

like generative models for discrete data that generalize the multinomial diffusion4

model of Hoogeboom et al. [15], by going beyond corruption processes with uni-5

form transition probabilities. This includes corruption with transition matrices that6

mimic Gaussian kernels in continuous space, matrices based on nearest neighbors7

in embedding space, and matrices that introduce absorbing states. The third al-8

lows us to draw a connection between diffusion models and autoregressive and9

mask-based generative models. We show that the choice of transition matrix is an10

important design decision that leads to improved results in image and text domains.11

We also introduce a new loss function that combines the variational lower bound12

with an auxiliary cross entropy loss. For text, this model class achieves strong13

results on character-level text generation while scaling to large vocabularies on14

LM1B. On the image dataset CIFAR-10, our models approach the sample quality15

and exceed the log-likelihood of the continuous-space DDPM model.16

1 Introduction17

Generative modeling is a core problem in machine learning, useful both for benchmarking our ability18

to capture statistics of natural datasets and for downstream applications that require generating19

high-dimensional data like images, text, and speech waveforms. There has been a great deal of20

progress with the development of methods like GANs [12, 3], VAEs [19, 28], large autoregressive21

neural network models [37, 36, 38], normalizing flows [27, 9, 18, 26], and others, each with their22

own tradeoffs in terms of sample quality, sampling speed, log-likelihoods, and training stability.23

Recently, diffusion models [30] have emerged as a compelling alternative for image [14, 33] and au-24

dio [5, 20] generation, achieving comparable sample quality to GANs and log-likelihoods comparable25

to autoregressive models with fewer inference steps. A diffusion model is a parameterized Markov26

chain trained to reverse a predefined forward process, which is a stochastic process constructed to27

gradually corrupt training data into pure noise. Diffusion models are trained using a stable objective28

closely related to both maximum likelihood and score matching [16, 39], and they admit faster29

sampling than autoregressive models by using parallel iterative refinement [24, 32, 34, 31].30

Although diffusion models have been proposed in both discrete and continuous state spaces [30],31

most recent work has focused on Gaussian diffusion processes that operate in continuous state spaces32

(e.g. for real-valued image and waveform data). Diffusion models with discrete state spaces have33

been explored for text and image segmentation domains [15], but they have not yet been demonstrated34

as a competitive model class for large scale text or image generation.35
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Figure 1: D3PM forward and (learned) reverse process applied to a quantized swiss roll. Each dot
represents a 2D categorical variable. Top: samples from the uniform, discretized Gaussian, and
absorbing state D3PM model forward processes, along with corresponding transition matrices Q.
Bottom: samples from a learned discretized Gaussian reverse process.

Our aim in this work is to improve and extend discrete diffusion models by using a more structured36

categorical corruption process to shape data generation, as illustrated in Figure 1. Our models do not37

require relaxing or embedding discrete data (including images) into continuous spaces, and can embed38

structure or domain knowledge into the transition matrices used by the forward process. We achieve39

significantly improved results by taking advantage of this flexibility. We develop structured corruption40

processes appropriate for text data, using similarity between tokens to enable gradual corruption41

and denoising. Expanding further, we also explore corruption processes that insert [MASK] tokens,42

which let us draw parallels to autoregressive and mask-based generative models. Finally, we study43

discrete diffusion models for quantized images, taking inspiration from the locality exploited by44

continuous diffusion models. This leads to a particular choice of discrete corruption process that45

diffuses preferentially to more similar states and leads to much better results in the image domain.46

Overall, we make a number of technical and conceptual contributions. Beyond designing several new47

structured diffusion models, we introduce a new auxiliary loss which stabilizes training of D3PMs48

and a family of noise schedules based on mutual information that lead to improved performance. We49

strongly outperform various non-autoregressive baselines for text generation on character-level text50

generation, and successfully scale discrete diffusion models to large vocabularies and long sequence51

lengths. We also achieve strong results on the image dataset CIFAR-10, approaching or exceeding52

the Gaussian diffusion model from Ho et al. [14] on log-likelihoods and sample quality.53

2 Background: diffusion models54

Diffusion models [30] are latent variable generative models characterized by a forward and a reverse55

Markov process. The forward process q(x1:T |x0) =
∏T
t=1 q(xt|xt−1) corrupts the data x0 ∼56

q(x0) into a sequence of increasingly noisy latent variables x1:T = x1,x2, ...,xT . The learned57

reverse Markov process pθ(x0:T ) = p(xT )
∏T
t=1 pθ(xt−1|xt) gradually denoises the latent variables58

towards the data distribution. For example, for continuous data, the forward process typically adds59

Gaussian noise, which the reverse process learns to remove.60

In order to optimize the generative model pθ(x0) to fit the data distribution q(x0), we typically61

optimize a variational upper bound on the negative log-likelihood:62

Lvb = Eq(x0)

[
DKL[q(xT |x0)||p(xT )]︸ ︷︷ ︸

LT

+
T∑
t=2

Eq(xt|x0)

[
DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]

]︸ ︷︷ ︸
Lt−1

−Eq(x1|x0)[log pθ(x0|x1)]︸ ︷︷ ︸
L0

]
. (1)
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When the number of time steps T goes to infinity, both the forward process and the reverse process63

share the same functional form [10], allowing the use of a learned reverse process from the same64

class of distributions as that of the forward process. Furthermore, for several choices of the forward65

process the distribution q(xt|x0) converges to a stationary distribution π(x) in the limit t → ∞66

independent of the value of x0. When the number of time steps T is large enough and we choose67

π(x) as the prior p(xT ), we can guarantee that the LT term in (1) will approach zero regardless of68

the data distribution q(x0). (Alternatively, one can use a learned prior pθ(xT ).)69

While q(xt|xt−1) can in theory be arbitrary, efficient training of pθ is possible when q(xt|xt−1):70

1. Permits efficient sampling of xt from q(xt|x0) for an arbitrary time t, allowing us to71

randomly sample timesteps and optimize each Lt−1 term individually with stochastic72

gradient descent,73

2. Has a tractable expression for the forward process posterior q(xt−1|xt,x0), which allows74

us to compute the KL divergences present in the Lt−1 term of (1).75

The majority of recent work in continuous spaces [14, 31, 5, 24] defines the forward76

and reverse distributions as q(xt|xt−1) = N
(
xt|
√
1− βtxt−1, βtI

)
and pθ(xt−1|xt) =77

N (xt−1|µθ(xt, t),Σθ(xt, t)), respectively. The aforementioned properties hold in the case of78

these Gaussian diffusion models: the forward process q(xt|x0) converges to a stationary distribution,79

motivating the choice p(xT ) = N (xT |0, I), and both q(xt|x0) and q(xt−1|xt,x0) are tractable80

Gaussian distributions for which the KL divergence can be computed analytically.81

3 Diffusion models for discrete state spaces82

Diffusion models with discrete state spaces were first introduced by Sohl-Dickstein et al. [30], who83

considered a diffusion process over binary random variables. Hoogeboom et al. [15] extended84

the model class to categorical random variables with transition matrices characterized by uniform85

transition probabilities. In their supplementary material, Song et al. [31] also derived this extension,86

although no experiments were performed with this model class. Here, we briefly describe a more87

general framework for diffusion with categorical random variables which includes these models as88

special cases.89

For scalar discrete random variables with K categories xt, xt−1 ∈ 1, ...,K the forward transition90

probabilities can be represented by matrices: [Qt]ij = q(xt = j|xt−1 = i). Denoting the one-hot91

version of x with the row vector x, we can write92

q(xt|xt−1) = Cat(xt;p = xt−1Qt), (2)

where Cat(x;p) is a categorical distribution over the one-hot row vector x with probabilities given93

by the row vector p, and xt−1Qt is to be understood as a row vector-matrix product. We assume94

that Qt is applied to each pixel of an image or each token in a sequence independently, and that95

q factorizes over these higher dimensions as well; we thus write q(xt|xt−1) in terms of a single96

element. Starting from x0, we obtain the following t-step marginal and posterior at time t− 1:97

q(xt|x0) = Cat
(
xt;p = x0Qt

)
, with Qt = Q1Q2 . . .Qt

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)
= Cat

(
xt−1;p =

xtQ
>
t � x0Qt−1

x0Qtx
>
t

)
. (3)

Note that due to the Markov property of the forward process q(xt|xt−1,x0) = q(xt|xt−1). As-98

suming that the reverse process pθ(xt|xt−1) is also factorized as conditionally independent over99

the image or sequence elements, the KL divergence between q and pθ can be computed by simply100

summing over all possible values of each random variable; we thus satisfy criteria 1 and 2 discussed101

in Section 2. Depending onQt, the cumulative productsQt can often be computed in closed form,102

or simply precomputed for all t. However, for large K and large T this may be prohibitive. In103

Appendix A.4 we discuss how to ensureQt can still be computed efficiently in this case, allowing104

the framework to scale to a larger number of categories.105

In the next section we discuss the choice of the Markov transition matrices Qt and corresponding106

stationary distributions. From here on, we refer to the general class of diffusion models with discrete107

state spaces as Discrete Denoising Diffusion Probabilistic Models (D3PMs).108
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3.1 Choice of Markov transition matrices for the forward process109

An advantage of the D3PM framework described above is the ability to control the data corruption110

and denoising process by choosingQt, in notable contrast to continuous diffusion, for which only111

additive Gaussian noise has received significant attention. Besides the constraint that the rows ofQt112

must sum to one to conserve probability mass, the only other constraint in choosingQt is that the113

rows ofQt = Q1Q2 . . .Qt must converge to a known stationary distribution1 when t becomes large,114

which can be guaranteed while imposing minimal restrictions onQt (see Appendix A.1).115

We argue that for most real-world discrete data, including images and text, it makes sense to116

add domain-dependent structure to the transition matrices Qt as a way of controlling the forward117

corruption process and the learnable reverse denoising process. Below we briefly discuss the uniform118

transition matrices that have been studied in prior work [15], along with a set of structured transition119

matrices we have explored for our image and text dataset experiments; see Appendix A.2 for more120

details on each matrix type. We also note that this set is not exhaustive, and many other transition121

matrices could also be used within the D3PM framework.122

Uniform (Appendix A.2.1). Sohl-Dickstein et al. [30] considered a simple 2×2 transition matrix for123

binary random variables. Hoogeboom et al. [15] later extended this to categorical variables, proposing124

a transition matrix Qt = (1 − βt)I + βt/K 11
T with βt ∈ [0, 1]. Since this transition matrix is125

doubly stochastic with strictly positive entries, the stationary distribution is uniform. Because the126

transition probability to any other state is uniform, in this paper we equivalently refer to this discrete127

diffusion instance as D3PM-uniform.128

Absorbing state (Appendix A.2.2). Motivated by the success of BERT [8] and recent work on129

Conditional Masked Language Models (CMLMs) in text, we consider a transition matrix with an130

absorbing state (called [MASK]), such that each token either stays the same or transitions to [MASK]131

with some probability βt. This does not impose particular relationships between categories, similar to132

uniform diffusion, but still allows corrupted tokens to be distinguished from original ones. Moreover,133

the stationary distribution is not uniform but has all the mass on the [MASK] token. For images, we134

reuse the grey pixel as the [MASK] absorbing token.135

Discretized Gaussian (Appendix A.2.3). Instead of transitioning uniformly to any other state, for136

ordinal data we propose imitating a continuous space diffusion model by using a discretized, truncated137

Gaussian distribution. We choose a normalization such that the transition matrix is doubly stochastic,138

leading to a uniform stationary distribution. This transition matrix will transition between more139

similar states with higher probability, and is well suited for quantized ordinal data such as images.140

Token embedding distance (Appendix A.2.4). Textual data does not have ordinal structure, but141

there may still be interesting semantic relationships. For instance, in a character level vocabulary142

vowels may be more similar to each other than they are to consonants. As a demonstration of the143

generality of the D3PM framework, we explore using similarity in an embedding space to guide the144

forward process, and construct a doubly-stochastic transition matrix that transitions more frequently145

between tokens that have similar embeddings while maintaining a uniform stationary distribution.146

For uniform and absorbing-state diffusion, the cumulative productsQt can be computed in closed147

form (see Appendix A.4.1); the remainder can be precomputed.148

3.2 Noise schedules149

We consider several different options for the noise schedule of the forward process. For discretized150

Gaussian diffusion, we explore linearly increasing the variance of the Gaussian before discretizing151

it. (Note that a linear schedule forQt leads to a nonlinear amount of cumulative noise inQt.) For152

uniform diffusion we use the cosine schedule which sets the cumulative probability of a transition to153

a cosine function, as introduced by Nichol and Dhariwal [24] and adapted by Hoogeboom et al. [15].154

For a general set of transition matricesQt (such as the one based on token embeddings), previously155

proposed schedules may not be directly applicable. We consider linearly interpolating the mutual156

information between xt and x0 to zero, i.e. I(xt;x0) ≈ (1 − t
T )H(x0). Interestingly, for the157

specific case of absorbing-state D3PMs, this schedule reduces to exactly the (T − t+ 1)−1 schedule158

1If a stationary distribution is not known, we can instead append a rank-one matrix QT+1 that ignores xT
and produces a deterministic xT+1; we note that this is equivalent to introducing a learned prior pθ(xT ).
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proposed by Sohl-Dickstein et al. [30] for a Bernoulli diffusion process. See Appendix A.7 for more159

details.160

3.3 Parameterization of the reverse process161

While it is possible to directly predict the logits of pθ(xt−1|xt) using a neural network nnθ(xt),162

we follow Ho et al. [14] and Hoogeboom et al. [15] and focus on using a neural network nnθ(xt)163

to predict the logits of a distribution p̃θ(x̃0|xt), which we combine with q(xt−1|xt,x0) and a164

summation over one-hot representations of x0 to obtain the following parameterization165

pθ(xt−1|xt) =
∑
x̃0

q(xt−1|xt, x̃0)p̃θ(x̃0|xt). (4)

We note that under this x0-parameterization the KL divergence DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]166

will be zero if p̃θ(x̃0|xt) places all of its probability mass on the original value x0. The decomposition167

of q(xt−1|xt,x0) in (3) also provides us with a motivation for this parameterization. According to168

(3), in a given state xt, the optimal reverse process only takes into account transitions to states for169

which q(xt|xt−1) is non-zero. Therefore, the sparsity pattern ofQt determines the sparsity pattern170

of the ideal reverse transition probabilities in pθ(xt−1|xt). The parameterization in (4) automatically171

ensures that the learned reverse probability distribution pθ(xt−1|xt) has the correct sparsity pattern172

dictated by the choice of the Markov transition matrixQt. This parameterization also lets us perform173

inference with k steps at a time, by predicting pθ(xt−k|xt) =
∑
q(xt−k|xt, x̃0)p̃θ(x̃0|xt).174

Finally, when modeling ordinal discrete data, instead of predicting the logits of p̃θ(x̃0|xt) directly175

with the output of a neural net, another option is to model the probabilities with a truncated discretized176

logistic distribution (see Appendix A.8). This provides an extra ordinal inductive bias to the reverse177

model and boosts FID and log-likelihood scores for images.178

3.4 Loss function179

While the original diffusion models introduced by Sohl-Dickstein et al. [30] were optimized with180

the negative variational lower bound Lvb of (1), more recent diffusion models are optimized with181

different objectives. For instance, Ho et al. [14] derive a simplified loss function (Lsimple) that182

reweights the negative variational bound, and Nichol and Dhariwal [24] explore a hybrid loss183

Lhybrid = Lsimple + λLvb (using one term to learn the predicted mean and the other to learn184

predicted variance). Inspired by this recent work, we introduce an auxiliary denoising objective for185

the x0-parameterization of the reverse process, which encourages good predictions of the data x0 at186

each time step. We combine this with the negative variational lower bound, yielding the following187

alternative loss function:188

Lλ =Lvb + λ Eq(x0)Eq(xt|x0)[− log p̃θ(x0|xt)]. (5)

Note that the auxiliary loss coincides with the cross entropy term L0 in (1) at t = 1. Fur-189

thermore, due to the x0-parameterization of pθ(xt−1|xt), both the auxiliary loss term and190

DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)] in Lvb are minimized exactly when p̃θ(x̃0|xt) has all its mass191

on the datapoint x0. We find that training with this loss leads to improved quality of image samples.192

4 Connection to existing probabilistic models for text193

In this section we expand on interesting connections between the D3PM framework and several194

existing probabilistic and language modeling approaches.195

BERT is a one-step diffusion model: One possible D3PM transition matrix is a combination of a196

uniform transition matrix and an absorbing state at the [MASK] token (i.e. Q = α1eTm+β11T /K+197

(1− α− β)I , where em is a one-hot vector on the [MASK] token). For a one-step diffusion process198

in which q(x1|x0) replaces 10% of tokens with [MASK] and 5% uniformly at random, this leads199

precisely to the BERT denoising objective, i.e. Lvb − LT = −Eq(x1|x0)[log pθ(x0|x1)] = LBERT ,200

since LT is a constant independent of θ (assuming a fixed prior).201

Autoregressive models are (discrete) diffusion models: Consider a diffusion process that deter-202

ministically masks tokens one-by-one in a sequence of length N = T : q([xt]i | x0) = [x0]i if i <203
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N−t else [MASK] . This is a deterministic forward process, so q(xt−1|xt,x0) is a delta distribution204

on the xt sequence with one fewer mask: q([xt−1]i |xt,x0) = δ[xt]i if i 6= T − t else δ[x0]i . While205

this process is not applied independently to each token, it can be recast as an independently-applied206

diffusion process on the product space [0...N ]× V , where each token is tagged with its position in207

the sequence, V is the vocabulary, andQ is an N × |V| ×N × |V| sparse matrix.208

Because all tokens except the ith token have deterministic posteriors, the KL divergence209

DKL(q([xt−1]j |xt,x0) || pθ([xt−1]j |xt)) is zero for all other positions. The only token for which210

this is not true is the token at position i, for which DKL(q([xt−1]i|xt,x0) || pθ([xt−1]i|xt)) =211

− log pθ([x0]i|xt), the standard cross entropy loss for an autoregressive model.212

(Generative) Masked Language-Models (MLMs) are diffusion models: Generative Masked Lan-213

guage Models ([11], [40]) are generative models that generate text from a sequence of [MASK]214

tokens. They are usually trained by sampling a sequence x0, masking k tokens according to some215

schedule, and learning to predict the masked tokens given context. It turns out that a D3PM absorbing216

([MASK]) model trained on the usual ELBO objective with the x0-parameterization from 3.3 reduces217

to a reweighted version of this MLM objective (see Appendix A.3 for a detailed derivation).218

5 Text generation219

For text, we experiment with generation on two datasets: text8 [22], a character-level dataset extracted220

from English-language Wikipedia, and the One Billion Word dataset (LM1B) [4], a large dataset of221

shuffled English-language sentences. For both, we train a D3PM uniform model based on the work222

by Hoogeboom et al. [15] (D3PM uniform) and a model that masks tokens (D3PM absorbing). For223

text8, we also consider a model that transitions uniformly to nearest neighbors in a token embedding224

space (D3PM NN). We follow Hoogeboom et al. [15] and use T = 1000 timesteps, although we are225

also able to evaluate on fewer due to the parameterization in Section 3.3.226

5.1 Character-level generation on text8227

text8 is a character-level text dataset consisting of a small vocabulary of 27 tokens: the letters ‘a’-‘z’228

and the ‘_’ whitespace token. We follow the convention of training and evaluating text8 in chunks229

of length 256 without any preprocessing [15]. For nearest-neighbor D3PM, our nearest neighbor230

graph in character-space is shown in Appendix B.2. D3PM uniform models were trained with a231

cosine schedule from Hoogeboom et al. [15] (ablations in Appendix B.2), while D3PM absorbing232

and D3PM NN models were trained with a mutual information schedule.233

Table 1: Quantitative results on text8. NLL is reported on the entire test set. Sample times are for
generating a single example of length 256. Results are reported on two seeds. All models are standard
12-layer transformers unless otherwise noted. †Transformer XL is a 24-layer transformer, using a
784 context window. ∗Results reported by [15] by running code from official repository.

Model Model steps NLL (bits/char) (↓) Sample time (s) (↓)

Discrete Flow [35] (8× 3 layers) - 1.23 0.16
Argmax Coupling Flow [15] - 1.80 0.40± 0.03
IAF / SCF [41]∗ - 1.88 0.04± 0.0004
Multinomial Diffusion (D3PM uniform) [15] 1000 ≤ 1.72 26.6± 2.2

D3PM uniform [15] (ours) 1000 ≤ 1.61± 0.02 3.6± 0.4
D3PM NN (Lλ=0) (ours) 1000 ≤ 1.59± 0.03 3.147± 0.0002
D3PM mask (Lλ=0.01) (ours) 1000 ≤ 1.45± 0.02 3.4± 0.3

D3PM uniform [15] (ours) 256 ≤ 1.68± 0.01 0.58± 0.0001
D3PM NN (Lλ=0) (ours) 256 ≤ 1.64± 0.02 0.81± 0.002
D3PM absorbing (Lλ=0.01) (ours) 256 ≤ 1.47± 0.03 0.59± 0.002
Transformer decoder (ours) 256 1.23 0.357± 0.0002
Transformer decoder [1] 256 1.18 -
Transformer XL [7]† 256 1.08 -

D3PM uniform [15] (ours) 20 ≤ 1.791± 0.03 0.078± 0.0001
D3PM NN (Lλ=0) (ours) 20 ≤ 1.75± 0.02 0.111± 0.0001
D3PM absorbing (Lλ=0.01) (ours) 20 ≤ 1.56± 0.04 0.078± 0.0003
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Figure 2: Left: perplexity v.s. sampling iterations for LM1B. Right: Using a trained D3PM absorbing
model for LM1B to (top) generate new sentences and (bottom) reconstruct corrupted examples.

Table 2: Quantitative results on LM1B. Perplexity reported on the test set normalized by the number
of words. Results are reported on two seeds. Context window has length 128 for all diffusion models,
and all have 12 layers unless otherwise noted. † Transformer XL is a 24 layer transformer.

Metric: Perplexity Sample time

inference steps: 1000 128 64 1000 128 64

D3PM-uniform 137.9± 2.1 139.2± 1.2 145± 1.2 1.8± 0.02 0.21± 0.03 0.08± 0.01
D3PM-absorbing 76.9± 2.3 80.13± 1.2 83.62± 6.1 1.9± 0.01 0.19± 0.002 0.099± 0.01

Transformer (ours) - 43.62549 - - 0.256± 0.03 -
Transformer XL [7]† - 21.8 - - - -

Table 1 shows that for D3PM, the D3PM absorbing model performed the best, exceeding the234

uniform and NN diffusion models. We were able to improve upon the baseline result of [15] with235

hyperparameter tuning, and our uniform and NN results outperformed results from Hoogeboom236

et al. [15] across all inference steps, down to as few as 20. We found that Lλ=0.01 worked best237

for D3PM absorbing, while Lvb was better for D3PM uniform. Our model outperforms all non-238

autoregressive baselines except one, the Discrete Flow model [35] (for which unfortunately no239

open-source implementations exist), and is also faster than all but one method, the IAF/SCF model240

[41]. It is also nearly 20x faster than an autoregressive transformer of the same size. For further241

results, see Appendix B.2. D3PM with the mask absorbing token was by far the best performing242

model, which lends credibility to the use of masks in denoising auto-encoders. Nearest-neighbor243

diffusion only narrowly improves upon a D3PM-uniform model: this was a surprising negative result244

for us, suggesting that not all notions of structure are meaningful.245

5.2 Text generation on LM1B246

Text generation for large-scale text datasets and large vocabularies with discrete diffusion models has247

not been previously demonstrated. We include results from LM1B as a proof of concept, showing248

that these models can indeed scale (as discussed in Appendix A.4), and that the D3PM absorbing249

model continues to excel. We do not report D3PM-NN results on LM1B due to slow training and a250

lack of signal from the text8 results. All models were trained and evaluated on packed sequences of251

length 128, using a sentencepiece2 vocabulary of size 8192.252

Table 2 contains results from experiments on LM1B. We also include a plot of inference time as a253

function of iterations in Appendix B.3. Overall, mask diffusion (D3PM absorbing) does relatively254

well, approaching the performance of a comparable autoregressive model of the same size, and scaling255

to far fewer steps, while uniform diffusion performs significantly worse. We found the the Lλ=0.01256

loss worked best for the mask absorbing model, but reduced performance for the other models. We257

note the surprising scaling in perplexity in Figure 2, achieving remarkably strong results with as few258

as 10 inference steps. We also show samples from our model, as well as completions from corrupted259

samples.260

2https://github.com/google/sentencepiece
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Table 3: Inception scores (IS), Frechet Inception Distance (FID) and negative log-likehood (NLL)
on the image dataset CIFAR-10. The NLL is reported on the test set in bits per dimension. Where
available, results are reported over models trained with two seeds.

Model IS (↑) FID (↓) NLL (↓)

Sparse Transformer [6] 2.80
NCSN [32] 8.87± 0.12 25.32
NCSNv2 [33] 8.40± 0.07 10.87
StyleGAN2 + ADA [17] 9.74± 0.05 3.26

Diffusion (original), Lvb [30] ≤ 5.40
DDPM Lvb [14] 7.67± 0.13 13.51 ≤ 3.70
DDPM Lsimple [14] 9.46± 0.11 3.17 ≤ 3.75
Improved DDPM Lvb [24] 11.47 ≤ 2.94
Improved DDPM Lsimple [24] 2.90 ≤ 3.37
DDPM++ cont [34] 2.92 2.99
NCSN++ cont. [34] 9.89 2.20

D3PM uniform Lvb 6.09± 0.09 48.065± 0.83 ≤ 5.11± 0.01
D3PM absorbing Lvb 6.20± 0.08 41.75± 1.32 ≤ 4.88± 0.02
D3PM absorbing Lλ=0.001 6.70± 0.11 30.99 ≤ 4.45
D3PM Gauss Lvb 7.92± 0.10 15.72 ≤ 3.97
D3PM Gauss Lλ=0.001 8.54± 0.16 8.23± 0.18 ≤ 3.985± 0.007
D3PM Gauss + logistic Lλ=0.001 8.65± 0.19 6.90± 0.02 ≤ 3.442± 0.003

6 Image generation261

We evaluate the performance of several D3PM models on the task of unconditional image generation262

with the dataset CIFAR-10 [21]. We follow Ho et al. [14] and use T = 1000 timesteps for all models263

and verify that for all models the forward process converges to the stationary distribution within T264

steps, yielding a value of at most LT ≈ 10−5 bits per dimension. We train three versions of D3PM265

with different transition matrices: doubly stochastic matrices with uniform transition probabilities266

(D3PM uniform) [15], transition matrices with an absorbing state located at R, G and B values of 128267

(D3PM absorbing) and doubly stochastic discretized Gaussian transition matrices (D3PM Gauss). For268

the D3PM uniform model we experimented with a linear βt schedule as well as the cosine schedule269

as proposed in [15], with the cosine schedule producing the best results. For D3PM absorbing we270

use the schedule βt = (T − t+ 1)−1 as also proposed in [30], which corresponds to increasing the271

probability of being in the absorbing state linearly over time. For D3PM Gauss we use the same272

linear schedule as in [14]. See Appendix B.1 for more details on the experimental setup.273

Table 3 shows that for D3PM models trained with the Lvb objective, D3PM Gauss performs better274

than D3PM absorbing and uniform on all metrics: Inception score (IS), Frechet Inception Distance275

(FID) and negative log-likelihood (NLL). The IS score of the uniform and absorbing D3PM models276

Figure 3: Left: progressive sampling at t = 1000, 900, 800, ..., 0 for D3PM absorbing (top) and
D3PM Gauss + logistic (bottom), trained with Lλ loss on CIFAR-10. These samples were cherry
picked. Right: (non cherry picked) samples from the D3PM Gauss + logistic model.
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are comparable, while the FID score and NLL of the D3PM absorbing model are slightly better. We277

trained both D3PM absorbing and D3PM Gauss with the alternative loss function Lλ of (5), and278

we found λ = 0.001 to work best. We have also experimented with larger values of λ and a model279

trained only with the auxiliary denoising term in (5). Although this led to a more rapid increase280

in performance early on in training, the NLL leveled off at higher values for larger λ and the FID281

even started increasing again. The results show that the models trained with Lλ perform significantly282

better than their counterparts trained with Lvb. One explanation for this boost in performance is that283

the cross entropy term leads to gradient noise that varies less with the time step t, which is in contrast284

to the large change in magnitude of the Lt−1 terms in Lvb for smaller t, as demonstrated by Nichol285

and Dhariwal [24]. Finally, we achieve our best results by combining D3PM Gauss trained on Lλ286

with a truncated logistic parameterization of the reverse process distribution pθ(x̃0|xt) (D3PM Gauss287

+ logistic). Figure 3 shows samples from our best model (D3PM Gauss + logistic), as well as the288

D3PM absorbing model.289

7 Related Work290

Diffusion generative models were first proposed by Sohl-Dickstein et al. [30] and have gained291

renewed attention recently due to strong results on image and waveform generation [14, 5]. Recent292

works have proposed improvements for diffusion model training, including importance sampling of293

the ELBO, better noise schedules [24] and implicit diffusion models [31]. Several works have also294

drawn connections to score matching [39, 16, 32], leading to improved sampling algorithms in the295

continuous-time limit [34].296

While most works have considered continuous diffusion models, discrete diffusion-like models were297

described in [30] and applied to text generation and image segmentation data in [15]. Some works298

[25, 23] have dealt with discrete data by embedding it in continuous space and leveraging Gaussian299

diffusion, but have not applied this to text. Seff et al. [29] also considered generation of discrete300

structured objects using a diffusion-like Markov corruption process.301

For text, denoising autoencoders have a long history both in representation learning [2, 8] and more302

recently as generative models [40]. These closely resemble our MASK diffusion variants for a303

particular schedule and transition matrix (see Section 4), although our framing allows us to compute304

log-likelihoods and experiment with alternative transition matrices. Other works have considered305

non-autoregressive translation via insertion and deletion [13] or masking [11].306

8 Discussion307

We have presented D3PMs, a class of models that improves diffusion models for discrete data by308

defining new kinds of discrete corruption processes. We achieve strong empirical results relative to309

previous work on discrete diffusion models, even surpassing performance of continuous diffusion310

models in terms of log-likelihoods for image generation. While these results are promising, one311

limitation is that—like much other work on non-autoregressive generative models—our models are312

still inferior to strong autoregressive models like Transformer XL for text generation, and continuous313

diffusion models still yield stronger results on image quality. We expect that D3PMs can benefit314

further from the rapid development of continuous diffusion models [34, 24]. For example, further315

research in alternative losses for D3PM’s can take inspiration from the reweighted Lsimple objective316

used in [14], or the resampled variational bound in Nichol and Dhariwal [24]. Furthermore, D3PM’s317

might benefit from increasing the number of timesteps and a more optimized noise schedule, as318

discussed in Nichol and Dhariwal [24]. Another limitation comes from the choice of evaluation319

metrics that we use (and that are standard for evaluation of generative models). Inception score320

and Frechet Inception Distance are based on neural networks that have been trained on a particular321

distribution of data, which is not representative for all use-cases, and focusing on average quality322

metrics may not accurately reflect performance across the wide diversity of settings where these323

generative models may be applied. This creates a risk of negative social impacts where advances324

disproportionately favor a subset of the population. Going forward, we are excited about the space325

of possibilities that arise within the D3PM framework. We have found successes in leveraging the326

flexibility that comes from defining discrete corruption processes for discrete data, but we believe327

that there are many more possibilities that make use of richer forms of structure to define even more328

powerful discrete diffusion models.329
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