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Abstract

Large transformer-based models are able to perform in-context few-shot learning,1

without being explicitly trained for it. This observation raises the question: what2

aspects of the training regime lead to this emergent behavior? Here, we show that3

this behavior is driven by the distributions of the training data itself. In-context4

learning emerges when the training data exhibits particular distributional properties5

such as burstiness (items appear in clusters rather than being uniformly distributed6

over time) and having large numbers of rarely occurring classes. In-context learning7

also emerges more strongly when item meanings or interpretations are dynamic8

rather than fixed. These properties are exemplified by natural language, but are9

also inherent to naturalistic data in a wide range of other domains. They also10

depart significantly from the uniform, i.i.d. training distributions typically used for11

standard supervised learning. In our initial experiments, we found that in-context12

learning traded off against more conventional weight-based learning, and models13

were unable to achieve both simultaneously. However, our later experiments14

uncovered that the two modes of learning could co-exist in a single model when15

it was trained on data following a skewed Zipfian distribution – another common16

property of naturalistic data, including language. In further experiments, we found17

that naturalistic data distributions were only able to elicit in-context learning in18

transformers, and not in recurrent models. In sum, our findings indicate how the19

transformer architecture works together with particular properties of the training20

data to drive the intriguing emergent in-context learning behaviour of large language21

models, and how future work might encourage both in-context and in-weights22

learning in domains beyond language.23

1 Introduction24

Large transformer-based language models show an intriguing ability to perform few-shot learning25

(Brown et al., 2020). Such models are able to generalize from a few examples of a new concept on26

which they have not been previously trained. Earlier work in the context of ‘meta-learning’ showed27

how neural networks can perform few-shot learning from a few examples without the need for any28

weight updates (Santoro et al., 2016; Vinyals et al., 2016; Wang et al., 2016) – this is also referred to29

as ‘in-context learning’, as the output is conditioned on a context. To achieve this, the researchers30

explicitly designed the training regime to incentivize in-context learning, a process sometimes called31

’meta-training’.1 In the case of transformer language models, however, the capacity for in-context32

learning is emergent. Neither the model’s transformer architecture nor its learning objective are33

explicitly designed with few-shot learning in mind.34

1Note that few-shot meta-learning approaches can also involve weight updates (Finn et al., 2017).
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(d) Sequences to evaluate in-weights learning.
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Figure 1: Experimental design, as described in Section 2. (a) For each experiment, a transformer
model is trained on sequences of image-label pairs. The model is trained to minimize the loss on
predicting the label corresponding to the final ‘query’ image. (b) In training, image-label mappings
are fixed across sequences, in contrast to few-shot meta-training. The training data consist of a mix
of ‘bursty’ and ‘non-bursty’ sequences. Bursty sequences, featuring multiple occurrences of the same
classes, can be solved by learning labels across sequences (in-weights learning), or referring back
to the context (in-context learning). Non-bursty sequences were composed of i.i.d. images. (c) To
evaluate few-shot in-context learning, the model is presented with a standard few-shot sequence. The
holdout image classes were never encountered in training, and are randomly assigned to labels {0,1}.
Thus the model must use the context to predict the query label. (d) To evaluate in-weights learning,
the model is presented with sequences where the labels are the same as in training. However, the
query class does not appear in the context. Thus, the model must used information stored in weights
to predict the query label. In the example sequences, we add colors and use only Latin characters for
visualization purposes.

Here, we consider the question of how transformer language models are able to acquire this impressive35

ability, without it being explicitly targeted by the training setup or learning objective. The emergence36

of in-context learning in language models was observed as recurrent models were supplanted by37

transformers, e.g. in GPT3. Was the novel architecture the critical factor behind this emergence?38

In this work we explore this possibility, as well as a second: that a capacity for in-context learning39

depends on the distributional qualities of the training data.40

This hypothesis was inspired by the observation that many natural data sources – including natural41

language – differ from typical supervised datasets due to a few notable features. For example,42

natural data is temporally ‘bursty”. That is, a given entity (word, person, object, etc) may have a43

distribution that is not uniform across time, instead tending to appear in clusters (Altmann et al.,44

2009; Alvarez-Lacalle et al., 2006; Sarkar et al., 2005; Serrano et al., 2009). Natural data also often45

has the property that the marginal distribution across entities is highly skewed, following a Zipfian46

(power law) distribution with a long tail of infrequent items (Piantadosi, 2014; Smith et al., 2018;47

Zipf, 1949). Finally, the ‘meaning’ of entities in natural data (such as words in natural language) is48

often dynamic rather than fixed. That is, a single entity can have multiple possible interpretations49

(polysemy and homonymy, in language) and multiple entities can map to the same interpretation50

(synonymy, in language), usually in a context-dependent way. The combination of these properties51

may result in training data that occupies some middle-ground between the data used in canonical52

supervised learning and that used for few-shot meta-training.53

In particular, standard supervised training typically consists of item classes that recur with uniform54

regularity, and with item-label mappings that are fixed throughout training – these properties allow55

a model to gradually learn over time, by encoding information into its weights, e.g. via gradient56

descent. By contrast, few-shot meta-training generally involves training a model directly on specially57

crafted sequences of data where item classes only recur and/or item-label mappings are only fixed58

within episodes – they do not recur and are not fixed across episodes (Santoro et al., 2016; Vinyals59

2



(a) In-context learning on holdout classes.
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(b) In-weights learning on trained classes.
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Figure 2: Effects of burstiness. P (bursty) indicates the proportion of training sequences that were
bursty vs non-bursty, and models are evaluated on the two types of evaluation sequences, over the
course of training. Burstiness in the training data increases in-context learning, and decreases in-
weights learning. Also, over the course of training, in-context learning tends to decrease while in-
weights learning increases.

et al., 2016). Naturalistic data, such as language or first-person experience, has characteristics of60

both of these data types. As in supervised training, items (words) do recur, and the relationship61

between an entity and its interpretation (or meaning) is fixed, to some degree at least. At the same62

time, the skewed and long-tailed distribution of natural data means that some entities recur very63

frequently while a large number recur much more rarely. Importantly, however, these rare items are64

often bursty, making them disproportionately likely to occur multiple times within a given context65

window, somewhat like a sequence of ’meta-training’ data. We can also see the dynamic relationship66

between entities and their interpretation (epitomized by synonyms, homonyms, and polysemy, in the67

case of language) as weaker versions of the completely dynamic item-label mappings that are used in68

few-shot meta-training, where the mappings are randomly permuted on every episode.69

In this paper, we experimentally manipulated the distributional properties of the training data and70

measured the effects on in-context few-shot learning. We performed our experiments over data71

sequences sampled from a standard image-based few-shot dataset (the Omniglot dataset; Lake et al.,72

2019). At training, we fed each model (such as a transformer or recurrent network) with input73

sequences of Omniglot images and labels, varying the natural data-inspired distributional properties of74

choice. At evaluation, we assessed whether these properties gave rise to in-context learning abilities.75

Our results showed that, indeed, in-context learning emerges in a transformer model only when76

trained on data that includes both burstiness and a large enough set of rarely occurring classes.We77

also tested two instantiations of the kinds of dynamic item interpretation observed in natural data –78

having many labels per item as well as within-class variation. We found that both interventions on79

the training data could bias the model more strongly towards in-context learning. The models we80

tested typically exhibited a tradeoff between rapid in-context learning vs. relying on information that81

was stored through slow, gradient-based updates (‘in-weights” learning). However, we found that82

models could simultaneously exhibit both in-context learning and in-weights learning when trained83

on a skewed marginal distribution over classes (akin to the Zipfian distribution of natural data).84

At the same time, architecture is also important. Unlike transformers, recurrent models like LSTMs85

and RNNs (matched on number of parameters) were unable to exhibit in-context learning when86

trained on the same data distribution. It is important to note, however, that transformer models trained87

on the wrong data distributions still did fail to exhibit in-context learning. Thus, attention is not all88

you need – architecture and data are both key to the emergence of in-context learning.89

2 Experimental Design90

2.1 The training data91

To investigate the factors that lead to in-context few-shot learning, we created training and evaluation92

sequences using the Omniglot dataset (Lake et al., 2019, MIT License), a standard image-label93

dataset for few-shot learning. Omniglot consists of 1623 different character classes from various94

international alphabets, with each class containing 20 handwritten examples. Using the Omniglot95
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(a) In-context learning on holdout classes.
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(b) In-weights learning on trained classes.
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Figure 3: Effects of number of classes. Increasing the number of training classes improves in-context
learning, while reducing in-weights learning.

dataset allowed us to apply evaluation procedures that are standard in the study of few-shot learning.96

The few-shot challenge is to classify an example of a character class that was never seen in training,97

based only on a few examples of that class and some alternate classes.98

The training data consisted of sequences of images and labels (Fig 1b). The first 16 elements of99

each sequence comprised the ‘context’, and consisted of 8 image-label pairs (where each image was100

always followed immediately by its corresponding label). The final element was the ‘query’ image,101

and the aim of the model was to predict the correct label for the query.102

Images were allowed to recur throughout training, and the integer label for each image class was103

unique and fixed across training, as in typical supervised datasets. We emphasize that this is a major104

departure from conventional few-shot training, where item-label mappings are completely novel on105

each episode, or the items themselves are novel on each episode.106

In our standard experiments, we trained the model on a mixture of ‘bursty’ and ‘non-bursty’ sequences.107

In the bursty sequences, the query class appeared 3 times in the context. To prevent the model from108

simply outputting the most common label in the sequence, a second image-label pair also appeared 3109

times in the context. For the non-bursty sequences, the image-label pairs were drawn randomly and110

uniformly from the full Omniglot set.111

2.2 The model112

Each element of a sequence was first passed through an embedder (a standard embedding layer for113

the integer labels, and a ResNet for the images; He et al., 2015). These embedded tokens were passed114

into a causal transformer model (Fig 1a) (Vaswani et al., 2017). Unless stated otherwise, we used a115

transformer with 12 layers and embedding size 64. The model was trained on a softmax cross-entropy116

loss on the prediction for the final (query) image.117

2.3 The evaluation data118

We evaluated trained models on two types of sequences, to measure (1) in-context learning and (2)119

in-weights learning. As in the training sequences, the evaluation sequences also consisted of 8 pairs120

of ‘context’ image and label tokens, followed by a single ‘query’ image token.121

To measure a trained model’s ability for in-context few-shot learning, we used a standard few-shot122

setup. The context consisted of a random ordering of 2 different image classes with 4 examples each,123

and the query was randomly selected from one of the two image classes (a ‘4-shot 2-way’ problem,124

in few-shot nomenclature). Unlike in training, where the labels were fixed across all sequences, the125

labels for these two image classes were randomly re-assigned for each sequence. One image class126

was assigned to 0, and the other to 1 (Fig 1c). Because the labels were randomly re-assigned for each127

sequence, the model must use the context in the current sequence in order to make a label prediction128

for the query image (a 2-way classification problem). Unless stated otherwise, in-context learning129

was always evaluated on holdout image classes that were never seen in training.130

Although the model’s output layer accounts for all possible labels in the dataset, few-shot accuracy is131

computed by considering the model outputs only for the two labels seen in the few-shot sequence132

(0 and 1), with chance at 1/2. This ensures that performance above chance cannot be due to e.g.133
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randomly selecting one of the labels from the context. Note also that the model was evaluated for in-134

context learning on novel image classes, but not novel labels (see the appendix for further discussion).135

To measure in-weights learning of trained classes in a model, evaluation sequences consisted of136

image classes that were selected uniformly without replacement, with the same labels that were used137

in training (Fig 1d). Because the image classes were forced to be unique within each sequence, the138

query had no support in the context. Thus, the only way for a model to correctly predict the label was139

to rely on information stored in the model weights. For this problem, where the correct query label140

could be any of the labels seen in training, chance was usually 1/1600.141

3 Results142

3.1 What kinds of training data promote in-context learning?143

Burstiness. In our first experiments, we vary levels of burstiness in the training data by varying the144

proportion of bursty vs non-bursty sequences in the training data (as described in Section 2.1). These145

experiments replicate the finding that transformers can acquire in-context few-shot learning even146

without explicit meta-training. They further show that, as hypothesized, the model displays better147

in-context learning with more burstiness in training (Fig 2a). We also see that in-context learning148

trades off against in-weights learning – greater burstiness simultaneously leads to lower weight-based149

learning (Fig 2b). Interestingly, the models can in some cases lose an initial bias towards in-context150

learning, moving towards in-weights learning over the course of training.151

A large number of rarely occurring classes. Our second set of experiments show that in-context152

learning performance depends on the number of training classes (keeping the level of burstiness fixed153

at p(bursty) = 0.9). As we increase the number of classes from 100 to 1600 (and correspondingly154

decrease the frequency of each class), we see improvement of in-context learning (Fig 3a). As155

before, we also see an accompanying decrease in in-weights learning (Fig 3b). This accords with our156

hypothesis about the importance of having a long tail in the distribution, or a large vocabulary. Note157

that the bias against in-weights learning cannot be explained by the number of exposures to each158

class – even controlling for the number of exposures, the model trained with 1600 classes is much159

slower to achieve similar levels of in-weights learning. Importantly, we need both burstiness and a160

large number of classes for in-context learning to emerge. In order to further increase the number of161

classes beyond the 1623 available in the original Omniglot dataset, we rotated (0◦, 90◦, 180◦, 270◦)162

and flipped (left-right) the images, obtaining 8× more image classes. We ensured that the holdout163

set did not include transformed versions of train images. Training on these 12800 classes further164

improved in-context learning (and reduced in-weights learning) (Fig 3). However, some images in165

Omniglot have rotational or mirror symmetries, so that the models trained on 12800 classes may166

additionally be pushed towards in-context learning by a label-multiplicity effect, described next.167
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Figure 4: Dynamic meanings improve in-context learn-
ing. Increasing the number of labels per class (‘label
multiplicity’) increases in-context learning.

Multiplicity of labels. Our third set of ex-168

periments explored the effect of dynamic169

meanings, with training distributions where170

images did not have completely fixed la-171

bels. Each image class was assigned to172

multiple possible labels and, in the data se-173

quences, the label shown after each image174

was randomly selected among the possible175

labels. If a class appeared more than once176

in the same sequence, the label was con-177

sistent for all presentations within that se-178

quence (this is commonly the case in nat-179

ural data such as language, too; Gale et al.,180

1992). In Fig 4, we see that increasing the181

‘label multiplicity’ (the number of labels182

per class) also increases in-context learning. Again, burstiness was fixed for these experiments at183

p(bursty) = 0.9.184

Within-class variation. We then explored another source of dynamic variation of meaning – the185

amount of variation within image classes themselves. In the lowest-variation condition, each image186
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(a) In-context learning on holdout classes.
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(b) In-weights learning on trained classes.
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Figure 5: Effects of within-class variation. When we increase the within-class variation (from left
to right), in-context learning tends to increase (a) while in-weights learning decreases (b). Both
effects are nonetheless upper-bounded by the difficulty of within-class generalization, with the ‘Full
Omniglot’ problem being more difficult than the rest. For the ‘Full Omniglot’ experiments, each
class contained the full set of 20 Omniglot exemplars per class. For the remaining experiments, each
consisted of only a single Omniglot exemplar image, with varying levels of Gaussian pixel noise.

class consists of only a single image, i.e. the images for a given class were always identical. In187

the medium-variation conditions, we added Gaussian pixel noise to the images (resampled for each188

presentation). In the high-varation condition, we used the full Omniglot classes (each class consists189

of 20 different images drawn by 20 different people). To our surprise, we found that greater within-190

class variation leads to greater in-context learning (Fig 5). In other words, making the generalization191

problem harder actually made in-context learning emerge more strongly – it preferentially hampered192

in-weights learning more than it hampered in-context learning.193

Across all the above experiments, we also evaluated in-context learning on training classes (rather194

than holdout classes). Evaluations looked similar in all cases, with only slightly higher performance.195

3.2 What kinds of training data enable in-context learning and in-weights learning to co-exist196

in the same model?197

In the previous section, we saw a consistent tradeoff between in-context learning and in-weights198

learning – no models could maintain both. However, it is useful for a model to have both capabilities199

– to remember information about classes that will re-appear in evaluation, while also being able to200

perform rapid in-context learning on new classes that appear only in holdout. Large language models201

certainly do have both of these capabilities. How might we achieve this?202

For all prior experiments, the training data were marginally distributed uniformly over classes, even if203

the data were non-uniform in other ways. I.e., each class was equally likely to appear, marginalizing204

across the dataset. We postulated that we might achieve both types of learning in the same model by205

instead training on marginally-skewed distributions. In this case, some classes appear very commonly,206

while most classes appear very rarely. Many natural phenomena such as word distributions take this207
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(a) Examples of Zipfian distributions.
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(b) Distribution of tokens in a natural language
corpus.

(c) In-context learning on holdout
classes.
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(d) In-weights learning on
common classes.
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(e) In-weights learning on
rare classes.
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Figure 6: Effects of training on Zipfian (rather than uniform) marginal distributions over classes.
(a) Examples of Zipfian distributions with varying exponents. (b) The distribution of tokens in an
example English-language corpus. In (c-e), bars indicate mean evaluation accuracy in the window
[400k, 500k] steps of training. (c) As we increase the Zipf exponent, i.e. increasing the skew on the
class distribution, we see a decrease in in-context learning. (d) In-weights learning of the 10 most
common classes, in contrast, increases with more skew. With uniform training (Zipf exponent = 0),
the model exhibits only in-context learning and not in-weights learning. However, if we train on
skewed distributions, there is a sweet spot where both in-context learning and in-weights learning can
be maintained at a high level in the same model (Zipf exponent = 1, for this particular training regime).
Coincidentally, a Zipf exponent of 1 corresponds approximately to the skew in many natural languages.
(e) Rare items from training are never memorized (performance is at chance for all Zipf exponents).

form, and are classically described as a Zipfian (power law) distribution (Zipf, 1949):208

p(X = x) ∝ 1

xα
(1)

Here, X is the rank of the class (e.g. 1 for the most common class), and the exponent α ∈ [0,∞)209

determines the degree of skew. Fig 6a shows some examples of Zipfian distributions with various210

exponents. Fig 6b shows an example of token distributions in English (from the Brown corpus; Francis211

and Kucera, 1979).2 This type of skewed distribution could allow a model to learn common classes in212

its weights, while the long tail of rare classes simultaneously induces an ability for in-context learning.213

To test this hypothesis, we trained on Zipfian distributions, varying the Zipf exponent and hence the214

degree of skew. We used the same training sequences as before, with 12800 classes and p(bursty) =215

0.9. Our results are shown in Figs 6c-e. We evaluate in-weights learning separately on common classes216

(the 10 classes seen most often in training) and on rare classes (the remaining classes). When there is217

no skew, all classes are relatively rare, and we see high levels of in-context learning but no in-weights218

learning. Increasing the skew leads to the loss of in-context learning and increased in-weights learning219

of common classes.3 In between the two extremes, we observe a sweet spot at Zipf exponent = 1,220

where the model maintains high levels of both in-context learning and in-weights learning of common221

classes. Intriguingly, natural languages are best described by a Zipfian distribution with an exponent of222

approximately 1 (Piantadosi, 2014). Note though that the sweet spot for simultaneously maintaining223

in-weights and in-context learning in transformers may differ, depending on the training regime.224

2Plot generation adapted from https://gist.github.com/fnielsen/7102991
3We see decreased in-weights learning for Zipf exponent = 3, because that level of skew leads to extreme

focus on a tiny number of classes (e.g. the three most common classes form 97% of the data).
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Figure 7: In-context learning in transformers vs. recurrent architectures. We compare architectures
while holding fixed the number of layers, hidden layer size, and number of parameters. Only a
transformer is able to attain in-context learning; the Vanilla RNN and LSTM never perform above
chance. One run was performed for each set of hyperparameters in a hyperparameter sweep.

3.3 But architecture does matter too.225

To investigate whether these results are specific to transformer models, we performed similar experi-226

ments using recurrent sequence models. For these models, we simply replaced the transformer with227

either a vanilla recurrent neural network (RNN; David E. Rumelhart et al., 1985) or a long short-term228

memory network (LSTM; Hochreiter and Schmidhuber, 1997). We used the same training sequences229

as before, with 1600 classes and p(bursty) = 0.9. We also used the same image and label encoders,230

and cross-entropy classification loss. The recurrent models were matched to the transformer for depth,231

number of parameters, and hidden layer size. We performed a comprehensive hyperparameter search232

for all models (see Appendix for details).233

In these experiments, we see that the recurrent models are never able to achieve in-context learning,234

despite the parity in training setup (Fig 7). Interestingly, the transformer actually outperforms the235

recurrent models on in-weights learning as well (see Fig 8 in the Appendix), indicating that we cannot236

explain these results by proposing that recurrent models are simply more biased towards in-weights237

learning than transformers.238

4 Discussion239

In summary, we find that both data and architectures contribute significantly to the emergence of240

in-context learning in transformers.241

Data properties that promote in-context learning. We identify several features of training data242

that can promote in-context learning – burstiness, number and rarity of training classes, and dynamic243

meaning (as instantiated by multiple labels per class or within-class variation). These data properties244

allow in-context learning to emerge despite differing significantly from the data used in standard245

few-shot meta-training, in that we allow items and item-label mappings to recur throughout training.246

These properties are also central features of natural data including language, and thus may explain the247

remarkable emergence of in-context learning in large language models without explicit meta-training.248

Effects of architecture. We find that architecture does matter as well. Transformers show a249

significantly greater capacity for in-context learning than recurrent models – we were completely250

unable to elicit in-context learning in recurrent models, even with the training procedure, number of251

parameters, and model architecture otherwise matched to the transformer experiments. We emphasize252

however that the transformer architecture alone was insufficient for eliciting in-context learning – it253

was necessary for the training data to exhibit at least burstiness and large numbers of classes, too.254

In-context vs. in-weights learning. In most cases, we found that transformers exhibited a tradeoff in255

their bias towards either in-context learning or in-weights learning, and could not maintain both in256

the same model. We characterize this behavior as a ‘bias’, because neither type of learning is ‘correct’257

per se. For our training data, an in-context learning strategy and an in-weights learning strategy will258

give the same answer, since the labels are fixed. Thus, in the in-context evaluation sequences, it is259

ambiguous (by design) whether the model should use the labels seen in training or in the current260

context, allowing us to measure the model’s bias. We also note that even models with an initial bias261

towards in-context learning can often move towards in-weights learning with enough repetition.262
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However, it is often important and useful for a model to exhibit both capabilities – to perform263

slow, gradient-based in-weights learning of class information that is presented during training, while264

also being able to quickly learn (without weight updates) about new classes that appear only in265

evaluation. Indeed, large language models exhibit both of these capabilities (Brown et al., 2020).266

In our experiments, we discovered that an additional language-like distributional property could267

allow models to maintain both capabilities as well – a skewed, Zipfian distribution over classes. This268

allowed the models to retain information in their weights about common classes, while simultaneously269

developing in-context learning abilities that were presumably induced by the long tail of rare classes.270

Implications for understanding language models. Our findings have a few noteworthy implications.271

First, by pointing to specific distributional properties of training data that both exist in language and272

also promote in-context learning, these results may help us reach a more scientific understanding of273

why in-context learning emerges in transformer-based language models. This is an area of increasing274

interest (e.g. Min et al., 2022; Razeghi et al., 2022; Webson and Pavlick, 2021; Xie et al., 2021).275

We emphasize that the transformers in our experiments successfully performed in-context evaluation276

on holdout classes, and only performed slightly better with in-context evaluation on trained classes.277

These results are counter to an emerging narrative that large language models may not actually be278

performing genuine in-context learning, and simply draw on examples seen in training (Min et al.,279

2022; Razeghi et al., 2022; Xie et al., 2021) – our experiments show that naturalistic distributional280

properties can give rise to a capacity for in-context learning on classes that were never seen in training.281

Broader implications. This understanding may also help us design and collect datasets to achieve in-282

context learning in domains outside of language, an area of ongoing research (e.g. Finn et al., 2017;283

Hill et al., 2020; Wang et al., 2016). Given that reinforcement learning environments are generally284

designed to be uniformly distributed (Chan et al., 2022), or that supervised datasets are frequently285

rebalanced to have more uniform distributions (Chawla et al., 2002; Katharopoulos and Fleuret, 2019;286

Van Hulse et al., 2007), we may be missing an opportunity to endow non-language models with a287

powerful capability. We may need to consider data distributions more carefully when pre-training in288

non-language domains, as well. For example, recent work has shown that pre-training on language289

data was useful for offline reinforcement learning, but pre-training on vision data was not (Reid et al.,290

2022) – could this difference be due to the non-uniform, structured distribution of the language data?291

Cognition and neuroscience. Our experiments could also potentially inspire research on the role292

of non-uniformity in human cognitive development. Infants rapidly learn statistical properties of293

language (Saffran and Kirkham, 2018) — could these distributional features help infants to acquire294

an ability for rapid learning, or serve as useful pretraining for later learning? And could non-uniform295

distributions in other domains (e.g., vision) also contribute to this development (cf. Smith et al., 2018)?296

Our results may also relate to complementary learning systems theory (Kumaran et al., 2016; Mc-297

Clelland and O’Reilly, 1995) and its application to language understanding in the brain (McClelland298

et al., 2020). According to this theory, the neocortical part of the language system bears similarities299

to the weights of neural networks, in that both systems learn gradually through the accumulated in-300

fluence of large amounts of experience. The hippocampal system plays a role similar to the context301

window in a transformer model, by representing the associations encountered most recently (the hip-302

pocampus generally has a time-limited window; Squire, 1992).4 In this light, it is possible to see the303

human hippocampal system as a system that provides the architectural advantage of the transformer’s304

context representations for in-context learning.305

Future directions. The above results suggest exciting lines of future research. How do these data306

distributional properties interact with reinforcement learning vs. supervised losses? How might307

results differ in experiments that replicate other aspects of language and language modeling, e.g. using308

symbolic inputs, training on next-token or masked-token prediction, and having the meaning of words309

determined by their context? For models that display both in-context and in-weights learning, it would310

be interesting to understand contextual cuing of already learned information – does this increase with311

more exposure? There is also a lot more to understand about the behaviors and biases of transformers312

vs. recurrent architectures – why do transformers seem to be more capable of in-context learning?313

4While the hippocampal system is thought to store recent context information in connection weights, whereas
transformers store such information directly in their state representations, there is now a body of work pointing
out the quantitative and computational equivalence of weight- and state-based representations of context state
for query-based access to relevant prior information (Krotov and Hopfield, 2021; Ramsauer et al., 2021) as
implemented in transformers.
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Non-uniformity. Finally, we hope to emphasize the dual nature of non-uniformity in training data.314

While it can impair both supervised and reinforcement learning (Chan et al., 2022; Van Hulse et al.,315

2007), we show here that non-uniform training distributions can induce the emergence of at least one316

useful and interesting capability, and thus can be an opportunity as well as a challenge.317
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David Kreil, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter.392

Hopfield Networks is All You Need. arXiv:2008.02217 [cs, stat], April 2021. URL http:393

//arxiv.org/abs/2008.02217. arXiv: 2008.02217.394

Yasaman Razeghi, Robert L. Logan IV, Matt Gardner, and Sameer Singh. Impact of Pretraining Term395

Frequencies on Few-Shot Reasoning. February 2022. URL https://arxiv.org/abs/2202.396

07206v1.397

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can Wikipedia Help Offline Reinforcement398

Learning? arXiv:2201.12122 [cs], January 2022. URL http://arxiv.org/abs/2201.12122.399

arXiv: 2201.12122.400

Jenny R. Saffran and Natasha Z. Kirkham. Infant Statistical Learning. Annual Review of Psychology,401

69(1):181–203, 2018. doi: 10.1146/annurev-psych-122216-011805. URL https://doi.org/402

10.1146/annurev-psych-122216-011805. _eprint: https://doi.org/10.1146/annurev-psych-403

122216-011805.404

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-405

Learning with Memory-Augmented Neural Networks. page 9, 2016.406

Avik Sarkar, Paul H. Garthwaite, and Anne De Roeck. A Bayesian mixture model for term re-407

occurrence and burstiness. In Proceedings of the Ninth Conference on Computational Natural408

Language Learning - CONLL ’05, page 48, Ann Arbor, Michigan, 2005. Association for Computa-409

tional Linguistics. doi: 10.3115/1706543.1706552. URL http://portal.acm.org/citation.410

cfm?doid=1706543.1706552.411

11

http://arxiv.org/abs/1803.00942
http://arxiv.org/abs/1803.00942
http://arxiv.org/abs/1803.00942
http://arxiv.org/abs/2008.06996
http://arxiv.org/abs/2008.06996
http://arxiv.org/abs/2008.06996
https://linkinghub.elsevier.com/retrieve/pii/S1364661316300432
https://linkinghub.elsevier.com/retrieve/pii/S1364661316300432
https://linkinghub.elsevier.com/retrieve/pii/S1364661316300432
http://arxiv.org/abs/1902.03477
http://arxiv.org/abs/1902.03477
http://arxiv.org/abs/1902.03477
https://www.pnas.org/doi/abs/10.1073/pnas.1910416117
https://www.pnas.org/doi/abs/10.1073/pnas.1910416117
https://www.pnas.org/doi/abs/10.1073/pnas.1910416117
http://arxiv.org/abs/2202.12837
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176592/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176592/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176592/
http://arxiv.org/abs/2008.02217
http://arxiv.org/abs/2008.02217
http://arxiv.org/abs/2008.02217
https://arxiv.org/abs/2202.07206v1
https://arxiv.org/abs/2202.07206v1
https://arxiv.org/abs/2202.07206v1
http://arxiv.org/abs/2201.12122
https://doi.org/10.1146/annurev-psych-122216-011805
https://doi.org/10.1146/annurev-psych-122216-011805
https://doi.org/10.1146/annurev-psych-122216-011805
http://portal.acm.org/citation.cfm?doid=1706543.1706552
http://portal.acm.org/citation.cfm?doid=1706543.1706552
http://portal.acm.org/citation.cfm?doid=1706543.1706552


M. Angeles Serrano, Alessandro Flammini, and Filippo Menczer. Modeling Statistical Properties of412

Written Text. PLOS ONE, 4(4):e5372, April 2009. ISSN 1932-6203. doi: 10.1371/journal.pone.413

0005372. URL https://journals.plos.org/plosone/article?id=10.1371/journal.414

pone.0005372. Publisher: Public Library of Science.415

Linda B. Smith, Swapnaa Jayaraman, Elizabeth Clerkin, and Chen Yu. The Developing Infant Creates416

a Curriculum for Statistical Learning. Trends in Cognitive Sciences, 22(4):325–336, April 2018.417

ISSN 1364-6613. doi: 10.1016/j.tics.2018.02.004. URL https://www.sciencedirect.com/418

science/article/pii/S1364661318300275.419

Larry R. Squire. Memory and the Hippocampus: A Synthesis From Findings With Rats, Monkeys,420

and Humans. Psychological review, 1992.421

Jason Van Hulse, Taghi M. Khoshgoftaar, and Amri Napolitano. Experimental perspectives on422

learning from imbalanced data. In Proceedings of the 24th international conference on Machine423

learning, ICML ’07, pages 935–942, New York, NY, USA, June 2007. Association for Computing424

Machinery. ISBN 978-1-59593-793-3. doi: 10.1145/1273496.1273614. URL https://doi.425

org/10.1145/1273496.1273614.426

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz427

Kaiser, and Illia Polosukhin. Attention is All you Need. page 11, 2017.428

Oriol Vinyals, Charles Blundell, and Timothy Lillicrap. Matching Networks for One Shot Learning.429

page 9, 2016.430

Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Remi Munos,431

Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.432

arXiv:1611.05763 [cs, stat], November 2016. URL http://arxiv.org/abs/1611.05763.433

arXiv: 1611.05763.434

Albert Webson and Ellie Pavlick. Do Prompt-Based Models Really Understand the Meaning of their435

Prompts? arXiv:2109.01247 [cs], September 2021. URL http://arxiv.org/abs/2109.01247.436

arXiv: 2109.01247.437

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An Explanation of In-context438

Learning as Implicit Bayesian Inference. arXiv:2111.02080 [cs], December 2021. URL http:439

//arxiv.org/abs/2111.02080. arXiv: 2111.02080.440

George Kingsley Zipf. Human Behavior and the Principle of Least Effort - Google Books, 1949.441

12

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005372
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005372
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005372
https://www.sciencedirect.com/science/article/pii/S1364661318300275
https://www.sciencedirect.com/science/article/pii/S1364661318300275
https://www.sciencedirect.com/science/article/pii/S1364661318300275
https://doi.org/10.1145/1273496.1273614
https://doi.org/10.1145/1273496.1273614
https://doi.org/10.1145/1273496.1273614
http://arxiv.org/abs/1611.05763
http://arxiv.org/abs/2109.01247
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2111.02080


Checklist442

1. For all authors...443

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s444

contributions and scope? [Yes]445

(b) Did you describe the limitations of your work? [Yes]446

(c) Did you discuss any potential negative societal impacts of your work? [N/A]447

(d) Have you read the ethics review guidelines and ensured that your paper conforms to448

them? [Yes]449

2. If you ran experiments...450

(a) Did you include the code, data, and instructions needed to reproduce the main experi-451

mental results (either in the supplemental material or as a URL)? [Yes] All architectural452

and training details have been specified in the text. The code will be released with the453

camera-ready version.454

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they455

were chosen)? [Yes]456

(c) Did you report error bars (e.g., with respect to the random seed after running experi-457

ments multiple times)? [Yes]458

(d) Did you include the total amount of compute and the type of resources used (e.g., type459

of GPUs, internal cluster, or cloud provider)? [Yes]460

3. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...461

(a) If your work uses existing assets, did you cite the creators? [Yes]462

(b) Did you mention the license of the assets? [Yes]463

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]464

(d) Did you discuss whether and how consent was obtained from people whose data you’re465

using/curating? [N/A]466

(e) Did you discuss whether the data you are using/curating contains personally identifiable467

information or offensive content? [N/A]468

4. If you used crowdsourcing or conducted research with human subjects...469

(a) Did you include the full text of instructions given to participants and screenshots, if470

applicable? [N/A]471

(b) Did you describe any potential participant risks, with links to Institutional Review472

Board (IRB) approvals, if applicable? [N/A]473

(c) Did you include the estimated hourly wage paid to participants and the total amount474

spent on participant compensation? [N/A]475

13



Appendix476

A Model and training procedure: details477

All experiments used the same model and training procedure, unless stated otherwise. The transformer478

consisted of 12 layers, with embedding dimension 64 and 8 heads. The images were embedded by a479

ResNet with two blocks per group and channels per group (16, 32, 32, 64), and which was not pre-480

trained. The integer labels were embedded using a standard embedding layer. The input embeddings481

were augmented with a standard sinusoidal positional encoding. Experiments were run for 500k482

training steps on 16 TPU v2 or v3 cores. They were trained using Adam and a learning rate schedule483

with a linear warmup up to a maximum learning rate of 3e-4 at 4000 steps, followed by an inverse484

square root decay. The experiments shown in Figs 5 and 6 were run with 3 seeds each (because of the485

larger number of conditions in those experiments), and all other experiments were run with 5 runs486

each. In all figures, (shaded) error bars indicate standard deviation around the mean.487

B Possible extensions: Generating new image labels488

An important constraint of the model implementation and evaluation procedure is that we do not489

require the models to handle novel image labels, only novel image classes. Thus, in-context learning490

is evaluated on labels that were previously seen in training, i.e. 0 and 1 (on the Zipfian-skewed491

experiments, these corresponded to two most common labels). Note that, if anything, this causes492

in-context learning to be more difficult for the model, since it must overcome existing image-label493

associations that were learned in training.494

However, as future extensions, it would be possible to extend the model to handle novel labels as well.495

For example, we might tie the input and output embedding layers (sometimes done in large language496

models, though mainly for computational efficiency), or to generate novel labels as combinations of497

already-seen tokens (akin to language models that use the SentencePiece family of tokenization).498

C Experiments comparing recurrent vs. transformer499

C.1 Architectural details500

Hyperparameter sweep (15 runs for each architecture):501

• Num layers: 2 or 12502

• Max learning rate: Log-uniform distribution over [1e-5, 0.1]503

• Num warmup steps: Log-uniform distribution over [1, 10000]504

Parameter counts:505

• Transformer with 12 layers: 831,479506

• LSTM with 12 layers: 627,959507

• Transformer with 2 layers: 331,639508

• LSTM with 2 layers: 297,719509

C.2 In-weights learning510

Transformers exhibited similar or slightly higher in-weights learning than the recurrent models (Fig511

8), indicating that their superior in-context learning performance (as seen in Fig 7) cannot simply be512

explained by a bias towards in-context learning and against in-weights learning.513

14



(a) Transformer.

1 2 3 4 5
# train steps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(b) Vanilla RNN.
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(c) LSTM.
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Figure 8: In-weights learning in transformers vs. recurrent architectures. We compare architectures
while holding fixed the number of layers, hidden layer size, and number of parameters. One run was
performed for each set of hyperparameters in a hyperparameter sweep.
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