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Abstract

Transformers have shown great potential in various computer vision tasks owing to1

their strong capability in modeling long-range dependency using the self-attention2

mechanism. Nevertheless, vision transformers treat an image as 1D sequence of3

visual tokens, lacking an intrinsic inductive bias (IB) in modeling local visual4

structures and dealing with scale variance. Alternatively, they require large-scale5

training data and longer training schedules to learn the IB implicitly. In this6

paper, we propose a novel Vision Transformer Advanced by Exploring intrinsic7

IB from convolutions, i.e., ViTAE. Technically, ViTAE has several spatial pyramid8

reduction modules to downsample and embed the input image into tokens with9

rich multi-scale context by using multiple convolutions with different dilation10

rates. In this way, it acquires an intrinsic scale invariance IB and is able to learn11

robust feature representation for objects at various scales. Moreover, in each12

transformer layer, ViTAE has a convolution block in parallel to the multi-head self-13

attention module, whose features are fused and fed into the feed-forward network.14

Consequently, it has the intrinsic locality IB and is able to learn local features15

and global dependencies collaboratively. Experiments on ImageNet as well as16

downstream tasks prove the superiority of ViTAE over the baseline transformer17

and concurrent works. Source code and pretrained models will be made public.18

1 Introduction19

68.7

70.8

71.7

72.6

74.2

75.3

68

70

72

74

Im
a

g
eN

e
t 

T
o

p
-1

 A
cc

u
ra

cy
 (

%
)

Epochs

100 200 300

64.1

68.1

68.7

67.5

71.6

72.6

63

65

67

69

71

73

Im
a

g
e
N

e
t 

T
o

p
-1

 A
cc

u
ra

cy
 (

%
)

Data Percentage (%)

T2T

ViTAE

20 60 100

Figure 1: Comparison of data and training effi-
ciency of T2T-ViT and ViTAE on ImageNet.

Transformers [65, 13, 29, 10, 35, 47] have shown20

a domination trend in NLP studies owing to their21

strong ability in modeling long-range dependen-22

cies by the self-attention mechanism [53, 67, 40].23

Such success and good properties of transform-24

ers has inspired following many works that ap-25

ply them in various computer vision tasks [15,26

81, 80, 66, 6]. Among them, ViT [15] is the pio-27

neering pure transformer model that embeds im-28

ages into a sequence of visual tokens and mod-29

els the global dependencies among them with30

stacked transformer blocks. Although it achieves31

promising performance on image classification,32

it requires large-scale training data and a longer33

training schedule. One important reason is that34

ViT lacks intrinsic inductive bias (IB) in model-35

ing local visual structures (e.g., edges and corners) and dealing with objects at various scales like36

convolutions. Alternatively, ViT has to learn such IB implicitly from large-scale data.37

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



Unlike vision transformers, Convolution Neural Networks (CNNs) naturally equip with the intrinsic38

IBs of scale-invariance and locality and still serve as prevalent backbones in vision tasks [20, 56,39

48, 7, 79]. The success of CNNs inspires us to explore intrinsic IBs in vision transformers. We40

start by analyzing the above two IBs of CNNs, i.e., locality and scale-invariance. Convolution that41

computes local correlation among neighbor pixels is good at extracting local features such as edges42

and corners. Consequently, CNNs can provide plentiful low-level features at the shallow layers [77],43

which are then aggregated into high-level features progressively by a bulk of sequential convolutions44

[23, 54, 57]. Moreover, CNNs have a hierarchy structure to extract multi-scale features at different45

layers [54, 27, 20]. Besides, intra-layer convolutions can also learn features at different scales by46

varying their kernel sizes and dilation rates [19, 56, 7, 34, 79]. Consequently, scale-invariant feature47

representation can be obtained via intra- or inter-layer feature fusion. Nevertheless, CNNs are not48

well suited to model long-range dependencies1, which is the key advantage of transformers. An49

interesting question comes up: Can we improve vision transformers by leveraging the good properties50

of CNNs? Recently, DeiT [62] explores the idea of distilling knowledge from CNNs to transformers51

to facilitate training and improve the performance. However, it requires an off-the-shelf CNN model52

as the teacher and consumes extra training cost.53

Different from DeiT, we explicitly introduce intrinsic IBs into vision transformers by re-designing54

the network structures in this paper. Current vision transformers always obtain tokens with single-55

scale context [15, 76, 66, 70, 36, 55, 63] and learn to adapt to objects at different scales from data.56

For example, T2T-ViT [76] improves ViT by delicately generating tokens in a soft split manner.57

Specifically, it uses a series of Tokens-to-Token transformation layers to aggregate single-scale58

neighboring contextual information and progressively structurizes the image to tokens. Motivated59

by the success of CNNs in dealing with scale variance, we explore a similar design in transformers,60

i.e., intra-layer convolutions with different receptive fields [56, 74], to embed multi-scale context61

into tokens. Such a design allows tokens to carry useful features of objects at various scales, thereby62

naturally having the intrinsic scale-invariance IB and explicitly facilitating transformers to learn63

scale-invariant features more efficiently from data. On the other hand, low-level local features are64

fundamental elements to generate high-level discriminative features. Although transformers can65

also learn such features at shallow layers from data, they are not skilled as convolutions by design.66

Recently, [72, 32, 16] stack convolutions and attention layers sequentially and demonstrate that67

locality is a reasonable compensation of global dependency. However, this serial structure ignores the68

global context during locality modeling (and vice versa). To avoid such a dilemma, we follow the69

“divide-and-conquer” idea and propose to model locality and long-range dependencies in parallel and70

then fuse the features to account for both. In this way, we empower transformers to learn local and71

long-range features within each block more effectively.72

Technically, we propose a novel Vision Transformers Advanced by Exploring Intrinsic Inductive73

Bias (ViTAE), which is a combination of two types of basic cells, i.e., reduction cell (RC) and normal74

cell (NC). RCs are used to downsample and embed the input images into tokens with rich multi-scale75

context while NCs aim to jointly model locality and global dependencies in the token sequence.76

Moreover, these two types of cells share a simple basic structure, i.e., paralleled attention module and77

convolutional layers followed by a feed-forward network (FFN). It is noteworthy that RC has an extra78

pyramid reduction module with atrous convolutions of different dilation rates to embed multi-scale79

context into tokens. Following the setting in [76], we stack three reduction cells to reduce the spatial80

resolution by 1/16 and a series of NCs to learn discriminative features from data. ViTAE outperforms81

representative vision transformers in terms of data efficiency and training efficiency (see Figure 1), as82

well as classification accuracy and generalization on downstream tasks.83

Our contributions are threefold. First, we explore two types of intrinsic IB in transformers, i.e.,84

scale invariance and locality, and demonstrate the effectiveness of this idea in improving the feature85

learning ability of transformers. Second, we design a novel transformer architecture named ViTAE86

based on two new reduction and normal cells to intrinsically incorporate the above two IBs. The87

proposed ViTAE embeds multi-scale context into tokens and learns both local and long-range features88

effectively. Third, ViTAE outperforms representative vision transformers regarding classification89

accuracy, data efficiency, training efficiency, and generalization on downstream tasks. ViTAE achieves90

75.3% and 82.0% top-1 accuracy on ImageNet with 4.8M and 23.6M parameters, respectively.91

1Despite projection in transformer can be viewed as 1 × 1 convolution [8], the term of convolution here
refers to those with larger kernels, e.g., 3× 3, which are widely used in typical CNNs to extract spatial features.
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2 Related Work92

2.1 CNNs with intrinsic IB93

CNNs have led to a series of breakthroughs in image classification [27, 77, 20, 78, 71] and downstream94

computer vision tasks. The convolution operations in CNNs extract local features from the neighbor95

pixels within the receptive field determined by the kernel size [31]. Following the intuition that96

local pixels are more likely to be correlated in images [30], CNNs have the intrinsic IB in modeling97

locality. In addition to the locality, another critical topic in visual tasks is scale-invariance, where98

multi-scale features are needed to represent the objects at different scales effectively [38, 73]. For99

example, to effectively learn features of large objects, a large receptive field is needed by either using100

large convolution kernels [73, 74] or a series of convolution layers in deeper architectures [20, 23,101

54, 57]. To construct multi-scale feature representation, the classical idea is using image pyramid102

[7, 1, 43, 4, 28, 12], where features are hand-crafted or learned from a pyramid of images at different103

resolutions respectively [33, 7, 41, 49, 24, 3]. Accordingly, features from the small scale image104

mainly encode the large objects while features from the large scale image respond more to small105

objects. In addition to the above inter-layer fusion way, another way is to aggregate multi-scale106

context by using multiple convolutions with different receptive fields within a single layer, i.e.,107

intra-layer fusion [79, 57, 56, 56, 58]. Either inter-layer fusion or intra-layer fusion empower CNNs108

an intrinsic IB in modeling scale-invariance. This paper introduces such an IB to vision transformers109

by following the intra-layer fusion idea and utilizing multiple convolutions with different dilation110

rates in the reduction cells to encode multi-scale context into each visual token.111

2.2 Vision transformers with learned IB112

ViT [15] is the pioneering work that applies a pure transformer to vision tasks and achieves promising113

results. However, since ViT lacks intrinsic inductive bias in modeling local visual structures, it indeed114

learns the IB from amounts of data implicitly. Following works along this direction are to simplify115

the model structures with fewer intrinsic IBs and directly learn them from large scale data [39, 60,116

61, 17, 14], which have achieved promising results and been studied actively. Another direction is117

to leverage the intrinsic IB from CNNs to facilitate the training of vision transformers, e.g., using118

less training data or shorter training schedules. For example, DeiT [62] proposes to distill knowledge119

from CNNs to transformers during training. However, it requires an off-the-shelf CNN model as a120

teacher, introducing extra computation cost during training. Recently, some works try to introduce121

the intrinsic IB of CNNs into vision transformers explicitly [18, 46, 16, 32, 11, 72, 69, 75, 5, 36, 9].122

For example, [32, 16, 69] stack convolutions and attention layers sequentially, resulting in a serial123

structure and modeling the locality and global dependency accordingly. However, this serial structure124

may ignore the global context during locality modeling (and vice versa). Instead, we follow the125

“divide-and-conquer” idea and propose to model locality and global dependencies simultaneously126

via a parallel structure within each transformer layer. Conformer [46], the most relevant concurrent127

work to us, employs a unit to explore inter-block interactions between parallel convolution and128

transformer blocks. In contrast, in ViTAE, the convolution and attention modules are designed to be129

complementary to each other within the transformer block. In addition, Conformer is not designed to130

have inherent scale invariance IB.131

3 Methodology132

3.1 Revisit vision transformer133

We first give a brief review of vision transformer in this part. To adapt transformers to vision134

tasks, ViT [15] first splits an image x ∈ RH×W×C into tokens with a reduction ratio of p (i.e.,135

xt ∈ R((H×W )/p2)×D), where H , W and C denote the height, width, and channel dimensions of136

the input image, D = Cp2 denotes the token dimension. Then, an extra class token is concatenated137

to the visual tokens before adding position embeddings in an element-wise manner. The resulting138

tokens are fed into the following transformer layers. Each transformer layer is composed of two parts,139

i.e., a multi-head self-attention module (MHSA) and a feed forward network (FFN).140

MHSA Multi-head self-attention extends single-head self-attention (SHSA) by using different141

projection matrices for each head. Specifically, the input tokens xt are first projected to queries (Q),142
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Figure 2: The structure of the proposed ViTAE. It is constructed by stacking three RCs and several
NCs. Both types of cells share a simple basic structure, i.e., an MHSA module and a parallel
convolutional module followed by an FFN. In particular, RC has an extra pyramid reduction module
using atrous convolutions with different dilation rates to embed multi-scale context into tokens.

keys (K) and values (V ) using projection matrices, i.e., Q,K, V = xtWQ, xtQK , xtQV , where143

WQ/K/V ∈ RD×D denotes the projection matrix for query, key, and value, respectively. Then, the144

self-attention operation is calculated as:145

Attention(Q,K, V ) = softmax(
QKT

√
D

)V. (1)

This SHSA module is repeated for h times to formulate the MHSA module, where h is the number146

of heads. The output features of the h heads are concatenated along the channel dimension and147

formulate the output of the MHSA module.148

FFN FFN is placed on top of the MHSA module and applied to each token identically and separately.149

It consists of two linear transformations with an activation function in between. Besides, a layer150

normalization [2] and a shortcut are added before and aside from the MHSA and FFN, respectively.151

3.2 Overview architecture of ViTAE152

ViTAE aims to introduce the intrinsic IB in CNNs to vision transformers. As shown in Figure 2,153

ViTAE is composed of two types of cells, i.e., RCs and NCs. RCs are responsible for embedding154

multi-scale context and local information into tokens, and NCs are used to further model the locality155

and long-range dependencies in the tokens. Taken an image x ∈ RH×W×C as input, three RCs are156

used to gradually downsample x by 4×, 2×, and 2×, respectively. Thereby, the output tokens of157

the RCs are of size [H/16,W/16, D] where D is the token dimension (64 in our experiments). The158

output tokens of RCs are then flattened as RHW/256×D, concatenated with the class token, and added159

by the sinusoid position encoding. Next, the tokens are fed into the following NCs, which keep the160

length of the tokens. Finally, the prediction probability is obtained using a linear classification layer161

on the class token from the last NC.162

3.3 Reduction cell163

Instead of directly splitting and flatten images into visual tokens based on a linear image patch164

embedding layer, we devise the reduction cell to embed multi-scale context and local information165

into visual tokens, which introduces the intrinsic scale-invariance and locality IBs from convolutions.166

Technically, RC has two parallel branches responsible for modeling locality and long-range depen-167

dency, respectively, followed by an FFN for feature transformation. We denote the input feature of168
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the ith RC as fi ∈ RHi×Wi×Di . The input of the first RC is the image x. In the global dependencies169

branch, fi is firstly fed into a Pyramid Reduction Module (PRM) to extract multi-scale context, i.e.,170

fms
i , PRMi(fi) = Cat([Convij(fi; sij , ri)|sij ∈ Si, ri ∈ R]), (2)

where Convij(·) indicates the jth convolutional layer in the PRM (PRMi(·)). It uses a dilation171

rate sij from the predefined dilation rate set Si corresponding to the ith RC. Note that we use172

stride convolution to reduce the spatial dimension of features by a ratio ri from the predefined173

reduction ratio setR. The conv features are concatenated along the channel dimension, i.e., fms
i ∈174

R(Wi/p)×(Hi/p)×(|Si|D), where |Si| denotes the number of dilation rates in Si. fms
i is then processed175

by an MHSA module to model long-range dependencies, i.e.,176

fg
i = MHSAi(Img2Seq(fms

i )), (3)
where Img2Seq(·) is a simple reshape operation to flatten the feature map to a 1D sequence. In this177

way, fg
i embeds the multi-scale context in each token. In addition, we use a Parallel Convolutional178

Module (PCM) to embed local context within the tokens, which are fused with fg
i as follows:179

f lg
i = fg

i + PCMi(fi). (4)
Here, PCMi(·) represents the PCM, which is composed of three stacked convolution layers and an180

Img2Seq(·) operation. It is noteworthy that the parallel convolution branch has the same spatial181

downsampling ratio as the PRM by using stride convolutions. In this way, the token features can carry182

both local and multi-scale context, implying that RC acquires the locality IB and scale-invariance IB183

by design. The fused tokens are then processed by the FFN, reshaped back to feature maps, and fed184

into the following RC or NC, i.e.,185

fi+1 = Seq2Img(FFNi(f
lg
i ) + f lg

i ), (5)
where the Seq2Img(·) is a simple reshape operation to reshape a token sequence back to feature186

maps. FFNi(·) represents the FFN in the ith RC. In our ViTAE, three RCs are stacked sequentially187

to gradually reduce the input image’s spatial dimension by 4×, 2×, and 2×, respectively. The feature188

maps generated by the last RC are of a size of [H/16,W/16, D], which are then flattened into visual189

tokens and fed into the following NCs.190

3.4 Normal cell191

As shown in the bottom right part of Figure 2, NCs share a similar structure with the reduction cell192

except for the absence of the PRM. Due to the relatively small ( 1
16×) spatial size of feature maps after193

RCs, it is unnecessary to use PRM in NCs. Given f3 from the third RC, we first concatenate it with the194

class token tcls, and then add it to the positional encodings to get the input tokens t for the following195

NCs. Here we ignore the subscript for clarity since all NCs have an identical architecture but different196

learnable weights. tcls is randomly initialized at the start of training and fixed during the inference.197

Similar to the RC, the tokens are fed into the MHSA module, i.e., tg = MHSA(t). Meanwhile, they198

are reshaped to 2D feature maps and fed into the PCM, i.e., tl = Img2Seq(PCM(Seq2Img(t))).199

Note that the class token is discarded in PCM because it has no spatial connections with other visual200

tokens. To further reduce the parameters in NCs, we use group convolutions in PCM. The features201

from MHSA and PCM are then fused via element-wise sum, i.e., tlg = tg + tl. Finally, tlg are fed202

into the FFN to get the output features of NC, i.e., tnc = FFN(tlg) + tlg. Similar to ViT [15], we203

apply layer normalization to the class token generated by the last NC and feed it to the classification204

head to get the final classification result.205

3.5 Model details206

Table 1: Model details of two variants of ViTAE.

Model
Reduction Cell Normal Cell Params Macs
Dilation Cells Heads Embed Cells (M) (G)

ViTAE-T [1, 2, 3, 4] ↓ 3 4 256 7 4.8 1.5
ViTAE-S [1, 2, 3, 4] ↓ 3 6 384 14 23.6 5.6

We use two variants of ViTAE in207

our experiments for a fair com-208

parison of other models with sim-209

ilar model sizes. The details of210

them are summarized in Table 1.211

In the first RC, the default convo-212

lution kernel size is 7× 7 with a213

stride of 4 and dilation rates of S1 = [1, 2, 3, 4]. In the following two RCs, the convolution kernel214

size is 3× 3 with a stride of 2 and dilation rates of S2 = [1, 2, 3] and S3 = [1, 2], respectively. Since215

the spatial dimension of tokens decreases, there is no need to use large kernels and dilation rates.216

PCM in both RCs and NCs comprises three convolutional layers with a kernel size of 3× 3.217
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4 Experiments218

4.1 Implementation details219

We train and test the proposed ViTAE model on the standard ImageNet [27] dataset, which contains220

about 1.3 million images and covers 1k classes. Unless explicitly stated, the image size during training221

is set to 224× 224. We use the AdamW [37] optimizer with the cosine learning rate scheduler and222

uses the data augmentation strategy exactly the same as T2T [76] for a fair comparison. We use a223

batch size of 512 for training all our models and set the initial learning rate to be 5e-4. The results224

of our models can be found in Table 2, where all the models are trained for 300 epochs on 8 V100225

GPUs. The models are built on PyTorch [45] and TIMM [68].226

Table 2: Comparison of ViTAE and SOTA methods on the ImageNet validation set.

Type Model
Params MACs Input ImageNet Real

(M) (G) Size Top-1 Top-5 Top-1

CNN

ResNet-18 [20] 11.7 3.6 224 70.3 86.7 77.3
ResNet-50 [20] 25.6 7.6 224 76.7 93.3 82.5
ResNet-101 [20] 44.5 15.2 224 78.3 94.1 83.7
ResNet-152 [20] 60.2 22.6 224 78.9 94.4 84.1
EfficientNet-B0 [59] 5.3 0.8 224 77.1 93.3 83.5
EfficientNet-B4 [59] 19.3 8.4 380 82.9 96.4 88.0
MobileNetV1 [22] 4.3 0.6 224 72.3 - -
MobileNetV2(1.4) [51] 6.9 0.6 224 74.7 - -
RegNetY-600M [48] 20.6 1.2 224 75.5 -
RegNetY-4GF [48] 39.2 8.0 224 80.0 - 86.4

Transformer
with learned IB

ViT-B/16 [15] 86.5 18.7 384 77.9 - 83.6
ViT-L/16 [15] 304.3 65.8 384 76.5 - 82.2
DeiT-T [62] 5.7 2.6 224 72.2 91.1 80.6
DeiT-S [62] 22.1 9.8 224 79.9 95.0 85.7
DeiT-B [62] 86.6 34.6 224 81.8 95.6 86.7
DeiT-T⚗ [62] 5.7 2.6 224 74.5 91.9 82.1
DeiT-S⚗ [62] 22.1 9.8 224 81.2 95.4 86.8

Transformer
with intrinsic IB

PVT-T [66] 13.2 3.8 224 75.1 - -
PVT-S [66] 24.5 7.6 224 79.8 - -
PVT-M [66] 44.2 13.2 224 81.2 - -
PVT-L [66] 61.4 19.6 224 81.7 - -
LocalViT-T [32] 5.9 2.6 224 74.8 92.6 -
LocalViT-T2T [32] 4.3 2.4 224 72.5 - -
LocalViT-PVT [32] 13.5 9.6 224 78.2 94.2 -
Conformer-Ti [46] 23.5 5.2 224 81.3 - -
Swin-T [36] 29.0 9.0 224 81.3 - -
ConT-Ti [72] 5.8 1.6 224 74.9 - -
ConT-M [72] 19.2 6.2 224 80.2 - -
ConT-B [72] 39.6 12.8 224 81.8 - -
CrossViT-Ti [5] 6.9 3.2 224 73.4 - -
CrossViT-S [5] 26.7 11.2 224 81.0 - -
T2T-ViT-7 [76] 4.3 1.2 224 71.7 90.9 79.7
T2T-ViT-14 [76] 21.5 5.2 224 81.5 95.7 86.8
T2T-ViT-19 [76] 39.2 8.9 224 81.9 95.7 86.9

ViTAE-T 4.8 1.5 224 75.3 92.7 82.9
ViTAE-T ↑ 384 4.8 5.7 384 77.2 93.8 84.4
ViTAE-S 23.6 5.6 224 82.0 95.9 87.0
ViTAE-S ↑ 384 23.6 20.2 384 83.0 96.2 87.5

4.2 Comparison with the state-of-the-art227

We compare our ViTAE with both CNN models and vision transformers with similar model sizes228

in Table 2. Both Top-1/5 accuracy and real Top-1 accuracy on the ImageNet validation set are229

reported. We categorize the methods into CNN models, vision transformers with learned IB, and230

vision transformers with introduced intrinsic IB. Compared with CNN models, our ViTAE-T achieves231

a 75.3% Top-1 accuracy, which is better than ResNet-18 with more parameters. The real Top-1232

accuracy of the ViTAE model is 82.9%, which is comparable to ResNet-50 that has four more times233
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of parameters than ours. Similarly, our ViTAE-S achieves 82.0% Top-1 accuracy with half of the234

parameters of ResNet-101 and ResNet-152, showing the superiority of learning both local and long-235

range features from specific structures with corresponding intrinsic IBs by design. Similar phenomena236

can also be observed when comparing ViTAE-T with MobileNetV1 [22] and MobileNetV2 [51],237

where ViTAE obtains better performance with fewer parameters. When compared with larger models238

which are searched according to NAS [59], our ViTAE-S achieves a similar performance when using239

384× 384 images as input, which further shows the potential of vision transformers with intrinsic IB.240

In addition, among the transformers with learned IB, ViT is the first pure transformer model for241

visual recognition. DeiT shares the same structure with ViT but uses different data augmentation and242

training strategies to facilitate the learning of transformers. DeiT⚗ denotes using an off-the-shelf243

CNN model as the teacher model to train DeiT, which introduces the intrinsic IB from CNN to244

transformer implicitly in a knowledge distillation manner, showing better performance than the245

vanilla ViT on the ImageNet dataset. It is exciting to see that our ViTAE-T with fewer parameters246

even outperforms the distilled model DeiT⚗, demonstrating the efficacy of introducing intrinsic IBs247

in transformers by design. Besides, compared with other transformers with explicit intrinsic IB, our248

ViTAE with fewer parameters also achieves comparable or better performance. For instance, ViTAE-T249

achieves comparable performance with LocalVit-T but has 1M fewer parameters, demonstrating the250

superiority of the proposed RCs and NCs in introducing intrinsic IBs.251

4.3 Ablation study252

Table 3: Ablation Study of RCs and NCs in our ViTAE.
“Pre” indicates the output features of PCM and MHSA are
fused before FFN while “Post” indicates a late fusion strategy
correspondingly. “BN” indicates whether PCM uses BN or
not. “[1, 2, 3, 4] ↓” denotes using smaller dilation rates in
deeper RCs, i.e., S1 = [1, 2, 3, 4], S2 = [1, 2, 3], S3 = [1, 2].

Reduction Cell Normal Cell
Top-1Dilation (S1 ∼ S3) PCM Pre Post BN

× × × × × 68.7
× × X × × 69.1
× × × X × 69.0
× × × X X 68.8
× × X × X 69.9

[1, 2]× 3 × × × × 69.5
[1, 2, 3]× 3 × × × × 69.9
[1, 2, 3, 4]× 3 × × × × 69.2
[1, 2, 3, 4, 5]× 3 × × × × 68.9
[1, 2, 3, 4] ↓ × × × × 69.8
[1, 2, 3, 4] ↓ X × × × 71.7
[1, 2, 3, 4] ↓ X X × X 72.6

We use T2T-ViT [76] as our baseline253

model in the following ablation study254

of our ViTAE. As shown in Table 3,255

we investigate the hyper-parameter256

settings in RCs and NCs by isolating257

them separately. All the models are258

trained for 100 epochs on ImageNet259

and follow the same training setting260

and data augmentation strategy as de-261

scribed in Section 4.1.262

We use X and × to denote whether263

or not the corresponding module is264

enabled during the experiments. If265

all columns under the RC and NC are266

marked × as shown in the first row,267

the model becomes the standard T2T-268

ViT model. “Pre” indicates the output269

features of PCM and MHSA are fused270

before FFN while “Post” indicates a271

late fusion strategy correspondingly.272

“BN” indicates whether PCM uses BN after the convolutional layer or not. “×3” in the first column273

denotes that the dilation rate set is the same in the three RCs. “[1, 2, 3, 4] ↓” denotes using lower274

dilation rates in deeper RCs, i.e., S1 = [1, 2, 3, 4], S2 = [1, 2, 3], S3 = [1, 2].275

As can be seen, using a pre-fusion strategy and BN achieves the best 69.9% Top-1 accuracy among276

other settings. It is noteworthy that all the variants of NC outperform the vanilla T2T-ViT, implying277

the effectiveness of PCM, which introduces the intrinsic locality IB in transformers. For the RC, we278

first investigate the impact of using different dilation rates in the PRM, as shown in the first column.279

As can be seen, using larger dilation rates (e.g., 4 or 5) does not deliver better performance. We280

suspect that larger dilation rates may lead to plain features in the deeper RCs due to the smaller281

resolution of feature maps. To validate the hypothesis, we use smaller dilation rates in deeper282

RCs as denoted by [1, 2, 3, 4] ↓. As can be seen, it achieves comparable performance as [1, 2, 3]×.283

However, compared with [1, 2, 3, 4] ↓, [1, 2, 3]× increases the amount of parameters from 4.35M to284

4.6M. Therefore, we select [1, 2, 3, 4] ↓ as the default setting. In addition, after using PCM in the285

RC, it introduces the intrinsic locality IB, and the performance increases to 71.7% Top-1 accuracy.286

Finally, the combination of RCs and NCs achieves the best accuracy at 72.6%, demonstrating the287

complementarity between our RCs and RCs.288
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4.4 Data efficiency and training efficiency289

To validate the effectiveness of the introduced intrinsic IBs in improving data efficiency and training290

efficiency, we compare our ViTAE with T2T-ViT at different training settings: (a) training them291

using 20%, 60%, and 100% ImageNet training set for equivalent 100 epochs on the full ImageNet292

training set; and (b) training them using the full ImageNet training set for 100, 200, and 300 epochs293

respectively. The results are shown in Figure 1. As can be seen, ViTAE consistently outperforms294

the T2T-ViT baseline by a large margin in terms of both data efficiency and training efficiency. For295

example, ViTAE using only 20% training data achieves comparable performance with T2T-ViT296

using all data. When 60% training data are used, ViTAE significantly outperforms T2T-ViT using297

all data by about an absolute 3% accuracy. It is also noteworthy that ViTAE trained for only 100298

epochs has outperformed T2T-ViT trained for 300 epochs. After training ViTAE for 300 epochs, its299

performance is significantly boosted to 75.3% Top-1 accuracy. With the proposed RCs and NCs, the300

transformer layers in our ViTAE only need to focus on modeling long-range dependencies, leaving the301

locality and multi-scale context modeling to its convolution counterparts, i.e., PCM and PRM. Such302

a “divide-and-conquer” strategy facilitates the training of vision transformers, making it possible to303

learn more efficiently with less training data and fewer training epochs.304

4.5 Generalization on downstream tasks305

Table 4: Generalization of ViTAE and SOTA methods on different downstream tasks.

Model Params Cifar10 Cifar100 iNat19 Cars Flowers Pets
Grafit ResNet-50 [64] 25.6 - - 75.9 92.5 98.2 -
EfficientNet-B5 [59] 30 98.1 91.1 - - 98.5 -
ViT-B/16 [15] 86.5 98.1 87.1 - - 89.5 93.8
ViT-L/16 [15] 304.3 97.9 86.4 - - 89.7 93.6
DeiT-B [62] 86.6 99.1 90.8 77.7 92.1 98.4 -
T2T-ViT-14 [76] 21.5 98.3 88.4 - - - -
ViTAE-T 4.8 97.3 86.0 73.3 89.5 97.5 92.6
ViTAE-S 23.6 98.8 90.8 76.0 91.4 97.8 94.2

We further investigate the generalization of the proposed ViTAE models on downstream tasks by fine-306

tuning them on the training sets of several fine-grained classification tasks, including Flowers [42],307

Cars [25], Pets [44], and iNaturalist19. We also fine-tune the proposed ViTAE models on Cifar10 [26]308

and Cifar100 [26]. The results are shown in Table 4. It can be seen that ViTAE achieves SOTA309

performance on most of the datasets using comparable or fewer parameters. These results demonstrate310

that the good generalization ability of our ViTAE.311

4.6 Visual inspection of ViTAE312
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Figure 3: The average per-layer attention distance
of T2T-ViT-7 and our ViTAE-T.

To further analyze the property of our ViTAE,313

we first calculate the average attention distance314

of each layer in ViTAE-T and the baseline T2T-315

ViT-7 on the ImageNet test set, respectively.316

The results are shown in Figure 3. It can be317

observed that with the usage of PCM, which318

focuses on modeling locality, the transformer319

layers in the proposed NCs can better focus on320

modeling long-range dependencies, especially321

in shallow layers. In the deep layers, the average322

attention distances of ViTAE-T and T2T-ViT-7323

are almost the same since modeling long-range dependencies is much more important. These results324

confirm the effectiveness of the adopted “divide-and-conquer” idea in the proposed ViTAE, i.e.,325

introducing the intrinsic locality IB from convolutions into vision transformers makes it possible that326

transformer layers only need to be responsible to long-range dependencies, since locality can be well327

modeled by convolutions in PCM.328

Besides, we apply Grad-CAM [52] on the MHSA’s output in the last NC to qualitatively inspect329

ViTAE. The visualization results are provided in Figure 4. Compared with the baseline T2T-ViT,330

our ViTAE covers the single or multiple targets in the images more precisely and attends less to the331
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(a) (b)

Input

T2T-ViT

ViTAE

Figure 4: Visual inspection of T2T-ViT and ViTAE using Grad-CAM [52]. (a) Images containing
multiple or single objects and the heatmaps. (b) Images containing the same class of objects at
different scales and the heatmaps (Best viewed in color).

background. Moreover, ViTAE can better handle the scale variance issue as shown in Figure 4(b).332

Namely, it can precisely cover the birds no matter they are in small, middle, or large size. Such333

observations demonstrate that introducing the intrinsic IBs of locality and scale-invariance from334

convolutions to transformers helps ViTAE learn more discriminate features than the pure transformers.335

5 Limitation and discussion336

In this paper, we explore two types of IBs and incorporate them into transformers through the proposed337

reduction and normal cells. With the collaboration of these two cells, our ViTAE model achieves338

impressive performance on the ImageNet with fast convergence and high data efficiency. Nevertheless,339

due to computational resource constraints, we have not scaled the ViTAE model and train it on large-340

size dataset, e.g., ImageNet-21K [27] and JFT-300M [21]. Although it remains unclear by now, we341

are optimistic about its scale property from the following preliminary evidence. As illustrated in342

Figure 2, our ViTAE model can be viewed as an intra-cell ensemble of complementary transformer343

layers and convolution layers owing to the skip connection and parallel structure. According to the344

attention distance analysis shown in Figure 3, the ensemble nature enables the transformer layers345

and convolution layers to focus on what they are good at, i.e., modeling long-range dependencies346

and locality. Therefore, ViTAE is very likely to learn better feature representation from large-scale347

data. Besides, we only study two typical IBs in this paper. More kinds of IBs such as constituting348

viewpoint invariance [50] can be explored in the future study.349

6 Conclusion350

In this paper, we re-design the transformer block by proposing two novel basic cells (reduction cells351

and normal cells) to incorporate two types of intrinsic inductive bias (IB) into transformers, i.e.,352

locality and scale-invariance, resulting in a simple yet effective vision transformer architecture named353

ViTAE. Extensive experiments show that ViTAE outperforms representative vision transformers in354

various respects including classification accuracy, data efficiency, training efficiency, and generaliza-355

tion ability on downstream tasks. We plan to scale ViTAE to the large or huge model size and train it356

on large-size datasets in the future study. In addition, other kinds of IBs will also be investigated. We357

hope that this study will provide valuable insights to the following studies of introducing intrinsic IB358

into vision transformers and understanding the impact of intrinsic and learned IBs.359

Broad impacts This paper proposes a novel and effective vision transformer that can be used as360

backbone networks in many computer vision areas. However, like other basic network architectures,361

the proposed ViTAE may learn inappropriate capabilities from biased training data, for example,362

discriminatory outputs for specific demographic groups (e.g., discrimination against gender, race, age)363

and compromise personal privacy. How to prevent models from exhibiting algorithmic discrimination364

and compromising personal privacy remains open and challenging.365

9



References366

[1] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden. Pyramid methods in image367

processing. RCA engineer, 29(6):33–41, 1984.368
[2] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.369
[3] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In European conference on370

computer vision, pages 404–417. Springer, 2006.371
[4] P. J. Burt and E. H. Adelson. The laplacian pyramid as a compact image code. In Readings in computer372

vision, pages 671–679. Elsevier, 1987.373
[5] C.-F. Chen, Q. Fan, and R. Panda. Crossvit: Cross-attention multi-scale vision transformer for image374

classification. arXiv preprint arXiv:2103.14899, 2021.375
[6] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, and W. Gao. Pre-trained image376

processing transformer. arXiv preprint arXiv:2012.00364, 2020.377
[7] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking atrous convolution for semantic image378

segmentation. arXiv preprint arXiv:1706.05587, 2017.379
[8] X. Chen, S. Xie, and K. He. An empirical study of training self-supervised vision transformers. arXiv380

preprint arXiv:2104.02057, 2021.381
[9] X. Chu, Z. Tian, B. Zhang, X. Wang, X. Wei, H. Xia, and C. Shen. Conditional positional encodings for382

vision transformers. arXiv preprint arXiv:2102.10882, 2021.383
[10] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-xl: Attentive language384

models beyond a fixed-length context. arXiv preprint arXiv:1901.02860, 2019.385
[11] S. d’Ascoli, H. Touvron, M. Leavitt, A. Morcos, G. Biroli, and L. Sagun. Convit: Improving vision386

transformers with soft convolutional inductive biases. arXiv preprint arXiv:2103.10697, 2021.387
[12] H. Demirel and G. Anbarjafari. Image resolution enhancement by using discrete and stationary wavelet388

decomposition. IEEE transactions on image processing, 20(5):1458–1460, 2010.389
[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers390

for language understanding. arXiv preprint arXiv:1810.04805, 2018.391
[14] X. Ding, X. Zhang, J. Han, and G. Ding. Repmlp: Re-parameterizing convolutions into fully-connected392

layers for image recognition. arXiv preprint arXiv:2105.01883, 2021.393
[15] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-394

derer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at395

scale. arXiv preprint arXiv:2010.11929, 2020.396
[16] B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou, and M. Douze. Levit: a vision397

transformer in convnet’s clothing for faster inference. arXiv preprint arXiv:2104.01136, 2021.398
[17] M.-H. Guo, Z.-N. Liu, T.-J. Mu, and S.-M. Hu. Beyond self-attention: External attention using two linear399

layers for visual tasks. arXiv preprint arXiv:2105.02358, 2021.400
[18] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang. Transformer in transformer. arXiv preprint401

arXiv:2103.00112, 2021.402
[19] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual403

recognition. IEEE transactions on pattern analysis and machine intelligence, 37(9):1904–1916, 2015.404
[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the405

IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.406
[21] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In NIPS Deep Learning407

and Representation Learning Workshop, 2015.408
[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.409

Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint410

arXiv:1704.04861, 2017.411
[23] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks.412

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708,413

2017.414
[24] Y. Ke and R. Sukthankar. Pca-sift: A more distinctive representation for local image descriptors. In415

Proceedings of the IEEE conference on computer vision and pattern recognition, volume 2, pages II–II.416

IEEE, 2004.417
[25] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained categorization. In418

4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13), Sydney, Australia,419

2013.420
[26] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.421
[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural422

networks. Advances in neural information processing systems, 25:1097–1105, 2012.423
[28] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep laplacian pyramid networks for fast and accurate424

super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages425

624–632, 2017.426
[29] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A lite bert for self-supervised427

learning of language representations. arXiv preprint arXiv:1909.11942, 2019.428
[30] Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time series. The handbook of429

brain theory and neural networks, 3361(10):1995, 1995.430
[31] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.431

10



[32] Y. Li, K. Zhang, J. Cao, R. Timofte, and L. Van Gool. Localvit: Bringing locality to vision transformers.432

arXiv preprint arXiv:2104.05707, 2021.433
[33] G. Lin, C. Shen, A. Van Den Hengel, and I. Reid. Efficient piecewise training of deep structured models for434

semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,435

pages 3194–3203, 2016.436
[34] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for437

object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages438

2117–2125, 2017.439
[35] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.440

Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.441
[36] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical vision442

transformer using shifted windows. arXiv preprint arXiv:2103.14030, 2021.443
[37] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference on444

Learning Representations, 2018.445
[38] W. Luo, Y. Li, R. Urtasun, and R. S. Zemel. Understanding the effective receptive field in deep convolutional446

neural networks. In Proceedings of the 30th International Conference on Neural Information Processing447

Systems, volume 29, pages 4898–4906, 2016.448
[39] L. Melas-Kyriazi. Do you even need attention? a stack of feed-forward layers does surprisingly well on449

imagenet. arXiv: Computer Vision and Pattern Recognition, 2021.450
[40] H. Nam, J.-W. Ha, and J. Kim. Dual attention networks for multimodal reasoning and matching. In451

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 299–307, 2017.452
[41] P. C. Ng and S. Henikoff. Sift: Predicting amino acid changes that affect protein function. Nucleic acids453

research, 31(13):3812–3814, 2003.454
[42] M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In455

Indian Conference on Computer Vision, Graphics and Image Processing, Dec 2008.456
[43] H. Olkkonen and P. Pesola. Gaussian pyramid wavelet transform for multiresolution analysis of images.457

Graphical Models and Image Processing, 58(4):394–398, 1996.458
[44] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar. Cats and dogs. In IEEE Conference on459

Computer Vision and Pattern Recognition, 2012.460
[45] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,461

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,462

L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In463

Advances in Neural Information Processing Systems, volume 32, pages 8026–8037, 2019.464
[46] Z. Peng, W. Huang, S. Gu, L. Xie, Y. Wang, J. Jiao, and Q. Ye. Conformer: Local features coupling global465

representations for visual recognition. arXiv preprint arXiv:2105.03889, 2021.466
[47] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised467

multitask learners. OpenAI blog, 1(8):9, 2019.468
[48] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár. Designing network design spaces. In469

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 10428–10436,470

2020.471
[49] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to sift or surf. In472

Proceedings of the IEEE international conference on computer vision, pages 2564–2571. Ieee, 2011.473
[50] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between capsules. arXiv preprint474

arXiv:1710.09829, 2017.475
[51] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted residuals and476

linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition,477

pages 4510–4520, 2018.478
[52] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual explanations479

from deep networks via gradient-based localization. In Proceedings of the IEEE international conference480

on computer vision, pages 618–626, 2017.481
[53] P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with relative position representations. arXiv preprint482

arXiv:1803.02155, 2018.483
[54] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.484

arXiv preprint arXiv:1409.1556, 2014.485
[55] A. Srinivas, T.-Y. Lin, N. Parmar, J. Shlens, P. Abbeel, and A. Vaswani. Bottleneck transformers for visual486

recognition. arXiv preprint arXiv:2101.11605, 2021.487
[56] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. Inception-v4, inception-resnet and the impact of residual488

connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,489

2017.490
[57] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.491

Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern492

recognition, pages 1–9, 2015.493
[58] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for494

computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages495

2818–2826, 2016.496
[59] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In Interna-497

tional Conference on Machine Learning, pages 6105–6114. PMLR, 2019.498

11



[60] I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, D. Keysers, J. Uszko-499

reit, M. Lucic, and A. Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. arXiv preprint500

arXiv:2105.01601, 2021.501
[61] H. Touvron, P. Bojanowski, M. Caron, M. Cord, A. El-Nouby, E. Grave, A. Joulin, G. Synnaeve, J. Verbeek,502

and H. Jégou. Resmlp: Feedforward networks for image classification with data-efficient training. arXiv503

preprint arXiv:2105.03404, 2021.504
[62] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient image505

transformers & distillation through attention. arXiv preprint arXiv:2012.12877, 2020.506
[63] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou. Going deeper with image transformers.507

arXiv preprint arXiv:2103.17239, 2021.508
[64] H. Touvron, A. Sablayrolles, M. Douze, M. Cord, and H. Jégou. Grafit: Learning fine-grained image509

representations with coarse labels. arXiv preprint arXiv:2011.12982, 2020.510
[65] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.511

Attention is all you need. In Proceedings of the 31st International Conference on Neural Information512

Processing Systems, volume 30, pages 5998–6008, 2017.513
[66] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao. Pyramid vision trans-514

former: A versatile backbone for dense prediction without convolutions. arXiv preprint arXiv:2102.12122,515

2021.516
[67] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. In Proceedings of the IEEE517

conference on computer vision and pattern recognition, pages 7794–7803, 2018.518
[68] R. Wightman. Pytorch image models. https://github.com/rwightman/pytorch-image-models,519

2019.520
[69] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang. Cvt: Introducing convolutions to521

vision transformers. arXiv preprint arXiv:2103.15808, 2021.522
[70] J. Xie, R. Zeng, Q. Wang, Z. Zhou, and P. Li. So-vit: Mind visual tokens for vision transformer. arXiv523

preprint arXiv:2104.10935, 2021.524
[71] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural525

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages526

1492–1500, 2017.527
[72] H. Yan, Z. Li, W. Li, C. Wang, M. Wu, and C. Zhang. Contnet: Why not use convolution and transformer528

at the same time? arXiv preprint arXiv:2104.13497, 2021.529
[73] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR 2016 : International530

Conference on Learning Representations 2016, 2016.531
[74] F. Yu, V. Koltun, and T. Funkhouser. Dilated residual networks. In Proceedings of the IEEE conference on532

computer vision and pattern recognition, pages 472–480, 2017.533
[75] K. Yuan, S. Guo, Z. Liu, A. Zhou, F. Yu, and W. Wu. Incorporating convolution designs into visual534

transformers. arXiv preprint arXiv:2103.11816, 2021.535
[76] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z. Jiang, F. E. Tay, J. Feng, and S. Yan. Tokens-to-token vit:536

Training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986, 2021.537
[77] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European conference538

on computer vision, pages 818–833. Springer, 2014.539
[78] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient convolutional neural network540

for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition,541

pages 6848–6856, 2018.542
[79] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In Proceedings of the IEEE543

conference on computer vision and pattern recognition, pages 2881–2890, 2017.544
[80] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xiang, P. H. S. Torr, and L. Zhang.545

Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. arXiv546

preprint arXiv:2012.15840, 2020.547
[81] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai. Deformable detr: Deformable transformers for end-to-end548

object detection. In International Conference on Learning Representations, 2021.549

12

https://github.com/rwightman/pytorch-image-models


Checklist550

1. For all authors...551

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s552

contributions and scope? [Yes]553

(b) Did you describe the limitations of your work? [Yes] Please see Section 5554

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please see555

Section 6556

(d) Have you read the ethics review guidelines and ensured that your paper conforms to557

them? [Yes]558

2. If you are including theoretical results...559

(a) Did you state the full set of assumptions of all theoretical results? [N/A]560

(b) Did you include complete proofs of all theoretical results? [N/A]561

3. If you ran experiments...562

(a) Did you include the code, data, and instructions needed to reproduce the main experi-563

mental results (either in the supplemental material or as a URL)? [Yes] The code will564

be released publicly.565

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they566

were chosen)? [Yes] Please see Section 4 and Table 1567

(c) Did you report error bars (e.g., with respect to the random seed after running experi-568

ments multiple times)? [N/A]569

(d) Did you include the total amount of compute and the type of resources used (e.g., type570

of GPUs, internal cluster, or cloud provider)? [Yes] Please see Section 4571

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...572

(a) If your work uses existing assets, did you cite the creators? [Yes]573

(b) Did you mention the license of the assets? [No] We use ImageNet, Cifar, Pets, Cars,574

Flowers, iNaturalist dataset which are publicly available for academic research purpose.575

(c) Did you include any new assets either in the supplemental material or as a URL?[N/A]576

(d) Did you discuss whether and how consent was obtained from people whose data you’re577

using/curating? [N/A]578

(e) Did you discuss whether the data you are using/curating contains personally identifiable579

information or offensive content? [N/A]580

5. If you used crowdsourcing or conducted research with human subjects...581

(a) Did you include the full text of instructions given to participants and screenshots, if582

applicable? [N/A]583

(b) Did you describe any potential participant risks, with links to Institutional Review584

Board (IRB) approvals, if applicable? [N/A]585

(c) Did you include the estimated hourly wage paid to participants and the total amount586

spent on participant compensation? [N/A]587

13


	Introduction
	Related Work
	CNNs with intrinsic IB
	Vision transformers with learned IB

	Methodology
	Revisit vision transformer
	Overview architecture of ViTAE
	Reduction cell
	Normal cell
	Model details

	Experiments
	Implementation details
	Comparison with the state-of-the-art
	Ablation study
	Data efficiency and training efficiency
	Generalization on downstream tasks
	Visual inspection of ViTAE

	Limitation and discussion
	Conclusion

