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Abstract

Secure aggregation protocols are implemented in federated learning to protect1

the local models of the participating users so that the server does not obtain any2

information beyond the aggregate model at each iteration. However, existing secure3

aggregation schemes fail to protect the integrity, i.e., correctness, of the aggregate4

model in the possible presence of a malicious server forging the aggregation result,5

which motivates the need for verifiable aggregation in federated learning. Existing6

verifiable aggregation schemes either have a complexity that linearly grows with the7

model size or require time-consuming reconstruction at the server, that is quadratic8

in the number of users, in case of likely user dropouts. To overcome these limita-9

tions, we propose LightVeriFL, a lightweight and communication-efficient secure10

verifiable aggregation protocol, that provides the same guarantees for verifiability11

against a malicious server, data privacy, and dropout-resilience as the state-of-12

the-art protocols without incurring substantial communication and computation13

overheads. The proposed LightVeriFL protocol utilizes homomorphic hash and14

commitment functions of constant length, that are independent of the model size, to15

enable verification at the users. In case of dropouts, LightVeriFL uses a one-shot16

aggregate hash recovery of the dropped users, instead of a one-by-one recovery17

based on secret sharing, making the verification process significantly faster than the18

existing approaches. We evaluate LightVeriFL through experiments and show19

that it significantly lowers the total verification time in practical settings.20

1 Introduction21

Federated learning (FL) is a distributed learning paradigm proposed to address the growing concerns22

about user data privacy in distributed learning systems [1]. In FL, a group of users jointly train a23

global model without sending their local data to a central server (see Fig. 1(a)). Even though user24

datasets stay private, local model updates sent by the users can potentially cause data leakage from25

the users [2, 3, 4, 5]. Secure aggregation frameworks have been implemented to protect the users’26

individual local models as well as tolerate likely dropouts in FL [6, 7, 8, 9, 10]. Secure aggregation27

schemes hide individual local models from the server, which only learns the aggregate model. Despite28

their benefits in protecting the user models, none of these secure aggregation schemes enable the29

users to verify the correctness of the aggregate model received from the server at each iteration.30

The typical FL framework, even in the presence of secure aggregation schemes, is prone to a malicious31

server forging the aggregation results for its own benefit or a lazy server sending incorrect results32

to reduce its computation cost (see Fig. 1(b)). Since the users are oblivious to the aggregation33

procedure, such incorrect computations at the server can potentially alter the learning procedure.34

From a trustworthiness standpoint, without verifiable aggregation, users cannot make sure whether35

their contributions are included in the global model, also motivating the study of verifiability in FL.36
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Figure 1: (a) Typical federated learning framework, (b) a malicious server can forge the aggregation
results as the users cannot verify the integrity of the incoming aggregation result.

Related Works. In [11], the server generates a proof for the aggregation computation to enable37

verification at the users. The proof utilized in [11] has a communication overhead that is linear38

in the model size, which makes it impractical in modern FL systems with hundreds of thousands39

of parameters. Authors in [12] propose a communication-efficient verifiable aggregation scheme,40

which utilizes hashes of the local model updates of the users for verification at the expense of huge41

computation overhead in the presence of dropouts (see Appendix A for further discussion). In this42

work, we propose a lightweight verifiable aggregation scheme that provides the same guarantees43

for input privacy, dropout resilience and verifiability in the presence of a malicious server as the44

state-of-the-art protocols without incurring substantial computation and communication overheads.45

Contributions. The main bottleneck in [12] is that the server recovers the hashes of the dropped46

users one-by-one in the verification stage (see Appendix C for details). These hashes are later utilized47

by the users to check the integrity of the aggregate model. In large systems with frequent dropouts,48

this one-by-one reconstruction incurs a significant quadratic burden on the verification time. In this49

work, inspired by the design of LightSecAgg [8], we propose a verifiable aggregation scheme named50

LightVeriFL for faster verification in the presence of dropouts in FL systems.51

The proposed LightVeriFL scheme utilizes linearly homomorphic hashes of the local models of52

the users for verification. As shown in Fig. 2, after the local training, each user generates a hash,53

which is protected by a random mask generated by the respective user. These masks are encoded54

carefully such that once received sufficient responses from the users, the server is able to generate the55

aggregate hash of all participating users in one-shot (as opposed to one-by-one reconstruction of [12]).56

That is, even if certain number of users drop in the verification stage, the server is able to recover57

the aggregate hash of all users that have sent model updates in that iteration. Finally, enabled by the58

linear homomorphism of the hashes, each surviving user verifies the integrity of the aggregation. Key59

features of the proposed LightVeriFL protocol are listed as follows:60

(1) Verifiability and trustworthiness. With LightVeriFL users make sure that i) their contributions61

are reflected in the global model and ii) the aggregation result provided by the server is exact.62

(2) Compatibility with the existing secure aggregation schemes. LightVeriFL is compatible with63

federated averaging-based secure aggregation schemes, e.g., SecAgg [6], LightSecAgg [8].64

(3) Input privacy and dropout resilience. LightVeriFL does not leak any private information65

of the users and is resilient to dropouts during the verification procedure. Combined with a secure66

aggregation scheme, LightVeriFL forms a secure verifiable aggregation scheme and guarantees67

input privacy and dropout resilience both in model aggregation and aggregate model verification.68

(4) One-shot aggregate hash recovery at the server. In LightVeriFL, the server is able to recover69

the aggregate hash of the participating users (whose models are included in the aggregation) in70

one-shot even in the presence of dropouts thanks to the employed mask encoding strategy.71

(5) Reduced overheads and faster verification. With the one-shot aggregate hash recovery, com-72

putation overhead at the server drastically decreases in case of dropouts compared to [12], which73

results in much faster verification, also confirmed by our empirical results for realistic model sizes,74

particularly in systems with large number of users. Our experiments indicate that the primary source75

of this gain is the complexity reduction at the server.76
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Figure 2: Illustration of the proposed LightVeriFL protocol. (1) Users first encode and share their
local masks among themselves. (2) When the local model update is generated, each user generates
hash of its local model update and uploads the masked hash to the server. (3) In the verification stage,
the surviving users upload the aggregate encoded masks to the server, which then recovers the desired
aggregate mask. By cancelling out the aggregate mask, the server recovers the aggregate hash, which
is used by the users to verify the integrity of the aggregation.

(6) A novel encoding scheme. Existing encoding strategies for secure aggregation aim at recovering77

the sum of the individual models. In the case of linear homomorphic hashes, one needs the product of78

the hashes of the users for verification. Inspired by the encoding strategy in [8], we propose a novel79

encoding strategy that utilizes elliptic curves to recover the “aggregate" product of the user hashes.80

Notation. Zp denotes the ring of integers modulo p. We use Z∗
p to denote all invertible elements of81

Zp, i.e., Z∗
p = Zp\{0}. G denotes a cyclic group of order q. We have [N ] ≜ {1, 2, . . . , N}.82

2 Preliminaries83

Linear homomorphic hash. Following [12, 13], we let G be a cyclic group with prime order q and84

generator g. Given d distinct elements g1, g2, . . . , gd, the hash of a gradient vector x is given by85

h(x)←−
d∏

j=1

g
x[j]
j ∈ G, (1)

where x[j] denotes the jth element of the gradient vector x. The hash construction in (1) satisfies86

the collusion resistance property [13] such that Pr(h(x1) = h(x2)) < ϵ for two distinct vectors87

x1,x2 ∈ Fd
q . The resulting hash in (1) is of constant length independent of d and satisfies an additivity88

(in exponent) property for x1,x2 ∈ Fd
q such that h(x1 + x2) = h(x1)h(x2).89

Commitment. A commitment scheme COM, takes an input message h and uniform random-90

ness r to produce a commitment string c such that c = COM.Commit(h, r). When it is time to91

decommit, i.e., reveal the hidden committed value, the committer sends the claimed committed92

message h′ and the claimed committed randomness r′ to the interested party, which then checks93

c = COM.Commit(h′, r′). If this holds, the interested party accepts the committed value h.94

A well-known commitment scheme is the Pedersen commitment scheme [14]. Given a subgroup G of95

Z∗
p of order q, with p = 2q + 1, in the Pedersen commitment scheme, the committer sends c = gmtr,96

where g is the generator of the subgroup and t is selected such that t = ga with a unknown to the97

receiver. Here, r ∈ Z∗
p is randomly selected and called the blinding factor. Pedersen commitment98

schemes are perfectly hiding and computationally binding [14] and are additively homomorphic such99

that for commitment pairs (h1, r1) and (h2, r2), we have c(h1 + h2, r1 + r2) = c(h1, r1)c(h2, r2).100

In LightVeriFL, we use a variation of the original Pedersen commitment scheme (see Appendix D)101

and utilize its homomorphic property to verify the integrity of the hashes reconstructed by the server.102

Elliptic curve (EC). An EC over Fp, denoted by E(Fp), consists of points P = (x, y), x, y ∈ Fp103

that satisfy y2 = x3 + ax+ b, together with the point at infinity O [15]. p > 3 is an odd prime and104

a, b ∈ Fp satisfy 4a3 + 27b2 ̸= 0. Two operations are defined on ECs: point addition and scalar105

multiplication. Given an integer k, the scalar multiplication kP corresponds to adding point P to106

itself k times and is analogous to the exponentiation operation in multiplicative groups. ECs are107

well-suited for resource constrained environments such as FL since significantly smaller parameters108

are required to achieve the same level of security, compared to the classical public-key schemes [15].109
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3 Problem Setting110

3.1 Federated Learning111

FL is a distributed learning framework, in which a global model x of dimension d is jointly trained112

by a group of users on their own privately held datasets Di. The FL framework aims to minimize the113

global loss function L(x) = 1
N

∑N
i=1 Li(x), where Li(x) denotes the local loss function of the ith114

user and without loss of generality, |Di| = n for all i ∈ [N ]. Training in FL is an iterative process. At115

each iteration, the server sends out the current global model x(t) to the participating users. Each user116

i generates its local update xi(t) and sends it to the server. We let Ua(t) denote the surviving users at117

iteration t during aggregation. The server aggregates the results with x(t+1) = 1
|Ua(t)|

∑
i∈Ua(t)

xi(t)118

and pushes the updated global model, x(t+ 1) back to the users for the next iteration.119

3.2 Threat Model and Privacy & Verifiability Guarantees120

All users and the server are honest but curious. Up to T of the users can collude with each other as121

well as the server to obtain information on the inputs of the honest users. Corrupted parties follow the122

protocol and report their model updates honestly but they may try to infer the private gradients of the123

honest users. We allow a corrupted server to forge the aggregation results arbitrarily in an effort to124

convince the users of a wrong aggregation result. Thus, the goal is to protect the confidentiality of the125

user inputs as well as give each user the capability of verifying the integrity of the server aggregation.126

3.3 Dropout Resilience127

In FL, users may sometimes drop from the protocol execution due to communication/connection128

issues, battery problems etc. The proposed secure verifiable aggregation protocol should be resilient129

to these random dropouts. We assume that at most D users drop during the verification protocol130

such that we have at least N − D surviving users that want to verify the aggregation. Since the131

existing secure aggregation schemes [6, 7, 8] provide resilience for dropouts occurring during model132

aggregation, in this work, we focus on the dropouts occurring during the verification of the aggregate133

model. Thus, we want the proposed protocol to tolerate D dropouts such that the remaining N −D134

clients can correctly verify the integrity of the aggregation that includes local models of N users.135

Goal. We want to design a lightweight and communication-efficient verifiable aggregation protocol136

that simultaneously provides input privacy against T = N
2 colluding users and resilience to D = N

2 −1137

dropouts as well as a verifiability guarantee in the presence of a malicious server spoofing the138

aggregation results. The proposed verifiable aggregation protocol should be compatible with the139

existing secure aggregation protocols to protect the confidentiality of the users’ local models.140

4 Overview of the LightVeriFL Protocol141

Our protocol utilizes certain cryptographic primitives as in [6, 8, 11, 12] so that all the operations142

are performed over a finite field. In order to implement LightVeriFL, users perform the following143

additional operations during an FL iteration (for the detailed description, complexity analysis, and144

the pseudo code of LightVeriFL see Appendices D, G, and E, respectively).1145

During the aggregation phase. Each user i i) generates a mask zi, encodes it according to (8) and146

shares the encoded mask with the other users, ii) generates its hash hi based on its model update xi147

according to (1), iii) commits its hash hi and exchanges its commitment ci with the other users, iv)148

sends its masked hash h̃i = hi + zi to the server. At the end of the aggregation phase, the server149

recovers the aggregate model y and sends it back to the users.150

After the aggregation phase. Upon the aggregation phase, some users may drop and the verification151

is performed by the surviving users. Each of the surviving users sends the encoded masks it has152

received from the other users (surviving and dropped) to the server for reconstruction. Server153

reconstructs the aggregate mask and recovers the aggregate hashes of the surviving and dropped154

users (decommitting round). Then, each surviving user i) verifies the correctness of the recovered155

hashes coming from the server using the commitments it has received from every other user during156

1As in VeriFL, we implement LightVeriFL together with SecAgg [6] by default according to Appendix B.
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the aggregation phase, ii) verifies the integrity of the aggregate model y by computing its hash and157

comparing it against the aggregate of the individual hashes of the users, reconstructed by the server158

and accepted by the user in step i) (batch checking round). If a user encounters an incorrect result159

either in step i) or ii) during the verification phase, it regards the result as forged and rejects the160

aggregation result y computed by the server in that iteration.161

Improved LightVeriFL with amortized verification: In LightVeriFL, the most time-consuming162

operation is the two hash computations over a model of dimension d. First, in the aggregation phase,163

each user computes the hash of its model update. Then, in the batch checking round, each user164

computes the hash of the aggregate model. The former hash computation is necessary, however, the165

latter one can be amortized in order to cut down the computational overhead of the entire scheme. For166

this, we implement the amortized verification technique [12] with batch size L such that users verify167

aggregations of the past L iterations all at once by performing a single hash computation using (13).168

5 Theoretical Guarantees169

In this section, we show the correctness of the verification along with input privacy guarantee and170

dropout resilience in LightVeriFL. Proofs are deferred to Appendix F.171

Theorem 1. [Correctness of Verification] Under the LightVeriFL scheme, users accept the aggre-172

gation results y(ℓ), ℓ ∈ [L] if and only if these results are correctly aggregated by the server with173

probability (almost) 1.174

Theorem 2. [Input Privacy Guarantee] The proposed LightVeriFL protocol provides input privacy175

against up to T colluding users.176

Theorem 3. [Dropout Resilience in Verification] The proposed LightVeriFL scheme guarantees177

dropout resilience up to any D dropped users during the verification phase such that N ≥ T +D+1.178

Theorem 4. The proposed LightVeriFL scheme guarantees successful aggregation integrity verifi-179

cation in the presence of any D user dropouts during the verification phase without sacrificing input180

privacy against up to any T colluding users for T +D < N . When LightVeriFL is implemented181

together with a secure aggregation scheme, a secure verifiable aggregation scheme is obtained.182

6 Experimental Results183

6.1 Experimental Setup184

Implementation. We implement the linearly homomorphic hash as well as the commitments using185

the NIST P-256 elliptic curve [16]. This curve has a 256-bit subgroup order n. We fix q to 231 − 1186

such that all user gradients lie in Fd
q . As in [12], we simulate the clients and the server on our in-house187

64-bit Ubuntu 20.04.2 LTS machine equipped with AMD EPYC 7502 CPU.188

Baseline. We use the VeriFL [12] scheme described in Appendix C as our baseline. We do not189

consider other aggregation verification methods such as [11] and [17] as baselines since these works190

are not communication-efficient, i.e., the required communication scales with the model size d, and/or191

do not support user dropouts. In the experiments, we implement both VeriFL and LightVeriFL on192

top of SecAgg and utilize amortized verification in both schemes with L = 10.193

Number of users and dropout rate. We have up to N = 200 users in our experiments. For the194

dropped users, we consider a worst-case scenario for verification, in which we assume all N users195

successfully participated in the model aggregation and some pN portion of these users drop in the196

verification phase. For this, we artificially drop pN users at each iteration. Following the observations197

made in [8] and [18], we take p = 0.1, p = 0.3, and p = 0.5. In all these cases, we take T = N
2 .198

Model size. By default, we use d = 100K as our model size in the experiments as in [12] (see199

Appendix H for experiment results with varying d).200

6.2 Performance Analysis201

We consider a single training round and measure the total running time of LightVeriFL and VeriFL.202

We do not include model training in the results shown in this section.203
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Figure 3: (a) Total running time and (b) the verification phase time comparison of VeriFL and the
proposed LightVeriFL for varying N and dropout rates for L = 10. Both schemes are implemented
on top of SecAgg. LightVeriFL specifically targets improving the verification time as it enables
one-shot recovery of the user hashes as opposed to one-by-one recovery in VeriFL.

Table 1: Breakdowns of the verification time of LightVeriFL and VeriFL for varying dropout rates
with N = 200 users, d = 100K, and L = 10. All times are in seconds.

Phase 10% dropout 30% dropout 50% dropout

VeriFL
Round V.0 Decommitting 11.25 30.56 52.51

Round V.1 Batch Checking 6.53 6.03 5.77
Verification Phase - Total 17.78 ± 0.14 36.59 ± 0.25 58.28 ± 0.60

LightVeriFL
Round V.0 Decommitting 0.76 0.67 0.67

Round V.1 Batch Checking 6.46 5.94 5.54
Verification Phase - Total 7.22 ± 0.07 6.61 ± 0.06 6.21 ± 0.02

Gain 2.46× 5.54× 9.38×

In Fig. 3 we increase the number of users to N = 200 for varying dropout rates with d = 100K204

and L = 10. In Fig. 3(a), we see that, unlike LightVeriFL, the total running time of the VeriFL205

scheme is affected by larger dropouts as its reconstruction complexity increases quadratically with206

N . To better observe this, in Fig. 3(b), we present the running times of the verification phases of207

the two schemes. Verification phase in both schemes involves the decommitting and batch checking.208

In Fig. 3(b), we observe that while the verification time in the proposed LightVeriFL scheme209

is largely unaffected by the increasing dropout rates, the verification time in VeriFL significantly210

increases as N gets larger and as the dropout rate increases. This is due to the fact that VeriFL211

performs one-by-one reconstruction of the dropped user hashes whereas in LightVeriFL the server212

reconstructs the aggregate hash of all users all at once, independent of the dropout rate.213

Next, we present the verification time breakdown of the two schemes for different dropout rates with214

N = 200, d = 100K, and L = 10 in Table 1 as LightVeriFL specifically targets improving the215

verification time. In Table 1, we observe that the proposed LightVeriFL protocol achieves up to216

9.38× improvement in the verification time (see Appendix H for further discussion).217

7 Conclusion and Future Directions218

Unlike the existing verifiable aggregation schemes which suffer from large communication and219

computation overheads, the proposed LightVeriFL scheme is lightweight and communication-220

efficient, which are enabled by the use of constant-length hashes for aggregation verification and221

one-shot aggregate hash recovery at the server instead of one-by-one recovery of the dropped user222

hashes. LightVeriFL achieves significantly faster aggregate model integrity verification at the users223

in the presence of a malicious server forging the aggregation results while guaranteeing the same224

input privacy and dropout-resilience as the state-of-the-art protocols. Despite its benefits, limitations225

still exist. We plan to improve LightVeriFL in the following aspects: 1) performing end-to-end226

experiments by also considering model training to investigate the gain achieved by LightVeriFL227

over baselines, 2) extending LightVeriFL to asynchronous FL, 3) considering the verification of228

user data and models as well as design of a Byzantine-robust secure verifiable aggregation scheme.229
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Appendix367

A Other Related Works368

Besides [11] and [12], there are other works in verifiable federated learning focusing on verifying369

the computations of the server and/or the local information and model updates of the users (see370

the survey in [19]). Among these, a related work is [17], which uses Lagrange interpolation and371

the Chinese Remainder Theorem to encrypt the model updates of the users. The server aggregates372

the encrypted models, which are then verified by the users. A major disadvantage of this scheme373

is that it cannot support user dropouts, which is one of our main considerations in this work. The374

aggregate model verification problem that we consider in this work can be cast as a secure multiparty375

computation in the presence of malicious parties. The existing techniques in the secure multiparty376

computation domain utilize garbled circuit-based approaches through Cut-and-Choose [20, 21] and377

Commit-and-Prove [22, 23] techniques, which incur significant communication overheads and thus378

are not suitable for the FL setting. Secret sharing-based solutions as in [24] require secret sharing the379

inputs, which again induces a huge communication complexity that depends linearly on the model380

size.381

In the privacy-preserving machine learning literature the main focus is on the input privacy of the382

users. Aside from the secure aggregation techniques [6, 7, 8, 9, 10, 25], another privacy-preserving383

approach is differential privacy [26]. In FL, employing DP usually entails adding artificial noises to384

the local model updates of the users before sending them out for aggregation [27, 28, 29, 30]. None385

of these works in the DP literature enable computation verification at the users beyond achieving386

input privacy. We note that clients can still implement local DP in the proposed LightVeriFL387

scheme. In LightVeriFL the focus is on the verifiability of the server computations. Even though388

LightVeriFL provides secure verifiable aggregation, it does not verify the integrity of the user389

inputs. That is, LightVeriFL cannot detect the malicious inputs of Byzantine users. In this sense,390

Byzantine-robust aggregation literature [31, 32, 33, 34] complements the proposed secure verifiable391

aggregation scheme. It is a great open problem to design a verifiable Byzantine-robust aggregation392

mechanism, considering various different aggregation rules other than federated averaging.393

B Overview of Secure Aggregation394

In the original FL framework described in Section 3.1, local models of the participating users are395

received in plain by the server at each iteration. However, these local models carry significant396

information about the respective users’ datasets and using certain attacks, e.g., model inversion,397

private local data-points of the users can be recovered from their models [2, 3, 4, 5]. To remedy this,398

authors in [6] propose a secure aggregation scheme, named SecAgg, in which the server recovers399

the aggregate model y(t) =
∑

i∈Ua(t)
xi(t) at each iteration t without obtaining any information400

about the individual local models xi(t) ∈ Ua(t). In SecAgg, the users protect their gradients with401

two separate masks. The first mask is a pairwise mask that is agreed upon between each pair (i, j)402

of users, i, j ∈ [N ]. For this, before the training starts user pair (i, j) agrees on a random seed ai,j ,403

where ai,j = Key.Agree(ski, pkj) = Key.Agree(skj , pki). Here, ski and pki denote the private and404

public keys of user i, respectively. Each user i generates another mask based on a private random405

seed bi. With these, each user i masks its update xi and sends the masked version x̃i to the server,406

where2407

x̃i = xi + PRG(bi) +
∑
j:i<j

PRG(ai,j)−
∑
j:i>j

PRG(aj,i). (2)

where, PRG stands for a pseudo-random generator. We note that, in (2), the pairwise random masks408

protect the confidentiality of each user’s local model and cancel out at the server upon aggregation.409

When a user i’s local update is only delayed, but not dropped, in order to prevent privacy breaches410

during this cancellation, the additional mask based on the private seed bi is used. Each user i secret411

shares its private seed bi and private key ski with the other users via Shamir’s secret sharing [35]. In412

the aggregation step, the server collects the shares of the dropped users’ private keys as well as the413

shares of the private seeds of the surviving users to reconstruct the pairwise seeds of each dropped414

2Here, we omit the iteration index t for ease of exposition.
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user and the private seed of each surviving user, respectively. The server then performs the following415

to obtain the aggregate model y, which is equal to416

∑
i∈Ua

xi =
∑
i∈Ua

(x̃i − PRG(bi)) +
∑
i∈Da

∑
j:i<j

PRG(ai,j)−
∑
j:i>j

PRG(aj,i)

 , (3)

where Ua andDa represent the set of surviving and dropped users at the aggregation stage, respectively.417

The SecAgg scheme guarantees local model privacy as long as the number of dropped users at418

aggregation Da and the number of colluding users T satisfy N −Da > T .419

A major performance bottleneck of the SecAgg scheme is the fact that it requires the server to420

reconstruct the seeds one by one (the private seeds of the surviving users as well as the pairwise seeds421

of the dropped users), which incurs a computation overhead of O(N2). To remedy this, more efficient422

secure aggregation schemes have been proposed [7, 8]. In [8], authors propose LightSecAgg, in423

which the server recovers the aggregate mask of the surviving users in one-shot, thus overcoming the424

aforementioned O(N2) bottleneck. In LightSecAgg, users still protect their gradients with local425

masks but these masks are encoded and shared with the other users such that once the server receives426

sufficiently many responses from the users, it can reconstruct the aggregate mask of these surviving427

users and hence recover the aggregate update. The approach in LightSecAgg constitutes the basis of428

our approach in designing a lightweight and verifiable aggregation protocol.429

430

Limitations of the secure aggregation schemes. With secure aggregation alone, users cannot verify431

whether i) the aggregation result provided by the server is correct and ii) their individual updates are432

accounted for in the aggregation. Thus, without a verifiable aggregation scheme, users are vulnerable433

to a malicious/lazy server forging the aggregation result and/or not incorporating model updates of434

all users.435

C Overview of the Baseline Protocol: VeriFL436

In this section, we give an overview of the existing verifiable aggregation protocols for FL. The437

first work on verifiable aggregation is [11]. In this work, authors propose VerifyNet that utilizes a438

zero knowledge proof technique such that upon aggregation, the server sends a proof to the users439

indicating the correctness of the aggregation. Users may accept or reject this proof. The major440

bottleneck in this system is the fact that the size of this proof increases linearly with d, the dimension441

of the gradients. Thus, the time required for verification using the zero knowledge proof increases442

linearly with d, making the VerifyNet scheme impractical for real-life learning models with large443

number of parameters.444

Reference, [12] proposes a verifiable aggregation scheme named VeriFL, which is the baseline445

scheme we consider in this work. The VeriFL scheme utilizes homomorphic hash functions of the446

local models as well as commitments to design a communication-efficient verification scheme. In447

VeriFL, the communication overhead is independent of d, thus making the VeriFL scheme more448

efficient than VerifyNet. Below we give a brief overview of the VeriFL scheme.449

In VeriFL, training iterations are performed as described in Section 3.1. The VeriFL scheme starts450

with a preparation stage. Before sending out its gradient update, each participating user i generates a451

linearly homomorphic hash hi of its model update xi. Based on this hash hi, user i then generates a452

commitment ci using a commitment scheme COM such that ci = COM.Commit(hi, ri), where ri is453

a uniformly random string privately sampled by user i. Next, each user i forwards its commitment454

string ci to all the other participating users. Once this step is completed for all user pairs, each user455

sends its model update to the server. In VeriFL, in sending the model updates to the server for456

aggregation, users follow the SecAgg protocol described in Appendix B. Once the server recovers the457

aggregate model y and pushes it to the users, the verification stage of the VeriFL scheme commences458

with the decommitment step, in which each user i receives the decommitment strings (hj , rj) from459

all the other users j ∈ [N ] to check if cj received in the preparation step satisfies460

cj = COM.Commit(hj , rj). (4)

If (4) is not satisfied for at least one other user j, user i terminates the process and regards the461

aggregation y as forged. If no issue is detected at this step for any of the users, user i proceeds and462
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checks the equality of the hashes. For this, user i first computes the hash of the aggregate model, hagg463

and then check if the following holds464

hagg =

N∏
i=1

hi. (5)

If (5) does not hold, user i raises a flag and regards the aggregate result as forged, otherwise user i465

accepts the result and starts generating its local update for the next iteration.466

We note that thanks to SecAgg, the above VeriFL scheme can tolerate dropouts during aggregation.467

However, dropouts occurring during the verification step need to be handled to successfully verify468

the integrity of the aggregation. For this, each user i secret shares its decommitment string (hi, ri)469

with the other users in the preparation step. In the verification step, after decommitting, surviving470

users send the shares they have received from the dropped users to the server, which recovers the471

decommitment strings (hj , rj) of the dropped users and sends them back to the surviving users.472

Equipped with these, along with the decommitment strings of the other surviving users, each surviving473

user i performs (4) and (5).474

Limitations of the VeriFL scheme in [12]. i) As in the original SecAgg scheme, the VeriFL scheme475

suffers from the one-by-one reconstruction of the dropped users’ decommitment strings (hj , rj),476

which are then used by the surviving users in performing the verification through (4) and (5). This477

one-by-one reconstruction at the server incurs an O(N2) computation bottleneck and significantly478

slows down the system for large N . For example, when N = 500 and d = 100K, when the dropout479

rate is %30, while the actual verification steps in (4) and (5) take around 5 seconds (majority of which480

is the hash computation of the aggregate model), the reconstruction of the dropped decommitment481

strings takes approximately 150 seconds, incurring a significant burden on the verification procedure.482

ii) In VeriFL, the homomorphic hashes of the honest users are revealed in the verification phase483

(in decommitment for surviving users and during the reconstruction at the server for the dropped484

users). Since the homomorphic hash of a gradient vector is a deterministic function of the inputs, an485

adversary may use the revealed hash result to guess the gradient of an honest user. Thus, in VeriFL,486

the local model confidentiality of the honest users may be broken, particularly when the gradient487

vector has only a few non zero entries [36].488

Motivated by these limitations, in this work, we propose LightVeriFL, which forgoes one-by-one489

reconstruction of the dropped users’ decommitment strings (hj , rj). Instead, in LightVeriFL, the490

server performs a one-shot reconstruction of the aggregate decommitment strings of the dropped491

and surviving users. By this way, not only we avoid the major O(N2) computation bottleneck in492

reconstruction, thus making the verification significantly faster but also avoid revealing the individual493

hashes of any of the users (dropped or surviving) to any of the parties (users and the server),494

circumventing the aforementioned privacy breach.495

D Detailed Description of LightVeriFL496

In this section, we describe the LightVeriFL scheme in detail. We require the elements of the497

gradients of the users and the aggregate gradient to lie in Fd
q , q is a prime number.3 4 The key498

feature of the LightVeriFL scheme is that the server is able to reconstruct the aggregate hashes of499

the dropped users in one-shot as opposed to VeriFL [12], which has the server reconstructing the500

dropped hashes one-by-one. In LightVeriFL, the server additionally recovers the aggregate hash of501

the surviving users so that these surviving users never reveal their hashes in plain to other users.502

The proposed LightVeriFL scheme has two phases: aggregation phase and verification phase. In the503

aggregation phase, additional operations are performed on top of SecAgg to enable verification later504

on. The verification phase happens after the users receive the aggregate model from the server. In order505

to protect the privacy of the local models, in LightVeriFL, users mask their hashes before sending506

them to the server. Then, in the verification phase, they make use of the additive homomorphism of507

the constructed hashes described in Section 2 to verify the integrity of the aggregation. That is, after508

3We select a large q such that the field Fd
q is large enough to avoid any wrap-around during aggregation.

4We assume that each user i converts its model xi from real domain to finite field Fq through quantization
at each iteration before invoking LightVeriFL. There exists quantization schemes in the literature that ensure
convergence of the global model [8].

13



receiving the aggregation, each user needs to be able to check whether the following holds:509

h(y) =
∏
i∈U

hi(xi)
∏
j∈D

hj(xj), (6)

where y is the aggregate model obtained from the server and U and D show the set of surviving510

and dropped users during verification, respectively. As mentioned earlier, in LightVeriFL, unlike511

VeriFL [12], we do not want the server to reconstruct the hashes one-by-one. Then, in order for512

users to perform (6), the server needs to reconstruct the product of the hashes of the surviving and513

dropped users as in LightVeriFL no user sees another user’s hash in plain. This is when elliptic514

curves comes into play, which have the following property.515

Property 1. The order of a point P on the EC is the smallest integer n such that nP = O. Given516

E(Fp), one can find a base point P that generates a cyclic subgroup of order n, where n < p is a517

prime number. That is, if k and ℓ are integers kP = ℓP if and only if k ≡ l in modulo n [15].518

By utilizing this cyclic subgroup property, we perform all encoding and decoding operations in519

LightVeriFL on ECs with modulus n. When the linearly homomorphic hash described in (1) is520

implemented using an EC5, the condition in (6) becomes521

h(y) =
∑
i∈U

hi(xi) +
∑
j∈D

hj(xj), (7)

using the EC analogues of the operations in multiplicative groups. That is, in this case the server522

needs to recover the aggregate hashes of the users analogous to the secure aggregation problem [6, 8].523

Thus, when the hashes are constructed over the EC, surviving users need the aggregation of the524

hashes of all users to perform the verification step in (7). In this case, existing secure aggregation525

tools become applicable to the problem at hand. We note that we implement a variant of the Pedersen526

commitment scheme on the EC such that c = αh + βr, where h is hash of a user, denoted by a527

point on the EC, whereas r is a randomly chosen point on the curve. Here, α and β are integer528

coefficients agreed upon by the users before the start of the protocol. Once the commitments are529

implemented over the EC, the additive homomorphic property described in Section 2 becomes530

c(h1 + h2, r1 + r2) = c(h1, r1) + c(h2, r2).531

Formally, the LightVeriFL scheme assumes that out of the N users, at most T of them colludes532

with each other while D users drops during the verification phase of the LightVeriFL scheme.6533

Here, we have 0 ≤ T ≤ N − 1 and 0 ≤ D ≤ N − 1. We let U denote the targeted number of534

surviving users during the verification step where N −D ≥ U = T + 1. We detail the two phases535

of the LightVeriFL scheme next. The pseudo code of LightVeriFL is given in Algorithm 1 in536

Appendix E.537

1. The Aggregation Phase: In order to verify the aggregation computed by the server, users perform538

the following additional operations during the aggregation phase in addition to the implemented539

secure aggregation protocol, i.e., SecAgg.540

Round A.0: Advertising Keys. LightVeriFL starts with the setup operations of the linearly541

homomorphic hash and commitment schemes, e.g., fixing an EC with generator g and subgroup order542

n, setting up d distinct points on the EC for the hash computation in (1), and so on. The operations in543

this round do not depend on the local models of the users. For the SecAgg protocol, during this phase544

users agree on pairwise masks as well as described in Appendix B.545

Round A.1: Offline Encoding and Sharing Local Masks. This step is inspired by the LightSecAgg546

scheme in [8] except that all the masks are sampled from an EC, i.e., masks are points on the curve.547

First each user i ∈ [N ], generates a mask zi, which is a point on the EC. Next, user i randomly548

samples jointly uniform points [ni]k from the EC for k ∈ {2, . . . U}. Using these randomly picked549

[ni]k, user i encodes the mask zi as follows550

[z̃i]j = (zi, [ni]2, . . . , [ni]U ) ·Wj . (8)

5When the hash is implemented over an EC, hash of each user becomes a point on that EC.
6We assume that there is no dropout in the aggregation stage as in the verification problem the critical dropouts

happen when users whose results were aggregated in the model update drop at the time of the verification. We
note that existing secure aggregation schemes take care of the dropouts occurring during the aggregation phase
and the proposed LightVeriFL scheme can be implemented on top of these secure aggregation schemes to
tolerate dropouts both in aggregation and verification phases.
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Here, Wj is the jth column of the T -private MDS matrix W ∈ FU×N
n , where n is the order of the551

subgroup on EC. The use of matrix W in encoding protects the generated masks from any subset552

of colluding T users. We can always generate such T -private MDS matrix for a given U , N , and T553

[35, 37, 8]. After the encoding, each user i ∈ [N ], sends its encoded mask [z̃i]j to user j ∈ [N ]\{i}554

so that in the end of this step, each user i ∈ [N ] has [z̃j ]i from all users j ∈ [N ].555

Round A.2: Hash Generation and Uploading Masked Hashes. In this step, each user i ∈ [N ]556

computes its model update xi and then based on this model update computes its hash hi
7 according557

to (1). Next, each user computes its commitment ci based on its hash according to the aforementioned558

variant of the Pedersen commitment. In generation of the commitment, each user uniformly samples559

a point ri on the EC to be used in decommitting. Each user i ∈ [N ] sends its commitment ci to users560

j ∈ [N ]\{i} such that at the end of this step, each user has commitments of every other user. Once561

the commitment exchange is completed, each user i ∈ [N ] uploads its masked hash h̃i = hi + zi and562

masked randomness r̃i = ri + zi to the server along with its masked model update that is generated563

according to the employed secure aggregation scheme.564

Round A.3: Aggregate Model Recovery. The server recovers the aggregate model y and sends it565

back to the users.566

This concludes the LightVeriFL operations during the aggregation phase.567

2. Verification Phase: Having received the aggregate model y at the end of the aggregation phase,568

users perform the verification phase to check the integrity of the aggregation.569

Round V.0: Aggregate Decommitting. In this step, the server performs one-shot recovery of the570

aggregate decommitment strings (hi, ri) of the dropped and surviving users. As mentioned earlier,571

we let U and D denote the set of surviving and dropped users in the verification stage, respectively.572

In order to recover the aggregate mask of the surviving users,
∑

i∈U zi, each surviving user i is573

notified to send the aggregate encoded mask it has received from other surviving users,
∑

j∈U [z̃j ]i.574

Upon receiving U such messages, the server is able to decode the aggregate mask of the surviving575

users
∑

i∈U zi due to the MDS property of the encoding in (8). Next, a similar one-shot decoding is576

repeated for the aggregate mask of the dropped users and the server reconstructs
∑

k∈D zk. Finally,577

the server is able to recover the aggregate decommitment strings of the surviving and users with578 ∑
i∈U

hi =
∑
i∈U

h̃i −
∑
i∈U

zi (9)∑
i∈U

ri =
∑
i∈U

r̃i −
∑
i∈U

zi. (10)

The same one-shot recovery steps in (9)-(10) are performed for the decommitment strings of the579

dropped users in D as well.8 The server sends these decommitment strings back to the surviving580

users. The next step of the users is to verify the integrity of the reconstructions performed by the581

server. For this, we utilize the homomorphic additive property of the described commitment scheme582

such that each user checks583

c

(
N∑
i=1

hi,

N∑
i=1

ri

)
=

N∑
i=1

ci, (11)

using the commitments received from the users in Round A.1 during the aggregation phase. In (11)584

we have
∑N

i=1 hi =
∑

i∈U hi +
∑

k∈D hk. If (11) does not hold for a user, then that user raises a585

flag and rejects the aggregate hash recovery performed by the server. Otherwise, users proceed with586

the next round.587

Round V.1: Batch Checking. Having accepted the reconstructed hash results received from the588

server, in this round users verify the correctness of the aggregation result y. First, each user computes589

7Here, we denote user i’s hash simply with hi instead of hi(xi) and leave the dependence on xi implicit.
8In secure aggregation schemes, the server performs key/mask reconstructions either for the dropped users

[6] or for the surviving users [8]. In our verification problem, the server reconstructs the aggregate masks of all
users (surviving and dropped) in order to avoid decommitment string exchange among the surviving users in
the verification stage so that no individual user observes the decommitment string of another user to protect the
input privacy of the users.
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the hash of the aggregate model y, denoted by hagg , using the construction in (1) over the EC. Next,590

each user checks if the following condition is satisfied:591

hagg =

N∑
i=1

hi. (12)

If the condition in (12) is satisfied, then users accept the aggregated model and proceed with the next592

iteration of training. Otherwise, they regard the aggregate model computed by the server as forged593

and reject the result.594

Improved LightVeriFL with Amortized Verification: In the amortized verification, Round V.0 of595

the verification phase stays the same. On the other hand, Round V.1 of the verification phase is only596

performed at every L iterations, where L is the predetermined batch size of the verification protocol.597

That is, during iterations ℓ ∈ [L], each user samples a random coefficient αℓ and stores the sum of598

the hashes of the users reconstructed by the server as hℓ =
∑N

i=1 h
ℓ
i as well as the aggregate model599

in the ℓth iteration y(ℓ). Then, in the Lth iteration, it checks if the following relationship holds:600

h

∑
ℓ∈[L]

αℓy(ℓ)

 =
∑
ℓ∈[L]

αℓh
ℓ. (13)

If (13) holds for a user, then that user verifies the aggregations of the past L iterations all at once by601

performing only one hash computation in verification as opposed to performing L expensive hash602

computations during verification, one for each of the L iterations.603

E Pseudo Code of LightVeriFL604

The pseudo code of LightVeriFL is given in Algorithm 1.605

F Proofs of Theoretical Guarantees606

Theorem 1. [Correctness of Verification] Under the LightVeriFL scheme, users accept the aggre-607

gation results y(ℓ), ℓ ∈ [L] if and only if these results are correctly aggregated by the server with608

probability (almost) 1.609

Proof. In the final amortized verification step, as described earlier, each user finds the hash of610

the weighted sum of the aggregate models from last L iterations, i.e.,
∑

ℓ∈[L] αℓy(ℓ). During the611

verification, the server acts alone without colluding with the users. During the entire execution of612

LightVeriFL, users receive two computation results from the server. The first one is the aggregate613

hash reconstruction of the surviving and dropped users. If the server sends incorrectly reconstructed614

aggregate hashes in this step, during the aggregate commitment check step in (11) users detect the615

error in the aggregate hash reconstruction and regard the result as forged.616

Assuming that the reconstructed hashes are accepted by the users, the second computation to be617

verified by the users is the aggregate models y(ℓ), ℓ ∈ [L]. Let us assume, as in [12], that the server618

successfully spoofs the aggregation result in K iterations, K ⊆ [L] and sends ȳ(k) instead of y(k),619

with y(k) ̸= ȳ(k) for k ∈ K. Then, for the users to accept the incorrectly aggregated results, for the620

following needs to be satisfied621

d∑
i=1

∑
k∈K

αky(k)[i]gi =

d∑
i=1

∑
k∈K

αkȳ(k)[i]gi, (14)

where y(k)[i] denotes the ithe element of the aggregated gradient vector, i ∈ [d]. We note that αks622

are uniformly selected numbers by each user from elliptic curve subgroup of order n such that the623

following condition holds624 ∑
k∈K

αky(k)[i] =
∑
k∈K

αkȳ(k)[i], (15)

with probability 1
n , even when y(k) ̸= ȳ(k) for k ∈ K, i ∈ [d]. Here, since the elliptic curves625

are designed to have a large subgroup order n, this event is negligible.9 With that in mind, the626

9In the NIST P-256 curve we use in our implementation, the subgroup order n is a 256-bit number [16].
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Algorithm 1 The LightVeriFL protocol
Input: T (privacy guarantee), D (dropout-resiliency guarantee), U = T + 1 (target number of sur-
viving users during the verification), Round A.0: Advertising Keys takes place before the protocol
starts.
1: Server Executes:
2: // Aggregation Phase
3: // Round A.1: Offline Encoding and Sharing Local Masks
4: for each user i = 1, 2, . . . , N in parallel do
5: zi ← randomly selected point from an elliptic curve (EC) of subgroup order n
6: [ni]2, . . . , [ni]U ← randomly selected points from the same EC of subgroup order n
7: {[z̃i]j}j∈[N ] ← obtained by encoding zi and [ni]k’s as in (8)
8: sends encoded mask [z̃i]j to user j ∈ [N ]\{i}
9: receives encoded mask [z̃j ]i from user j ∈ [N ]\{i}

10: end for
11: // Round A.2: Hash Generation and Uploading Masked Hashes
12: for each user i = 1, 2, . . . , N in parallel do
13: // user i obtains xi after the local update
14: generates hash hi based on xi according to (1) on the same EC
15: ri ← randomly selected point from the same EC of subgroup order n
16: generates commitment ci = COM.Commit(hi, rr), the COM scheme is described in Appendix D
17: sends commitment ci to user j ∈ [N ]\{i}
18: receives commitment cj from user j ∈ [N ]\{i}
19: h̃i ← hi + zi and r̃i ← ri + zi // masks its hash and randomness
20: uploads masked hash and randomness h̃i, r̃i to the server
21: end for
22: // Round A.3: Aggregate Model Recovery
23: recovers the aggregate model y and sends it to the users
24: for each user i = 1, 2, . . . , N in parallel do
25: receives the aggregate model y from the server
26: end for
27: // Verification Phase
28: identifies set of surviving users U ⊆ [N ] in the verification phase
29: // Round V.0: Aggregate Decommitting
30: for each user i ∈ U in parallel do
31: computes aggregated encoded masks

∑
j∈[N ][z̃j ]i

32: uploads aggregated encoded masks
∑

j∈[N ][z̃j ]i to the server
33: end for
34: collects U messages of aggregated encoded masks

∑
j∈[N ][z̃j ]i from user i ∈ U

35: // recovers the aggregate mask
36:

∑
i∈[N ] zi ← obtained by decoding the received U messages

37: // recovers the aggregate hash and randomness of the users
38:

∑
i∈[N ] hi ←

∑
i∈[N ] h̃i −

∑
i∈[N ] zi and

∑
i∈[N ] ri ←

∑
i∈[N ] r̃i −

∑
i∈[N ] zi

39: sends
∑

i∈[N ] hi and
∑

i∈[N ] ri to U
40: for each user i ∈ U in parallel do
41: receives

∑
i∈[N ] hi and

∑
i∈[N ] ri from the server

42: // verifies the integrity of
∑

i∈[N ] hi and
∑

i∈[N ] ri

43: checks COM.Commit
(∑

i∈[N ] hi,
∑

i∈[N ] ri
)

?
=

∑
i∈[N ] ci

44: if above is true, accepts the aggregate hash and randomness recovered by the server and moves to the
next round

45: otherwise, regards the result as forged
46: end for
47: // Round V.1: Batch Checking
48: for each user i ∈ U in parallel do
49: computes the hash of the aggregate model y denoted by hagg using (1) on the same EC
50: // verifies the integrity of the aggregation
51: checks hagg

?
=

∑
i∈[N ] hi

52: if above is true, accepts the aggregate model and performs local training for the next training round
53: otherwise, regards the aggregation result as forged
54: end for
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condition in (14) does not hold due to the collusion resistance property of the linearly homomorphic627

hashes we use as described in (1). That is, no two different vectors produce the same hash with628

overwhelming probability such that the aggregate hash verification step in (12) detects any spoofing629

attempts launched by the server.630

Thus, given the server acts independently to forge the aggregation results, the aggregate commitment631

check in (11) along with the collusion property of the hash guarantees verification of the aggregation632

results provided by the server.633

Theorem 2. [Input Privacy Guarantee] The proposed LightVeriFL protocol provides input privacy634

against up to T colluding users.635

Proof. The use of a secure aggregation scheme such as SecAgg [6] or LightSecAgg [8] takes636

care of the input privacy in the aggregation protocol. Additionally, we need show that hashes and637

commitments used in the LightVeriFL protocol do not violate input privacy of the users.638

As discussed in [36], if revealed, the linearly homomorphic hashes used in verification schemes can639

help an adversary guess the input vector of a user, particularly if the input vector has a few non-zero640

elements. That is, when the hash of a user is revealed, the distinguisher can tell the difference between641

the simulated case and the actual case. Thus, in our scheme, no party (including the server and up to T642

colluding users) has access to the hash of an honest user. More formally, the proposed LightVeriFL643

protocol guarantees the following mutual information condition given in (16) for an arbitrary set T

I

{hi}i∈[N ]; {hi + zi}i∈[N ], {
∑
j∈[N ]

[z̃j ]i}i∈U

∣∣∣∣∣∣
∑
i∈[N ]

hi, {hi}i∈T , {zi}i∈T , {[z̃j ]i}j∈[N ],i∈T

 = 0,

(16)
644

of T colluding users and a surviving user set U such that U ⊆ [N ], |U| ≥ U , U = T + 1. In order to645

show (16) we use similar steps as in [8, Proof of Theorem 1].646

In addition to the hashes, we need to consider the commitments exchanged during the execution of647

LightVeriFL in the Round A.2 of the aggregation phase as described in Appendix D. During this648

round, each user receives the commitments of all the other users. The commitment scheme we use is649

perfectly hiding. That is even though an adversarial user, given that it has enough compute resources,650

can find multiple decommitment pairs leading to the same commitment, that adversarial user has no651

way of determining the actual hash of another user from the received commitment, beyond random652

guessing. Thus, exchanging commitments does not violate the input privacy of users.653

Theorem 3. [Dropout Resilience in Verification] The proposed LightVeriFL scheme guarantees654

dropout resilience up to any D dropped users during the verification phase such that N ≥ T +D+1.655

Proof. In LightVeriFL, each user i encodes its mask zi using the same T−private MDS matrix such656

that the aggregate encoded mask that a surviving user j sends to the server in aggregate decommitting657

satisfies658 ∑
i∈D

[z̃i]j =

(∑
i∈D

zi,
∑
i∈D

[ni]2, . . . ,
∑
i∈D

[ni]U

)
·Wj , (17)

where Wj is the jth column of the MDS matrix W . From (17), we see that
∑

i∈D[z̃i]j is the encoded659

version of the desired aggregate mask (of the dropped users)
∑

i∈D zi. By construction, we have660

N − D ≥ U so that the server receives
∑

i∈D[z̃i]j from at least U users. Thus, through MDS661

decoding, the server successfully recovers the aggregate mask of the dropped users
∑

i∈D zi and662

performs
∑

i∈D hi =
∑

i∈D(hi + zi)−
∑

i∈D zi. A similar encoding/decoding strategy holds for663

the aggregate mask of the surviving users
∑

i∈U [z̃i]j . Thus, the server is able to reconstruct the664

aggregate hashes of the users when up to D users drop where N − D ≥ U = T + 1. Using the665

aggregate hash of the users, the surviving users perform the verification operation even in the presence666

of dropouts.667
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Theorem 4. The proposed LightVeriFL scheme guarantees successful aggregation integrity verifi-668

cation in the presence of any D user dropouts during the verification phase without sacrificing input669

privacy against up to any T colluding users for T +D < N . When LightVeriFL is implemented670

together with a secure aggregation scheme, such as SecAgg [6] and LightSecAgg [8], a secure671

verifiable aggregation scheme is obtained.672

Theorem 4 simply follows from Theorems 1-3.We note that in LightVeriFL, as in the secure673

aggregation schemes, the guarantee in Theorem 4 is for a single FL iteration only. Since all the674

randomness in LightVeriFL is generated independently across all iterations, this guarantee can be675

extended to the entire FL protocol by invoking the proposed LightVeriFL scheme at each iteration.676

G Complexity Analysis677

In this section, we provide the complexity analysis of the LightVeriFL scheme for N −D ≥ U =678

T + 1 as in [8]. We do not include the complexity of the SecAgg scheme as our LightVeriFL can679

be implemented in a standalone manner without any secure aggregation protocol. We note that the680

hashes and commitments have constant lengths that are independent of the model size d and N .681

Offline storage cost. In LightVeriFL, each user generates a random mask zi (a point on the EC)682

of constant length and stores coded masks of all the other users as well as their constant-length683

commitments. In addition, in the amortized verification, each user stores the past L aggregate models.684

Thus, the total storage cost of LightVeriFL at each user is O(N + Ld).685

Offline communication and computation loads. In LightVeriFL, each user computes its coded686

masks in offline manner before the local model is computed. To compute the coded mask, each687

user performs an (N,U) MDS coding, where the size of each data block is constant (since zi and688

[ni]k, k = {2, . . . , U} are all points on the EC). Thus, the offline computation load at each user at689

each iteration is O(N logN). Then, still in the offline mode, each user shares each of the N coded690

segments with the other users, which induces a communication load of O(N).691

Online communication load. Each user sends its masked hash to the server as well as the correspond-692

ing commitment to the other users during the aggregation phase. Since either hash and commitment693

has a constant length, the total communication load for the users during the aggregation phase is694

O(N). In addition, in the verification phase, each surviving user sends the aggregate coded masks it695

has received from the other users (which has a constant length) to the server. Thus, the total online696

communication load for a user is O(N). Correspondingly, the online communication load at the697

server is O(N + U) since it receives the masked hashes from N users in the aggregation phase as698

well as the coded masks from the surviving U users in the verification phase.699

Online computation load. After computing its local model, each user computes its hash, which700

is the most expensive operation in LightVeriFL at the users and introduces an O(d) computation701

load, d is the model size. Then, in the amortized verification each surviving user computes the702

hash of the aggregate model at every L iterations, where L is the batch size, inducing another O( d
L )703

computation load, making the total online computation load O(L+1
L d) at each user The server, on704

the other hand, performs the reconstruction from the coded masks it has received from U surviving705

users to recover
∑

i∈U zi and
∑

i∈D zi, which is the most time-consuming operation performed706

at the server in LightVeriFL. For this reconstruction, the server decodes a U dimensional MDS707

code using U coded messages it has received from the surviving users. Since each message is of a708

constant length, the total computation complexity here is O(U logU) operations in Fn, where n is709

the subgroup order of the EC.710

Next, we compare the complexity of the proposed LightVeriFL with the baseline VeriFL [12] in711

Table 2. We consider a scenario, where T = N
2 , U = T + 1, and D = pN , where 0 ≤ p < 1

2 .712

From Table 2, we see that in the proposed LightVeriFL scheme, the recovery complexity at the713

server is almost linear in the number of users N , whereas in the VeriFL scheme reconstruction has714

quadratic complexity in N , as in VeriFL the server reconstructs each of the dropped users’ hashes715

one-by-one. Thus, LightVeriFL significantly improves the computation time at the server, thereby716

speeding up the entire verification process especially when the number of users N grows. Further,717

in LightVeriFL, the masks that are used to hide the hashes are prepared in advance in an offline718

manner as these masks are independent of the local models as well as the hashes. In VeriFL, however,719

to tolerate dropouts, generated hashes are secret shared among the users, which can be performed in720
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Table 2: Per iteration complexity comparison of the standalone implementations of VeriFL [12] and
the proposed LightVeriFL. Here, N is the number of users, d is the model size. In this table, we
use S to denote the server and U to denote a user.

VeriFL LightVeriFL
offline comm. (U) − O(N)
offline comp. (U) − O(N logN)
online comm. (U) O(N) O(N)
online comm. (S) O(N2) O(N)
online comp. (U) O(N2 + L+1

L d) O(L+1
L d)

reconstruction (S) O(N2) O(N logN)

Table 3: Per iteration complexity comparison of SecAgg [6] and the proposed LightVeriFL. Here,
we do not include a secure aggregation scheme in LightVeriFL (only verification-related operations
are considered) and N is the number of users, d is the model size, s is the length of the secret keys in
SecAgg, s << d. In this table, we use S to denote the server and U to denote a user.

SecAgg LightVeriFL
offline comm. (U) O(sN) O(N)
offline comp. (U) O(dN + sN2) O(N logN)
online comm. (U) O(d+ sN) O(N)
online comm. (S) O(dN + sN2) O(N)
online comp. (U) O(d) O(L+1

L d)
reconstruction (S) O(dN2) O(N logN)

an online manner after the local training is completed. Thus, the online computation complexity at the721

users and the online communication complexity at the server is higher than those of LightVeriFL,722

which does not require secret sharing among the users and one-by-one reconstruction at the server.723

We compare the complexities of standalone implementations of SecAgg [6] and our proposed724

LightVeriFL scheme in Table 3. We observe from Table 3 that the complexity of standalone imple-725

mentation of LightVeriFL is not significant compared to the SecAgg scheme, as in LightVeriFL,726

hashes and commitments are of constant length independent of d. That is, when the LightVeriFL727

protocol is implemented on top of SecAgg [6], the complexity of the overall scheme is no more than728

SecAgg alone. Thus, achieving a secure verifiable aggregation scheme through LightVeriFL is not729

infeasible in practical scenarios, where SecAgg is implemented. A similar argument applies to more730

efficient secure aggregation schemes such as SecAgg+ [7] and LightSecAgg [8].731

H Experimental Details and Additional Experiment Results732

In our implementation, we use the open-source fastecdsa Python library for fast elliptic curve733

cryptography [38]. The implementation of the proposed LightVeriFL scheme can be found in734

https://github.com/bbuyukates/LightVeriFL-fast.735

In Tables 1 and 4, we use L = 10 for the batch size of the amortization and report the average736

of 5 independent runs along with the standard error. In Table 1, we observe that in LightVeriFL737

decommitting round is not affected in all three dropout scenarios, since the server reconstructs the738

aggregate hash of all N = 200 users in one-shot whereas in the VeriFL scheme the time needed for739

decommitting increases as more and more users drop the protocol. The batch checking round in both740

of the schemes is not affected by varying dropout rates aside from a minor straggler effect. That is, as741

the dropout rate decreases, more number of users stay in the system for verification, which in turn742

increases the completion time of the verification phase due to the straggler effect.743

To report the performance results for realistic FL settings we show the performance of LightVeriFL744

for varying d as well. For this, we use d = 10K (similar to a logistic regression model on MNIST745

[39] which requires d = 7, 850) and d = 1M (similar to training a CNN [1] on FEMNIST [40],746

which requires d = 1, 206, 590).747
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Table 4: Breakdowns of the verification time of LightVeriFL and VeriFL for model size d with
N = 200 users, 30% dropout rate, and L = 10. All times are in seconds.

Phase d=10K d=100K d=1M

VeriFL
Round V.0 Decommitting 29.72 30.56 35.44

Round V.1 Batch Checking 0.62 6.03 60.27
Verification Phase - Total 30.34 ± 0.40 36.59 ± 0.25 95.71 ± 0.52

LightVeriFL
Round V.0 Decommitting 0.70 0.67 0.77

Round V.1 Batch Checking 0.60 5.94 61.41
Verification Phase - Total 1.30 ± 0.02 6.61 ± 0.06 62.18 ± 0.49

Gain 23.34× 5.54× 1.54×

In Table 4, we investigate the affect of the model size on the proposed verification algorithm.748

Considering practical FL systems, we take d = 10K, d = 100K, and d = 1M for N = 200 users,749

30% dropout rate, and L = 10. In this case, decommitting time stays (almost) the same for both of750

the schemes across all three d values since hashes are of constant length independent of d in either751

of the schemes. In both of the schemes, the batch checking time, which requires the computation752

of the hash of the aggregate model, increases linearly with d. In Table 4, we see that for smaller d753

values the verification time is dominated by the decommitting step in VeriFL. In these cases, the754

proposed LightVeriFL scheme achieves the biggest gain. In fact, we observe around 23.34× gain755

when d = 10K.756

From Tables 1 and 4 we deduce that the gain achieved by the proposed LightVeriFL scheme over757

the VeriFL scheme is more prominent when the verification time is dominated by the decommitting758

step. This happens when the model size is smaller for moderate number of users, e.g., d = 10K and759

N = 200 or d = 100K and N = 200. Such a large gain is expected when the number of users gets760

larger in more complex models with larger model sizes.761

21


	Introduction
	Preliminaries
	Problem Setting
	Federated Learning
	Threat Model and Privacy & Verifiability Guarantees
	Dropout Resilience

	Overview of the LightVeriFL Protocol
	Theoretical Guarantees
	Experimental Results
	Experimental Setup
	Performance Analysis

	Conclusion and Future Directions
	Other Related Works
	Overview of Secure Aggregation
	Overview of the Baseline Protocol: VeriFL
	Detailed Description of LightVeriFL
	Pseudo Code of LightVeriFL
	Proofs of Theoretical Guarantees
	Complexity Analysis
	Experimental Details and Additional Experiment Results

