Under review as a conference paper at ICLR 2021

EMERGENT ROAD RULES IN MULTI-AGENT DRIVING

ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

In order for autonomous vehicles to share the road safely with human drivers,
autonomous vehicles must abide by certain "road rules" that human drivers have
agreed all road users must follow. "Road rules" include rules that drivers are
required to follow by law — such as the requirement that vehicles stop at red lights —
as well as more subtle social rules — such as the implicit designation of fast lanes
on the highway. In this paper, we provide empirical evidence that suggests that —
instead of hard-coding these road rules into self-driving algorithms — a scalable
alternative may be to design multi-agent environments such that agents within the
environments discover for themselves that these road rules are mutually beneficial
to follow. We analyze what components of our chosen multi-agent environment
cause the emergence of such behavior and find that two crucial factors are noisy
perception and the spatial density of agents. We provide qualitative and quantitative
evidence of the emergence of seven social driving behaviors, ranging from stopping
at a traffic signal to following lanes. Our results add empirical support for the
social road rules that countries around the world have agreed on for safe driving.

1 INTRODUCTION

Public roads are significantly more safe and efficient when
equipped with conventions that restrict how one may use
the roads. These conventions are, to some extent, arbitrary.
For instance, a “drive on the left side of the road” con-
vention is, practically speaking, no better or worse than a
“drive on the right side of the road” convention. However,
the decision to reserve some orientation as the canonical
orientation for driving is far from arbitrary in that estab-
lishing such a convention improves both safety (doing
so decreases the probability of head-on collisions) and
efficiency (cars can drive faster without worrying about
dodging oncoming traffic).

In this paper, we investigate the extent to which these road
rules — like the choice of a canonical heading orientation —
can be learned in simple multi-agent driving environments.
As visualized in Figure 1, our agents are initialized in
random positions in different maps (either simulated or
scraped from real intersections from the nuScenes dataset

Figure 1. Multi-agent Driving Environ-
ment We train agents to travel from a—b as
quickly as possible with limited perception
while avoiding collisions and find that “road
rules” such as lane following and traffic light
usage emerge.

(Caesar et al., 2019)) and tasked with reaching a given target destination as quickly a possible without
colliding with other cars or the road. Intuitively, when agents have full access to the map and exact
states of other agents, the agents drive in ways that are qualitatively aggressive and un-humanlike.
However, when perception is imperfect and noisy, we show in Section 5 that the agents begin to rely
on constructs such as lanes, traffic lights, and safety distance in order to drive safely at high speeds.

Importantly, while prior work has primarily focused on building driving simulators with realistic
sensors that mimic LiDARs and cameras (Dosovitskiy et al., 2017; Manivasagam et al., 2020; Yang
et al., 2020; Bewley et al., 2018), we focus on the high-level design choices for the simulator — such
as the definition of reward and perception noise — that determine if agents trained in the simulator
exhibit realistic behaviors. Our hope is that the lessons in state space, action space, and reward

Under review as a conference paper at ICLR 2021

design gleaned from this paper will transfer to simulators in which the prototypes for perception and
interaction used in this paper are replaced with more sophisticated sensor simulation.

Our main contributions are as follows:

e We define a multi-agent driving environment in which agents equipped with noisy LiDAR
sensors are rewarded for reaching a given destination as quickly as possible without colliding
with other agents and show that agents trained in this environment learn road rules that
mimic road rules common in human driving systems.

e We analyze what choices in the definition of the MDP lead to the emergence of these road
rules and find that the most important factors are perception noise and the spatial density of
agents in the driving environment.

e We release a suite of 2D driving environments with the intention of stimulating interest
within the MARL community to solve fundamental self-driving problems.

2 RELATED WORKS

Reinforcement Learning Deep Reinforcement Learning (DeepRL) has become an immensely
popular tool in control problems and has been successfully used in various complex problems like
Atari (Mnih et al., 2013), Strategy Games (Peng et al., 2017; OpenAl, 2018), and Traffic Control (Wu
etal., 2017a; Belletti et al., 2018). Vanilla Policy Gradient (Sutton et al., 2000) is a DeepRL algorithm
that optimizes an agent’s policy by using monte-carlo estimates of the expected return. Proximal
Policy Optimization (Schulman et al., 2017) — which we use in this work — is an on-policy policy
gradient algorithm that alternately samples from the environment and optimizes the policy using
stochastic gradient descent. PPO stabilizes the Actor’s training by limiting the step size of the policy
update using a clipped surrogate objective function.

Multi-Agent Reinforcement Learning The central difficulties of Multi-Agent RL (MARL) include
environment non-stationarity (Hernandez-Leal et al., 2019; 2017; Busoniu et al., 2008; Shoham et al.,
2007), credit assignment (Agogino and Tumer, 2004; Wolpert and Tumer, 2002), and the curse of
dimensionality (Busoniu et al., 2008; Shoham et al., 2007). Recent works (Son et al., 2019; Rashid
et al., 2018) have attempted to solve these issues in a centralized training decentralized execution
framework by factorizing the joint action-value Q function into individual Q functions for each agent.
Alternatively, MADDPG (Lowe et al., 2017) and PPO with Centralized Critic (Baker et al., 2019)
have also shown promising results in dealing with MARL Problems using policy gradients. In this
paper, we use policy gradients for all experiments.

Emergent Behavior Emergence of behavior that appears human-like in MARL has been studied
extensively (Leibo et al., 2019) for problems like effective tool usage (Baker et al., 2019), ball passing
and interception in 3D soccer environments (Liu et al., 2019), capture the flag (Jaderberg et al., 2019),
hide and seek (Chen et al., 2019; Baker et al., 2019), communication (Foerster et al., 2016; Sukhbaatar
et al., 2016), and role assignment (Wang et al., 2020). For autonomous driving and traffic control,
emergent behavior has primarily been studied in the context of imitation learning (Bojarski et al.,
2016; Zeng et al., 2019; Bansal et al., 2018; Philion and Fidler, 2020). In contrast to work that studies
emergent behavior in mixed-traffic autonomy (Wu et al., 2017b) and traffic signal control (Stevens and
Yeh, 2016), we consider a fully autonomous driving problem in a decentralized execution framework
and show the emergence of standard traffic rules that are present in transportation infrastructure.

3 PROBLEM SETTING

We frame the task of driving as a discrete time Multi-Agent Dec-POMDP (Oliehoek et al., 2016).
This problem can be formally defined as a tuple G = (S, A, P, r, po, O, n,~,T). S denotes the state
space of the environment, A denotes the joint action space of the n agents s.t. |J;_; a; € A, P is the
state transition probability P : S x A x § — R, r is a bounded reward function r : S X a — R,
po is the initial state distribution, O is the joint observation space of the n agents s.t. U:’:l 0; € O,
v € (0, 1] is the discount factor, and T is the time horizon.

We parameterize the policy 7y : 0 X a — R of the agents using a neural network with parameters 6.
In all our experiments, the agents share a common policy network. Let the expected return for the

it" agent be n;(mp) = E, {Zi?)l ~ir(se, (ai)t)] , where 7 = (sg, (a;)o, - - -, 871, (a;) g_1) is the

Under review as a conference paper at ICLR 2021

trajectory of the agent, so ~ po, (ai)¢ ~ mo((a;)¢](0:)¢), and sgr1 ~ P(set1]se, Ui (ai)e). Our
objective is to find the optimal policy which maximizes the utilitarian objective > 7).

Reward We use high-level generic rewards and avoid any extensive reward engineering. The agents
receive a reward of +1 if they successfully reach their given destination. They are rewarded by -1
if they collide with any other agent or go off the road. We additionally regularize the actions of
the agents to encourage smooth actions. In the event of a collision, the simulation for that agent
stops there. In an inter-agent collision, we penalize both the agents equally with a -1 reward without
attempting to determine which agent was responsible for the collision. Finally, we add a normalized
penalty proportional to the longitudinal distance of the agent from the destination. We ensure that the
un-discounted sum of each component of the reward for an agent over the entire trajectory is bounded
in [0,1] or [-1, 0].

Map and Goal Representation We use multiple environments: four-way intersection, highway
tracks, and real-world road patches from nuScenes (Caesar et al., 2019), to train the agents. The initial
state distribution pg is defined by the drivable area in the base environment. The agents “sense” a
traffic signal if they are near a traffic signal and facing the traffic signal. In all but our communication
experiments, agents have the ability to communicate exclusively through the motion that other agents
observe them execute. In our communication experiments, we open a discrete communication channel
designed to mimic turn signals and discuss the direct impact on agent behavior. Additionally, to
mimic a satnav dashboard, the agents observe the distance from their goal, the angular deviation of
the goal from the current heading, and the current speed.

LiDAR observations We simulate a LiDAR sensor for each agent by calculating the distance to the
closest object — dynamic or static — along each of n equi-angular rays. We restrict the range of the
LiDAR scan to be 50m. Human eyes themselves are imperfect sensors and are easily thwarted by
weather, glare, or visual distractions; in our experiments, we study the importance of this “visual”
sensor by introducing noise in the sensor. To give agents the capacity to infer the velocity and
acceleration of nearby vehicles, we concatenate the LiDAR observations from multiple past timesteps.

4 PoLICY OPTIMIZATION

4.1 PoLICY PARAMETERIZATION

In our experiments we consider the following two parameterizations for our policy network(s):

1. Fixed Track Model: We optimize policies that output a Multinomial Distribution over a
fixed set of discretized acceleration values. This distribution is defined by 7, (ajo), where
¢ s our policy network, a is the acceleration, and o is the observation. This acceleration is
used to drive the vehicle along a fixed trajectory from the source to target destination. This
model trains efficiently but precludes the emergence of lanes.

2. Spline Model: To train agents that are capable of discovering lanes, we use a two-stage
formulation inspired by Zeng et al. (2019) in which trajetories shapes are represented by
clothoids and time-dependence is represented by a velocity profile. Our overall policy is
factored into two “subpolicies” — a spline subpolicy and an acceleration subpolicy. The
spline subpolicy is tasked with predicting the spline along which the vehicle is supposed to
be driven. This subpolicy conditions on an initial local observation of the environment and
predicts the spline. More details can be found in Section 5. We use a Centripetal Catmull
Rom Spline (Catmull and Rom, 1974) to parameterize this spatial path. The acceleration
subpolicy follows the same parameterization from Fixed Track Model, and controls the
agent’s motion along this spline. We formalize the training algorithm for this bilevel problem
in Section 4.4.

Note that the fixed track model is a special case of the spline model parameterization, where the
spline is hard-coded into the environment. These splines can be extracted from lane graphs such as
those found in the HD maps provided by the nuScenes dataset.

4.2 PROXIMAL POLICY OPTIMIZATION USING CENTRALIZED CRITIC

We consider a Centralized Training with Decentralized Execution approach in our experiments.
During training, the critic has access to all the agents’ observations while the actors only see the local
observations. We use Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Generalized

Under review as a conference paper at ICLR 2021

Advantage Estimation (GAE) (Schulman et al., 2015) to train our agents. Let v f4 denote the value
function network. To train our agent, we optimize the following objective:

Li(¢) = E; [min(7(sy, ar) Ay, clip(7(ss, ar), 1 — €, 1+ €)Ay)

—qﬁvﬂ/)(so —0f{*") = ey H[my(0y)]]
Ty, lat]os

T [at ‘Ot] ’

where 7(s¢, a;) = A; = Estimated Advantage at step ¢

Training is performed using a custom adaptation of SpinningUp (Achiam, 2018) for MARL and
Horovod (Sergeev and Balso, 2018). The agents share a common policy network in all the reported
experiments. In our experiments, the number of agents present in the environment can vary over time,
as vehicles reach their destinations and new agents spawn. To account for the dynamic number of
agents and a permutation invariance to their ordering, the centralized critic takes as input the mean of
the latent vector obtained from all the observations.

4.3 SINGLE-STEP PROXIMAL POLICY OPTIMIZATION

In a single-step MDP, the expected return modelled by the critic is equal to the reward from the
environment as there are no future timesteps. Hence, optimizing the critic is unnecessary in this
context. Let R, denote the normalized reward. The objective function defined in Sec 4.2 reduces to:

Ly(0) = [, [min(F(st, ag) Ry, clip(7(sg,a), 1 — €, 1+ €)Ry — CQH[TFQ(Ot)]]

4.4 BILEVEL OPTIMIZATION FOR JOINT TRAINING OF SPLINE/ACCELERATION SUBPOLICIES

In this section, we present the algorithm we use to jointly train two RL subpolicies where one
subpolicy operates in a single step and the other operates over a time horizon 7' > 1. The subpolicies
operate oblivious of each other, and cannot interact directly. The reward for the spline subpolicy is
the undiscounted sum of the rewards received by the acceleration subpolicy over the time horizon.
Pseudocode is provided in Algorithm 1.

Algorithm 1: Alternating Optimization for Spline and Acceleration Control

Result: Trained Actors 7y and 74

Ty < Actor for predicting the Spline Path;

74,V fe < Actor Critic for Acceleration Control;

fori=1... Ndo

/% Given mg optimize mp *x/
fork=1... K; do

Collect set of Partial Trajectories Dy, using as ~ 7o (as|oy) and a, < arg max 7y (aq|o});
Compute the normalized rewards R;;

Optimize the parameters 6 using the objective L2 (0)

end

/% Given mg optimize mg and vfs */
fork=1... K> do

Collect set of Partial Trajectories Dy, using as <— arg max mg(as|oy,) and aq ~ 7g(aq|oy);

Compute the advantage estimates A, using GAE;
Optimize the parameters ¢ using the objective L1 (¢)

end
end

5 EMERGENT SOCIAL DRIVING BEHAVIOR

We describe the various social driving behaviors that emerge from our experiments and analyze them
quantitatively. Qualitative rollouts are provided in our supplementary material.

5.1 STOPPING AT A TRAFFIC SIGNAL

In 4 way intersections, traffic signals play an important part by imposing an ordering on the direction
of traffic flow. In this experiment, we simulate a simple four-way intersection, where agents need to
drive from one road pocket to the other in minimum time. We give them the ground truth trajectory
shape and the agents need to only optimize their accelerations.

Under review as a conference paper at ICLR 2021

AT
guaEnime

Figure 2. Traffic light usage Actions taken by the agents with varying amount of perception noise.

In Figure 2, we visualize if the variation of the action taken by the agent at varying distance from the
intersection and with different signals. We can see that when the agents from far from the intersection,
the effect of signal is less prominent that when they are closer to the intersection. Additionally we
see a consensus across the agents where they decide to have lower acceleration when they see a red
light and higher value on green light.

Figure 3. Traffic light usage Actions taken by the agents with varying amount of perception noise.

In Figure 3, we show that the agents do respond to red light and stop. The colors represent the three
traffic lights (red, green and yellow) and gray represents a state where the agent can not see the signal.
When the signal is green agents are able to reach the intersection much faster compared to when
the signal is red. This behavior is consistent across increasing perception noise. We observe similar
behavior with increasing number of agents, the only difference being that the waiting time increases
due to increase in the number of agents.

Note that the agents merely observe a ternary value representing the state of the traffic light, not color.
To make the plots in this section, for each converged policy, we visually inspect rollouts to find a
permutation of the ternary states that aligns with human red/yellow/green traffic light conventions.

5.2 EMERGENCE OF LANES

In this task, we analyze how perception noise and the number of training agents affects the emergence
of lanes in an intersection. We relax the constraint on the agent paths in the environment setup of
Section 5.1 and attempt to learn lane following and traffic signals jointly.

We define the spline subpolicy’s observation space as the nodes of a path along the central axis of
the roads connecting the start position to the destination. This observation is analogous to the GPS
navigation maps used by human drivers. Given this path, the agent needs to predict a deviation
from these nodes. We construct a Catmull-Rom Spline from these deviated points, and then the
acceleration subpolicy controls the agent’s position along this spline.

To empirically analyze the emergence of lanes, we plot the "Normalized Lane Position" of the agents
over time. The magnitude of the "Normalized Lane Position" refers to the agent’s deviation from the
axis of the road, and the sign denotes if it is on the right side or left side in its local frame. Figure 4
shows the rollouts for agents trained on a 4-agent environment with varying LiDAR noise. We
observe that increasing the LiDAR noise promotes distributions with lower variance. On increasing

Under review as a conference paper at ICLR 2021

the number of agents from 4 (Figure 5), we observe the agents follow lanes more consistently and
travel in multiple lanes, which further speeds up the traffic flow.

Time Step = 4 Time Step = 6 Time Step = 8 Time Step = 10
0200
owrs
0150

_oazs

100 -0.75 -0.50 -0.25 0.0« 050 075 100 -100 -075 -050 -025 000 025 050 075 100 100 -075 -050 -0.25 000 025 050 075 100 -100 -0.75-050 -0.25 000 025 050 075 100
Normalized Lane Position Normalized Lane Position Normalized Lane Position

Figure 4. Lanes emerge with more perception noise Norm. Lane Pos. of Agents till they reach intersection.

Time Step = 3 Time Step = 9 Time Step = 15 Time Step = 21

Number of Training Agents
=4

=
=

75 -050 -025 000 025 050
Normalized Lane Position

Figure 5. Lanes emerge with more agents Normalized Lane Position of Agents over time with varying
number of agents during training

5.3 RIGHT OF WAY

For tasks that can be performed simultaneously and take approximately equal time for completion,
First In First Out (FIFO) scheduling strategy minimizes the average waiting time. In the context of
driving through an intersection where each new agent symbolizes a new task, the agent that arrives
first at the intersection should also be able to leave the intersection first. In other words, given any
two vehicles, the vehicle arriving at the intersection first has the "right of way" over the other vehicle.

Let the time at which agent ¢ € [n] arrives at the intersection be (t,); and leaves the intersection be
(ta);- If 35 € [n] \ {¢}, such that (t,); < (to); and (t4); > (ta);, we say that agent ¢ doesn’t respect
7’s right of way. We evaluate this metric on a model trained on a nuScenes intersection (Figure 7).
We observe that, at convergence, the agents follow this right of way 91.8% of time (Figure 6).

100

I
1L

)
\\
mmm Crashes
mmm Not Following Right of Way
mmm Following Right of Way

Percentage (%)

0
10 15 20 25
Total Number of Episodes 1e7

Figure 6. Right of way Agents that Figure 7. nuScenes In- o
successfully reach their destination re- tersection used for Right of Figure 8. Communication in-
spect the right of way of other agents Way Evaluation (see Sec 5.3). creases with more perception
right from beginning. With time more ~Agents’ starting positions are noise Speaker Consistency & Pear-
agents are able to reach their destina- uniformly sampled from the son coefficient between the agent’s
tion while following this rule. trajectories shown. heading and its sent message.

B © ® @
Noise (%)

5.4 COMMUNICATION

One way to safely traverse an intersection is to signal one’s intention to nearby vehicles. In this
task, we analyze the impact of perception noise on emergent communication at an intersection. In
particular, we measure the Speaker Consistency (SC), proposed in Jaques et al. (2019). SC can be
considered as the mutual information between an agent’s message and its future action. We report the
mutual information and the Pearson coefficient (Freedman et al., 2007) between the agent’s heading
and its sent message. For simplicity, we limit the communication channel to one bit and each car
only receives signal from the car in the front within —30°and 30°. Fig 8 shows that agents rely more
heavily on communication at intersections when perception becomes less reliable.

6

Under review as a conference paper at ICLR 2021

5.5 FAST LANES ON A HIGHWAY

There are often special dedicated lanes for faster cars to allow a smooth flow of traffic on high-
ways/expressways. In this task, we want to see empirically if autonomous vehicles exhibit similar
behavior of forming "fast" lanes while moving on a highway. We consider a highway with a uni-
directional flow of traffic. Agents are spawned at random positions along the road’s axis and are
given a destination that they can reach by moving straight ahead.

Every agent is associated with a scalar value called "Acceleration Rating," which scales the agent’s
acceleration and velocity limits. Thus, a higher acceleration rating implies a faster car. Even though
the agents can decide to move straight by design, it is not an optimal choice as slower cars in front
will hinder smooth traffic flow.

Time Step = 0 Time Step = 3 Time Step = 6 Time Step = 9

10

Time Step = 12 Time Step = 15 Time Step = 18 Time Step = 21

6 05 06 0 05 05 06
Acesertion Roting Aceseration Rating Acsteration Roing Aceteration Roting

Figure 9. Fast Lane Emergence Visualization of rollouts from a 10-agent highway environment. In
y-axis, we show the agent’s position relative to the axis of the road normalized by road width. x-axis
shows the acceleration rating, which scales the maximum acceleration and velocity of the agent.

In Figure 9, we visualize the rollouts generated from a 10-agent highway environment. We see that
there is a clear segregation of lanes among the agents according to their acceleration ratings. In this
particular case, the faster agents end up on the right-hand side lane, and as we go from right to left,
the maximum acceleration/velocity of the agents goes down. This pattern ensures that slower vehicles
do not obstruct faster vehicles once the traffic flow has reached a steady state.

5.6 MINIMUM DISTANCE BETWEEN VEHICLE

In this task, we evaluate the presence of a minimum dis-
tance between agents while driving. In our simulator, we el S B
assume ideal conditions and agents can change their velocity s L ABBILIC
according to v2 = u? + 2ad, where v and v are the final and
initial velocities respectively, a is acceleration, and d is the
distance for which the acceleration remains constant. Hence,
for an agent to stop entirely from a state with velocity vy, it

2= Speed-Matching Distance (m)

needs at least a distance of 5 in front of it, where a4
is the maximum possible deceleratlon of the agent.

00 25 T o 125 130 1Ty 20
Aclu]l Dlsun(.e to Leading Car

Figure 10. Safety Distance Maintained
in Nuscenes Environment

Our agents perceive the environment through LiDAR; thus,
agents can estimate the velocity and acceleration of nearby
agents. We define the safe distance as the distance needed
for a trailing agent to have a zero velocity in the leading
agent’s frame. We assume that the leading agent travels with a constant velocity, and as such, the safe

distance is defined by 52 50—, where As is the relative velocity. Any car having a distance greater
than this can safely slow down In Fig 10, we show the scatter plot for the safe distance the agents
should maintain on the y-axis vs. the distance they maintain on x-axis. We observe that in most of
the cases, agents do observe this safety distance.

5.7 SLOWING DOWN NEAR A CROSSWALK

In this task, we evaluate if agents can detect pedestrians and slow down in their presence. We augment
the environment setup of Sec. 5.5, to include a crosswalk where at most 10 pedestrians are spawned
at the start of every rollout. The pedestrians cross the road with a constant velocity. If any agent
collides with a pedestrian they get a collision reward of -1 and the simulation for that agent stops.

Under review as a conference paper at ICLR 2021

Safe Driving
RL Agent

57— Speed Matching Distance (m)

Dista;‘ce from Ne;vest Pedestri‘:;n (m) N ' Actual Dl.i‘stance to Ne:vest Pedestvi:n (m)
Figure 11. Distribution of the Distance of an agent from the nearest Pedestrian. The shaded region in the KDE
plots indicate the 95% confidence interval and the dotted line is the sample mean

The KDE plots in Figure 11 show that the agents indeed detect the pedestrians and most of them
maintain a distance greater than 6m. To determine if the agents can safely stop and prevent collision

with the pedestrians, we calculate a safe stopping distance of 5-*—, where s is the velocity of the

agent. In the scatter plot, we observe that most agents adhere to this minimum distance and drive at a
distance which lies in the safe driving region.

6 DISCUSSION

Safety Distance in Human Driving Safety Distance in RL Agent Driving

Human Driving o RL Agent Driving =
Safe Driving Safe Driving

- e s i e e

.= Speed-Matching Distance (m)

A
\

Actu;; Distance to VLeadmg Car (m) J . Actua‘l Distance (o‘ Leading Car (m)
Figure 12. Safety Distance for Humans vs. Safety Distance for RL Agents The agents trained in our MDP

(right) tend to violate the safety distance more than human drivers (left), but in both cases a safety distance is
observed the vast majority of the time (green triangle region)

6.1 STATISTICS OF HUMAN DRIVING

In some cases, the same statistics accumulated over agent trajectories that we use in Section 5 to
quantitatively demonstrate emergence can also be accumulated over the human driving trajectories
labeled in the nuScenes dataset. In Figure 12, we visualize safety distance statistics across nuScenes
trajectories and safety distance statistics across RL agents trained on nuScenes intersections side-
by-side. The nuScenes trainval split contains 64386 car instance labels, each with an associated
trajectory. For each location along the trajectory, we calculate the safety distance as described in
Section 5.6. The same computation is performed over RL agent trajectories. The agents trained in our
MDP tend to violate the safety distance more than human drivers, but in both cases a safety distance
is observed the vast majority of the time (green triangle region).

6.2 FUTURE WORK

By parameterizing policies such that agents must follow the curve generated by the spline subpolicy
at initialization (see Section 4.4), we prevent lane change behavior from emerging. The use of a more
expressive action space should address this limitation at the cost of training time. Additionally, the
fact that our reward is primarily based on agents reaching destinations means that convergence is
slow on maps that are orders of magnitude larger than the dimensions of the vehicles. One possible
solution to training agents to navigate in large maps would be to generate a curriculum of target
destinations, as in Mirowski et al. (2018).

7 CONCLUSION

In this paper, we identify a lightweight multi-agent MDP that empirically captures the essential
features of the driving problem. We equip our agents with a sparse LiDAR sensor and reward agents
when they reach their assigned target destination as quickly as possible without colliding with other
agents in the scene. We observe that agents in this setting rely on a shared notion of lanes and
traffic lights in order to compensate for their noisy perception. We believe that dense multi-agent
interaction and perception noise are critical ingredients in the design of any simulator that seeks to
instill human-like road rules in self-driving agents.

Under review as a conference paper at ICLR 2021

REFERENCES
Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

Adrian K Agogino and Kagan Tumer. Unifying temporal and structural credit assignment problems.
2004.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,
2019.

Mayank Bansal, Alex Krizhevsky, and Abhijit S. Ogale. Chauffeurnet: Learning to drive by imitating
the best and synthesizing the worst. CoRR, abs/1812.03079, 2018. URL http://arxiv.org/
abs/1812.03079.

F. Belletti, Daniel Haziza, Gabriel Gomes, and A. Bayen. Expert level control of ramp metering
based on multi-task deep reinforcement learning. IEEE Transactions on Intelligent Transportation
Systems, 19:1198-1207, 2018.

Alex Bewley, Jessica Rigley, Yuxuan Liu, Jeffrey Hawke, Richard Shen, Vinh-Dieu Lam, and Alex
Kendall. Learning to drive from simulation without real world labels. CoRR, abs/1812.03823,
2018. URL http://arxiv.org/abs/1812.03823.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao,
and Karol Zieba. End to end learning for self-driving cars. CoRR, abs/1604.07316, 2016. URL
http://arxiv.org/abs/1604.07316.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156-172, 2008.

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuScenes: A multimodal dataset for
autonomous driving. arXiv preprint arXiv:1903.11027, 2019.

Edwin Catmull and Raphael Rom. A class of local interpolating splines. In Computer aided geometric
design, pages 317-326. Elsevier, 1974.

Boyuan Chen, Shuran Song, Hod Lipson, and Carl Vondrick. Visual hide and seek, 2019.

Alexey Dosovitskiy, Germén Ros, Felipe Codevilla, Antonio M. Lépez, and Vladlen Koltun. CARLA:
an open urban driving simulator. CoRR, abs/1711.03938, 2017. URL http://arxiv.org/
abs/1711.03938.

Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in neural information
processing systems, pages 2137-2145, 2016.

David Freedman, Robert Pisani, and Roger Purves. Statistics (international student edition). Pisani,
R. Purves, 4th edn. WW Norton & Company, New York, 2007.

Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de Cote. A survey of learn-
ing in multiagent environments: Dealing with non-stationarity. arXiv preprint arXiv:1707.09183,
2017.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. A survey and critique of multiagent
deep reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33:750 — 797, 2019.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Science,
364(6443):859-865, 2019.

Under review as a conference paper at ICLR 2021

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
reinforcement learning. In International Conference on Machine Learning, pages 3040-3049.
PMLR, 2019.

Joel Z. Leibo, Edward Hughes, Marc Lanctot, and Thore Graepel. Autocurricula and the emergence
of innovation from social interaction: A manifesto for multi-agent intelligence research. CoRR,
abs/1903.00742, 2019. URL http://arxiv.org/abs/1903.00742.

Siqi Liu, Guy Lever, Josh Merel, Saran Tunyasuvunakool, Nicolas Heess, and Thore Graepel.
Emergent coordination through competition. arXiv preprint arXiv:1902.07151, 2019.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in neural information
processing systems, pages 6379-6390, 2017.

Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong, Wenyuan Zeng, Mikita Sazanovich, Shuhan
Tan, Bin Yang, Wei-Chiu Ma, and Raquel Urtasun. Lidarsim: Realistic lidar simulation by
leveraging the real world, 2020.

Piotr Mirowski, Matthew Koichi Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith An-
derson, Denis Teplyashin, Karen Simonyan, Koray Kavukcuoglu, Andrew Zisserman, and Raia
Hadsell. Learning to navigate in cities without a map. CoRR, abs/1804.00168, 2018. URL
http://arxiv.org/abs/1804.00168.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

OpenAl. Openai five. https://blog.openai.com/openai-five/, 2018.

P. Peng, Quan Yuan, Ying Wen, Y. Yang, Zhenkun Tang, Haitao Long, and Jun Wang. Multiagent
bidirectionally-coordinated nets for learning to play starcraft combat games. ArXiv, abs/1703.10069,
2017.

Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs by
implicitly unprojecting to 3d. In Proceedings of the European Conference on Computer Vision,
2020.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. arXiv preprint arXiv:1803.11485, 2018.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in
TensorFlow. arXiv preprint arXiv:1802.05799, 2018.

Yoav Shoham, Rob Powers, and Trond Grenager. If multi-agent learning is the answer, what is the
question? Artificial intelligence, 171(7):365-377, 2007.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning

to factorize with transformation for cooperative multi-agent reinforcement learning. arXiv preprint
arXiv:1905.05408, 2019.

10

Under review as a conference paper at ICLR 2021

Matt Stevens and Christopher Yeh. Reinforcement learning for traffic optimization. Stanford. edu,
2016.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropagation.
In Advances in neural information processing systems, pages 2244-2252, 2016.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, pages 1057-1063, 2000.

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Roma: Multi-agent reinforcement
learning with emergent roles, 2020.

David H Wolpert and Kagan Tumer. Optimal payoff functions for members of collectives. In
Modeling complexity in economic and social systems, pages 355-369. World Scientific, 2002.

Cathy Wu, Aboudy Kreidieh, Eugene Vinitsky, and Alexandre M. Bayen. Emergent behaviors in
mixed-autonomy traffic. volume 78 of Proceedings of Machine Learning Research, pages 398—407.
PMLR, 13-15 Nov 2017a. URL http://proceedings.mlr.press/v78/wul7a.html.

Cathy Wu, Aboudy Kreidieh, Eugene Vinitsky, and Alexandre M Bayen. Emergent behaviors in
mixed-autonomy traffic. In Conference on Robot Learning, pages 398-407, 2017b.

Zhenpei Yang, Yuning Chai, Dragomir Anguelov, Yin Zhou, Pei Sun, Dumitru Erhan, Sean Rafferty,
and Henrik Kretzschmar. Surfelgan: Synthesizing realistic sensor data for autonomous driving,
2020.

W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun. End-to-end interpretable neural
motion planner. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8652-8661, 2019.

11

