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Abstract

A structural equation model (SEM) is an effective framework to reason over causal
relationships represented via a directed acyclic graph (DAG). Recent advances
have enabled effective maximum-likelihood point estimation of DAGs from ob-
servational data. However, a point estimate may not accurately capture the un-
certainty in inferring the underlying graph in practical scenarios, wherein the
true DAG is non-identifiable and/or the observed dataset is limited. We propose
Bayesian Causal Discovery Nets (BCD Nets), a variational inference framework
for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
Developing a full Bayesian posterior over DAGs is challenging due to the the
discrete and combinatorial nature of graphs. We analyse key design choices for
scalable VI over DAGs, such as 1) the parametrization of DAGs via an expressive
variational family, 2) a continuous relaxation that enables low-variance stochas-
tic optimization, and 3) suitable priors over the latent variables. We provide a
series of experiments on real and synthetic data showing that BCD Nets outper-
form maximum-likelihood methods on standard causal discovery metrics such as
structural Hamming distance in low data regimes.

1 Introduction

One of the key uses of statistical methods is learning causal relationships from observed data a.k.a.
causal discovery [39]. Causal models allow us to forecast the effects of interventions and counter-
factuals in several real-world domains, such as economic policy [57] and medicine [47]. Although
early approaches to statistical inference emphasised that ‘correlation is not causation’ [15], it has
since been shown that for certain families of data-generating processes, it is indeed possible to infer
causal relationships from purely observational data [37, 29].

One such widely studied data-generating process is the linear-Gaussian structural equation model
(SEM) [37], where the causal relationships between the random variables in the model can be rep-
resented via a weighted directed acyclic graph (DAG). The value of any variable in the DAG of
a linear-Gaussian SEM is given by a linear combination of the values of its parent nodes and ad-
ditive noise. For causal discovery, naive Monte-Carlo sampling or enumeration of the possible
DAGs quickly becomes intractable, since the number of possible DAGs over a model grows super-
exponentially with the number of variables [18]. A variety of methods have been developed over
the years to efficiently sample or optimize over DAGs [11, 53, 51, 45]. For example, a recent line
of work scales to high dimensions by maximizing the likelihood of the model (MLE) over a set of
continuous relaxations of adjacency matrices using gradient-based methods and specialized DAG
regularization terms. [62, 61, 35, 59].
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Figure 1: A Structural Equation Model (SEM). Left: DAG with 4 nodes. Right: Linear-Gaussian
SEM (with ε ∼ N (0,Σ))

However, the majority of the aforementioned works for scalable causal discovery in linear-Gaussian
SEMs focus on recovering point estimates for the underlying DAG via MLE. In many practical
scenarios, however, a point estimate fails to reflect the uncertainty in inferring the underlying DAG.
This includes scenarios where the true DAG is non-identifiable given (infinite) observational data
as well as practical limitations due to an imperfect optimization algorithm, model mismatch, or
simply a finite dataset. In any of the above scenarios, it is desirable to obtain an explicit posterior
distribution over the unobserved DAG instead of a single point estimate [19]. Causal inference
is increasingly being applied in situations with important real-world consequences, where such a
Bayesian estimation procedure could be useful to sample and reason over alternative generative
mechanisms for observed data.

To achieve this goal, we propose Bayesian Causal Discovery Nets (BCD Nets), an algorithmic
framework for Bayesian causal discovery in linear-Gaussian SEMs based on modern variational
inference [6]. Classical approaches to Bayesian causal discovery struggle in higher dimensions
[23, 16], with limited improvements via Monte Carlo approximations [22, 58]. In order to scale our
variational method to high dimensions, we address several design challenges. First, we describe an
expressive variational family of factorized posterior distributions over the SEM parameters (edge
weights and noise variance) using deep neural networks. The factorization exploits the decompo-
sition of DAGs into triangular matrices and permutations for specifying the distribution over edge
weights and node orderings respectively. Further, for low-variance stochastic optimization of the
variational objective, we exploit recent advances in modeling and reparametrizing distributions over
permutations via continuous relaxations [31, 28]. Finally, we employ a horseshoe prior [7] on the
edge weights, which promotes sparsity.1

We evaluate BCD Nets for causal discovery on a range of synthetic and real-world data benchmarks.
Our experiments demonstrate that with finite datasets, there is considerable uncertainty in the in-
ferred posterior over DAGs. Using BCD Nets, we are able to effectively quantify the uncertainty
and significantly outperform competing estimators [35, 58] on the standard Structured Hamming
Distance metric, especially in low data regimes.

2 Preliminaries

2.1 Linear-Gaussian Structural Equation Models

A structural equation model (SEM) is a collection of random variables x1, . . . , xd associated with
a directed acyclic graph (DAG) G with d nodes [37]. The SEM consists of a series of equations
xj = fj(Pa(xj), εj), where Pa(xj) gives the values of the parents of the jth node in G and εj is a
noise variable. For a linear-Gaussian SEM, the equations fj are linear and the noise εj is additive
Gaussian. Considering X = [x1, . . . , xd] as a vector in Rd and W as the weighted adjacency matrix
of G, we can see that X must satisfy X = W>X + ε, where ε ∼ N (0,Σ) is the additive noise
vector and Σ = diag

{
σ2

1 , . . . , σ
2
d

}
is a diagonal noise covariance matrix. We will denote the setting

when all noise variances are equal i.e., σ1 = . . . = σd = σ as an “equal variance” setting and
“non-equal variance” otherwise. Figure 1 shows an illustration. Linear SEMs have been used to
model microarray data [38] and protein pathways [13], among many other systems.

1Code is available at github.com/ermongroup/BCD-Nets
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2.2 Causal Discovery

Given some dataset Xn
1 = {X1, X2, . . . , Xn} drawn i.i.d. from a linear-Gaussian SEM, we are

interested in inferring the adjacency matrix W and the diagonal entries of the covariance matrix Σ.

Maximum Likelihood Estimation (MLE) This approach obtains a point estimate forW and Σ by
maximizing the likelihood of the datasetXn

1 . Using the fact thatW is constrained to be a DAG, it can
be shown that I−W> is always invertible.2. Hence, we can rearrange to obtainX = (I −W>)

−1
ε,

obtaining X as the product of a matrix and a Gaussian vector. It follows that X itself has a Gaussian
distribution, X ∼ N (0,Θ−1), with precision matrix Θ = (I −W )Σ−1(I −W )

>. This gives a
joint log-likelihood over the dataset Xn

1 as

log p(Xn
1 ; Σ,W ) =

n

2
(log det Θ− d log(2π))− 1

2

n∑
i=1

X>i ΘXi, (1)

where Xi runs over the n points in the dataset and Θ is given above. The space of DAG adjacency
matrices W is characterised by the acyclicity constraint. When viewed as an subset of the space
of all adjacency matrices (Rd×d), this is a piecewise linear manifold with a number of facets that
grows super-exponentially in the dimension (roughly as d!2d

2/2), rendering any approach based
on enumeration over all DAGs intractable. Many approaches have been proposed to scale causal
discovery via MLE to high-dimensional data. This includes recent approaches which relax the DAG
constraint to a larger, continuous set of adjacency matrices, such as Rd×d in [62] or the Birkhoff
polytope of doubly-stochastic matrices in [5], which enables the use of gradient-based optimization.

However, there are a number of challenges with using point estimators for causal discovery. Fun-
damentally, the true SEM parameters are identifiable from observational data only under specific
conditions. In fact, the map between the the data distribution parameters Θ and the SEM parameters
{W,Σ} may not be bijective even in the limit of infinite data and an oracle optimizer. Theoreti-
cal results on identifiability in linear-Gaussian SEMs currently hold only under restricted settings;
notably, this only includes the equal variance setting [38]. Further, even if the noise variances are
equal in the ground-truth SEM, we are limited in practice by the finite size of the dataset and MLE
could still converge to an incorrect solution. Finally, such point estimators are typically not robust
to potential misspecifications in the likelihood model, e.g., a non-Gaussian noise model, non-linear
cause-effect relationships, etc. For the above scenarios, it is useful to characterize the uncertainty in
estimating the SEM parameters to guide downstream analysis. For example, in medical applications
giving a distribution of possible causal pathways, with quantified uncertainty, could be much more
useful than a point estimate of the most likely pathway.

Bayesian Estimation. In contrast to point estimators, Bayesian methods explicitly characterize
the uncertainty in the estimated parameters [19]. That is, we treat the unknown SEM parameters
{W,Σ} as random variables associated with a prior distribution p(W,Σ). The likelihood model
p(Xn

1 |Σ,W ) follows the same expression as the RHS in equation (1). Given the prior and the likeli-
hood, we obtain a posterior distribution p(W,Σ|Xn

1 ) over {W,Σ} via Bayes rule, which quantifies
the uncertainty in estimating the SEM parameters. As long as the likelihood model is well-specified
and the prior includes the ground-truth SEM parameters in its support, as the dataset size increases
the posterior will concentrate around a set of SEM parameters. In the equal variance case these will
be the true SEM parameters. In the non-equal variance case the posterior will concentrate on the
set of DAG parameters quasi-equivalent to the ground truth as defined in [35]. These are the set of
DAG parameters which generate data with the same covariance as the ground truth, and are hence
indistinguishable based on data alone. We discuss this further in the appendix, Section F.

The key challenge in Bayesian estimation is tractable computation of the posterior distribution in
high-dimensional spaces. With the exception of specific prior and likelihood families e.g., conjugate
distributions, computing the posterior is typically intractable. In the next section, we present a
variational framework for scalable approximation of the posterior for Bayesian causal discovery.

2Writing W = PLP> from Section 3, I −W> = (I − PL>P>) = P (I − L>)P>. Now (I − L>) is
upper-triangular with unit diagonal, so det(I−L>) = 1. Thus (I−W>) has unit determinant, so is invertible.
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3 Causal Discovery via Bayesian Causal Discovery Nets

As discussed previously, we are interested in learning the posterior distribution p(W,Σ | Xn
1 ) over

the unknown SEM parameters {W,Σ} given an observed dataset Xn
1 . Unlike point estimators, such

a posterior distribution will allow us to quantify the uncertainty in estimation. Our framework,
Bayesian Causal Discovery Nets (BCD Nets) allows us to tractably estimate this posterior.

As a first step, our approach involves parametrizing the adjacency matrix W as the product of a per-
mutation matrix P and a strictly lower-triangular matrix L, so thatW = PLP>. In graphical terms,
L is a weight matrix for a canonical DAG with a fixed ordering, while pre- and post-multiplication by
P and P> modifies the ordering of nodes. L is parameterised by a vector of weights l ∈ Rd(d−1)/2,
and the constraint that P is a permutation ensures that W is the adjacency matrix of a DAG.

Our goal is to obtain the posterior distribution p(P,L,Σ|Xn
1 ). Due to the intractable partition func-

tion, we cannot directly compute the posterior. We turn to variational inference to deliver a tractable
approximation to the posterior [24]. The key idea here is to cast inference as an optimization prob-
lem, wherein we approximate the true posterior with a tractable family of distributions qφ(P,L,Σ)
parameterized by φ and optimize these parameters φ to minimize the KL divergence between the
approximate and true posterior distributions:

DKL (qφ(P,L,Σ)‖p(P,L,Σ | Xn
1 ))

= −E(P,L,Σ)∼qφ

[
log p(Xn

1 |P,L,Σ)− log
qφ(P,L,Σ)

p(P,L,Σ)

]
︸ ︷︷ ︸

ELBO(φ)

+ log p(Xn
1 ). (2)

Hence, minimizing the KL divergence above corresponds to maximizing the evidence lower bound
(ELBO) w.r.t. variational parameters φ. With a sufficiently expressive variational family from which
to choose q, maximizing the ELBO recovers the true posterior as qφ(P,L,Σ) = p(P,L,Σ|Xn

1 ).

In practice, we face important modeling choices which have a substantial impact on the quality of
the posterior obtained, as well as the difficulty of optimizing the ELBO. These include the variable
ordering to use when factorizing qφ(P,L,Σ) using the chain rule, choice of variational family for
the individual (conditional) factors, as well as the prior distribution p(P,L,Σ). We discuss these
algorithmic design choices next.

3.1 Factorization of Approximate Posterior

Approaches to variational inference with multiple sets of latent variables often use a mean-field
factorization [24], in our case corresponding to qφ(P,L,Σ) = qφ(P )qφ(L)qφ(Σ). This mean-field
approach can often simplify the optimization of the ELBO, but severely limits the expressiveness of
the approximate posterior. For example, consider a two-dimensional linear-Gaussian SEM with non-
equal variances (and therefore has non-uniquely identifiable parameters). Under infinite data, the
posterior density concentrates on the two (observationally undistinguishable) maximum-likelihood
solutions: an edge x1 → x2 with some weight l1and an edge x1 ← x2 with another weight l2. The
posterior concentrates to a bimodal distribution, with density around the region (l1, P1) and around
(l2, P2). A mean-field factored posterior qφ(L)qφ(P ) cannot represent this correlated density. Em-
pirically we observe that such a factored posterior leads to a worse ELBO, illustrated in ablation
experiments in Section 5.6.

For BCD Nets, we use a factorization qφ(P,L,Σ) = qφ(P |L,Σ)qφ(L,Σ), sampling L and Σ jointly
first, then conditionally sampling P based on these values, using a neural network to learn the
parameters of the conditional distribution qφ(P |L,Σ). This leads to an ELBO

E(L,Σ)∼qφ

[
EP∼qφ(·|L,Σ)

[
log p(Xn

1 |P,L,Σ)− log
qφ(P |L,Σ)

p(P |L,Σ)

]
− log

qφ(L,Σ)

p(L,Σ)

]
(3)

3.2 Variational Families

An important design choice in variational methods is the variational family used. A distribution qφ
over latents z used in ELBO optimization must support two operations: drawing a sample z ∼ qφ,
and computing log qφ(z) − log p(z). Depending on the prior distribution p, it may be additionally
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possible to compute the term Ez∼qφ [log qφ(z)− log p(z)] = DKL [qφ, p] in closed form, possibly
reducing variance compared to Monte Carlo estimates [43]. It is also desirable that sampling z ∼ qφ
can be written as gφ(γ), γ ∼ q0, i.e. that z is obtained by sampling from a fixed distribution q0 and
transformed through a parameterized, differentiable sampling path gφ. This lets us use pathwise gra-
dient estimators [34], which typically have lower variance than the score-function alternatives [60].

3.2.1 Distribution over Weights & Noise Variances

We consider two different variational families for the distribution over weights and noise variances,
qφ(L,Σ), depending on the modeling assumptions over the noise. Under the equal variance model-
ing assumption, we parameterize our variational family as a (diagonal covariance) normal distribu-
tion, with φ directly encoding the mean and variance of the d(d− 1)/2 random variables for L and
the single random variable for σ. We use this simple distribution since we expect the posterior over
L to be relatively unimodal in the identifiable equal variance case.

In the non-equal variance case, and in the experiments using real-world data, we use a normaliz-
ing flow [41] for qφ(L,Σ). We expect that in this case the distribution over L could be much more
complicated, and so a more expressive density model is desirable. We use continuously indexed nor-
malizing flows [10], a recently-developed family of flows offering good performance on multimodal
densities. As desired, both the normal distribution and flows have pathwise gradient estimators.

3.2.2 Distribution over permutations

Since the set of d-dimensional permutation matricesPd is discrete and its size scales combinatorially
with d, it is challenging to specify a variational family of distributions over P ∈ Pd that permits both
density estimation and sampling for low-variance stochastic optimization of the ELBO objective in
equation (3). Since permutations are discrete, pathwise gradient estimators do not exist. Hence,
we consider relaxations to distributions over permutations. Our base distribution is the Boltzmann
distribution over Pd, parametrised by T ∈ Rd×d with probability PT (P ) ∝ exp〈T, P 〉 for P ∈ Pd.

Density estimation. Computing the partition function for the Boltzmann distribution,∑
P∈Pd PT (P ) involves an expensive enumeration and is therefore intractable to evaluate in high

dimensions. In order to approximate the partition function, we follow [28] in noting that the partition
function is equal to the matrix permanent perm(expT ). This can in turn be approximated tractably
via the Bethe permanent, denoted as permB(expT ). The Bethe permanent is known to satisfy
log permT − d

2 log 2 ≤ log permB T ≤ log permT , so that the density will be over-estimated,
by no more than a factor of d

2 log 2 [3]. We refer the reader to appendix C in [32] for an efficient
implementation of the Bethe permanent estimator based on message passing.

Pathwise Gradient Estimation. Exact sampling from the Boltzmann distribution is challenging for
similar reasons as exact density estimation. Moreover, even tractable low-rank approximations to the
Boltzmann distribution based on Gumbel-Matching distributions [55] are not useful as they involve
non-differentiable operations and so cannot be used to derive a pathwise gradient estimator. Instead,
we use a relaxation to the Gumbel-Matching distribution, the Gumbel-Sinkhorn distribution [31].

To draw a sample from the Gumbel-Sinkhorn distribution with parameters T , we calculate S((T +
γ)/τ), with S the Sinkhorn operator [50], γ a matrix of i.i.d standard Gumbel noise and τ a tem-
perature hyperparameter. S(T ) returns the fixed point obtained from repeated row and column
normalization, starting from the elementwise exp of T . In the limit of an infinite number of itera-
tions, this returns a doubly stochastic matrix. As τ approaches zero, the samples approach samples
from Pd, with a distribution given by the Gumbel-Matching distribution. A proof of this fact is
given in the appendix of [31]. As the Sinkhorn algorithm is a differentiable function of standard
Gumbel noise, we can use a pathwise gradient estimator of gradients involving samples from the
Gumbel-Sinkhorn distribution. Additional implementation details for our Sinkhorn approach are in
the appendix, Section B.

3.3 Prior Distributions

A key aspect of any probabilistic model is the choice of prior distribution for the unknown param-
eters. The prior incorporates domain knowledge into the problem. Moreover, specific choices of
prior can be computationally friendly.
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Gaussian Prior. We show in the appendix (Section A) that if we choose the prior over edge weights
to be an isotropic Gaussian, we can analytically marginalize out the weights, only requiring the
distribution over P to characterise the full posterior. Once we have P , it is straightforward to obtain
L, since it is a regression problem which can be solved tractably [54]. Although it is very convenient
to avoid modeling a distribution over L, in practice we find that the Gaussian generative assumption
on the weights is not particularly useful for datasets which we would like to analyse, for which the
underlying DAGs are typically sparse. A sample from the distribution over DAGs with Gaussian
edge weights will likely have many large- or moderate-weight edges.

Laplace Prior. Previous work finding the maximum-likelihood solution of equation (1) has added
a term λ‖W‖1 penalizing the L1 norm of the adjacency matrix [35, 62], which can be interpreted as
imposing an isotropic Laplace prior. The Laplace prior is known to induce sparsity in the posterior
[54], but there is generally no way to choose the regularization coefficient λwithout cross-validation.

Horseshoe Prior. Given the limitations of the above choices of priors, we instead propose to use
a horseshoe prior on L. The horseshoe prior has a sharp peak at zero and relatively flat tails which
tend to induce sparsity in the posterior while not significantly penalizing larger coefficients [7].
Mathematically, a variable βi has a horseshoe distribution if it is the result of first drawing a random
variable λi ∼ C+(0, 1) from a half-Cauchy distribution, then sampling βi ∼ N (0, λ2

i η
2). The

parameter η can be adjusted to encode the prior belief on the degree of the DAG generating the data.
Based roughly on [40], we suggest a rule of thumb of setting η ≈ ρ/(d

√
n), with ρ the prior belief

of the average degree of the DAG. This results in a sparsity prior that penalises more stringently
with more data, similarly to the BIC score [46].

3.4 Overall Approach

Incorporating all the above design choices, we obtain our overall algorithm for BCD Nets. The
pseudocode is shown in Algorithm 1. Here, qφ(L,Σ) is parameterized as either a normal distribution
or a normalizing flow depending on the modeling assumption of equal or non-equal variances. The
distribution qφ(P |L,Σ) is a Gumbel-Sinkhorn relaxation of the Gumbel-Matching distribution over
permutations, parameterized by a function hφ conditioned on L,Σ. For the function hφ, we use
a simple two-layer multi-layer perceptron. For stochastic optimization w.r.t. this distribution, we
additionally find it useful to use the straight-through gradient estimator [4]. This means that on the
forward pass of the backpropogation algorithm, we obtain the τ → 0 limiting value of the Sinkhorn
relaxation using the Hungarian algorithm [27], giving a hard permutation P . On the backward pass
the gradients are taken with respect to the finite-τ doubly-stochastic matrix P̃ . The prior is given
by p(P,L,Σ) = p(P )p(L)p(Σ) where p(L) is a horseshoe prior, p(P ) is a uniform prior over
permutations and p(Σ) is a relatively uninformative Gaussian prior on log Σ.

Algorithm 1: Bayesian Causal Discovery Nets (BCD Nets)
Input : data Xn

1 , Gradient-based optimizer step, temperature hyperparameter τ
Initialize parameterized distribution qφ, neural network hφ(L,Σ)
while not converged do

Draw L,Σ ∼ qφ(L,Σ)
Compute logits T = hφ(L,Σ)

Draw γ ∈ Rd×d i.i.d from standard Gumbel
Compute soft P̃ = S((T + γ)/τ), hard P = Hungarian(P̃ )
Compute g = ∇φ [ELBO(φ)] from equation (3) with sampled P,L,Σ, using P in the

forward pass and P̃ in the backward pass
Update φ via step using gradient g

end

4 Related Work

Structure Learning for Bayesian Networks: The field of Bayesian structure learning investigates
how to infer the structure of Bayesian networks from data. Learning the structure of graphical
models from data is known to be NP-hard [8]. Nevertheless, two main families of approaches have
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been developed to tackle this problem. The first are constraint-based approaches [52], aiming to infer
conditional independences from the data and learn a structure consistent with these independences.

The second family of approaches are score-based methods [30, 26], which assign a score to a pro-
posed DAG based on the goodness-of-fit to the data, and search over the space of DAGs to find
a structure which maximizes the score. The combinatorial size and discrete nature of the set of
possible DAGs in d dimensions present the main difficulties to this approach. Several competing
scores have been proposed [46, 1], which generally have an either implicit or explicit term penaliz-
ing complexity to avoid overfitting to the data. Recent work has focussed on developing approximate
algorithms that can return a high-scoring graph with probabilistic guarantees [36] and on exact meth-
ods for graphs under structural assumptions, such as an upper bound on the number of parents of a
node [12, 45], similar to the classic Chow-Liu algorithm [9]. Using these techniques it is possible to
search over all graphs where nodes have at most two parents for dimension d > 1000 [48].

Another set of works improve sampling from distributions over DAGs, e.g. approaches sampling
over orderings instead of over DAGs [53]. Given a particular network structure, there are several
approaches to learning DAG edge weights, even in the presence of latent variables [33].

Continuous Relaxations for Structure Learning: The problem of learning the structure of prob-
abilistic graphical models on undirected graphs can be formulated as a convex optimization prob-
lem [17], which allows fast inference even for large graphs. However, the acyclicity constraint for
learning directed graphs means continuous optimization cannot be applied directly. In recent years,
relaxation-based approaches to structure learning have emerged, based on the idea of learning the
adjacency matrix corresponding to a DAG via optimization over a matrix W ∈ Rd×d, instead of
in the set of adjacency matrices corresponding to DAGs. This approach was introduced in Zheng
et al. [62], with the least-squares loss ‖X −W>X‖2F used to measure the fit of the data to W . To
encourage W to approximately form an adjacency matrix, a penalty h(W ) was added to the loss,
where h(W ) = 0 only if W is a DAG. Originally the penalty h(W ) = Tr eW�W was used, and
subsequently different penalties have been proposed [61].

Particularly of interest to us is GOLEM [35], which specifically investigates relaxed optimization
approaches for the linear-Gaussian SEM that we consider. They point out the similarity of the
squared loss to the log-likelihood in equation (1), and show that the additional term log det(I −
W ) also serves as a penalty for non-DAG W . This allows optimization over W to maximize the
likelihood without the augmented Lagrangian optimization procedure used in Zheng et al. [62].

Learned Orderings: There are strong connections between our SEM setting and the problem of
learning an ordering for autoregressive models. An SEM is similar to an autoregressive model [2]
in the sense that the value at the ith index depends on (possibly) all of the values before i. It has
been observed that certain orderings for autoregressive models can lead to higher likelihood [20],
and subsequent work [25, 28] has developed methods to find the orderings which lead to the best
performance from the autoregressive model. The closest to our work is Li et al. [28], which uses
latent permutations to learn an ordering for an autoregressive model. However, this approach doesn’t
allow reparameterised gradients due to the hard assignment for the autoregressive order, and the
REINFORCE [60] gradient estimator is used instead of lower-variance reparameterised gradients.

5 Experiments

In this section we study the empirical performance of our method. On synthetic data, we show that
our distributional approach outperforms baselines, including the maximum likelihood approach, in
the low-data regime in terms of edges identified correctly. On a real-word protein dataset [44],
we also identify more edges correctly compared to the maximum-likelihood method. On a toy
causal inference problem, we outperform competing methods. Finally, we carry out an ablation with
various parts of our algorithm, showing the degradation in performance if we remove key parts. In
all cases we use the structural Hamming distance (SHD) [56] to quantify how close a certain DAG
is to another. The SHD measures how many insertions, deletions or flips are required to turn one
graph into another. We also use the CPDAG SHD (SHD-C) [56] which computes SHD up to the
equivalence class of completed partially directed acyclic graphs (CPDAG)s [42]. We give additional
experimental details in the appendix B. In every case when we give the SHD produced by our model,
this represents the SHD marginalized over our posterior, obtained by taking 100 samples of W from
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Figure 2: Distance between true graph and that estimated from BCD Nets, our variational approach,
compared to several baselines described in the main text. Lower is better.

our converged posterior, computing the SHD and taking the average of these SHDs. Error bars are
given by 5 random seeds for the data generation or choice of data subset.

5.1 Synthetic Data

We study our model’s performance in the low-data regime, with n = 100 data points. We expect
that when there is little data, the maximum-likelihood DAG may not be particularly representative
of the DAGs that could have plausibly made the data, and so a Bayesian approach which can assign
posterior density to multiple candidates may correctly identify more edges. In this experiment, we
draw Erdős-Renyi graphs [14] with average degree equal to 1 or 2, denoted ER1 and ER2. The
weights are generated uniformly in {−2,−0.5} ∪ {0.5, 2} following [35]. The data is generated
in the equal-variance case so that the ground-truth is identifiable and the SHD is meaningful. We
evaluate with Gaussian noise as well as with Gumbel noise to test how our method behaves under a
misspecified likelihood. The distribution over the weights also induces some misspecification, since
the weights are not drawn from the modelled prior of a horseshoe.

We compare against GOLEM [35], which attempts to find the maximum-likelihood solution of
equation (1) using the continuous relaxation introduced in [62]. We found that the hyperparameters
given by the authors did not lead to optimal performance with low data, so we found the best ones via
a cross-validation scheme given in appendix B. We also include results from GADGET [58], a recent
highly-optimized state-of-the-art Monte Carlo method for Bayesian causal discovery for DAGs,
using 300,000 iterations with 48 parallel chains. To compare against a baseline that is widely used in
practice, we also evaluate the DirectLiNGAM method [49], designed for non-Gaussian likelihoods.
Also included are two methods designed specifically for Gaussian DAGs, the greedy directed acyclic
graph search with equal error variance (GDSEEV) method [38], and the main method (‘Ghoshal’)
from [21]. For the latter, we were unable to find an implementation by the authors and used our own
implementation. We use the equal-variance formulations of GOLEM and BCD Nets.

Results are shown in figure 2. The null baseline is a method that simply predicts no edges. We
observe that we reliably obtain significantly lower SHD than MLE approaches, especially at higher
d and degree where we tend to recover a significant fraction of the edges. For example, in the
Gaussian noise case with average degree 2, for dimension 64 we get an SHD of 59±14 compared to
GOLEM’s 205±30. This corresponds to double the true positive rate while having a false discovery
rate one-third of GOLEM’s. We give full plots of the true positive rate, false positive rate and false
discovery rates in the appendix, Section D.1. The Bayesian GADGET method also obtains better
results than MLE methods, with BCD Nets’ match to this exact sampling method suggesting that
our approach finds a variational posterior close to the real posterior. Compared to GADGET, our
method is generally faster (see table 2) and gives an explicit parametric form for the posterior, instead
of simply giving samples. Furthermore, the ELBO is a natural metric to evaluate convergence, while
for GADGET it is unclear how many iterations are required to mix3. DirectLiNGAM is competitive
on the Gumbel likelihood, fitting its linear non-Gaussian framework.

3An earlier version of this paper reported worse SHDs for GADGET after using 50,000 steps. Increasing
the number of iterations by 6 times resulted in much better mixing
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5.2 Protein Dataset

We also evaluate on a benchmark protein signalling dataset [44]. The d = 11-dimensional dataset
consists of n = 853 observations, with an expert-provided ground-truth graph. The true structure
has 17 edges. We train on random draws of 100 observations. The results are shown in table 1. For
GOLEM, both the equal-variance and non-equal variance maximum-likelihood methods perform
worse than predicting no edges at all. Our equal variance method does not perform much better. Our
non-equal variance method performs much better than maximum likelihood, obtaining an SHD of
15 from only 100 samples, close to the SHD of 14 obtained by GOLEM-NV when using the entire
853 data points (reported in Ng et al. [35]). NOTEARS, from [62] performs better than GOLEM.
Meanwhile, the score-based GES method also achieves an SHD-C of 14, showing that our method
approaches the performance of methods which enumerate all graphs (but scale badly). The non-
probabilistic DLiNGAM method achieves similar SHD, although has the lowest SHD-C, indicating
it gets some edges correct but the direction wrong. Finally, GADGET [58] achieves a slightly lower
SHD of 13.9, within error of our approach and GES.

5.3 Causal Inference

Table 1: Causal discovery approaches on the pro-
tein dataset with reduced data (n = 100)

# Edges SHD SHD-C

GOLEM-EV 1.5 ± 1.3 18.5 ± 1.3 18.5 ± 1.3
GOLEM-NV 1.5 ± 1.3 18.5 ± 1.3 18.5 ± 1.3
NOTEARS 18.5 ± 0.8 16.5 ± 0.9 17 ± 1.0
GES 12 ±0.9 — 14.6 ± 2.0
PC 4.6 ± 0.5 — 14.0 ± 0.6
GADGET 4.7 ± 0.5 13.9 ± 1.2 13.7 ± 0.6
DLiNGAM 4.6 ± 0.5 14.8 ± 1.0 12.4± 0.5
BCD Nets-EV 11.3 ± 1.2 19.5 ± 0.3 19.4 ± 0.1
BCD Nets-NV 9.2 ± 2.0 14.7 ± 0.9 14.0 ± 1.0

To illustrate how our distributional approach
could be used for causal inference, we test the
ability of our method to make interventional
predictions. In this experiment we generate a
synthetic ER graph of degree 1 as in Section
5.1. We then choose a random edge in the graph
between nodes i, j, with xi → xj . Using the
ground-truth parameters W ∗,Σ∗, we choose a
random value a and sample xj ∼ do(xi =
a|W ∗,Σ∗), by directly intervening in the data-
generating process. For an estimated Ŵ , Σ̂ we
can also sample xj ∼ do(xi = a|Ŵ , Σ̂). For
our distributional approach, we marginalize over the final posterior distribution of parameters
qφ(W,Σ), drawing xj from the distribution with probability EW,Σ∼qφ [P (do(xi = a|W,Σ))]. We
then compare the sampled empirical distribution of xj to the ground truth interventional distribu-
tion. Our marginalization over the posterior allows us to get significantly closer to the true interven-
tional distribution, measured by the Wasserstein distance (e.g. 0.25 for the linear-Gaussian graph at
d = 64, compared to 2.8 for GOLEM). Full results as a function of d are given in appendix E.1.

5.4 Model Running Time

We expect the time taken to train our model will asymptotically scale as O(d3), similarly to
maximum-likelihood methods [35, 62]. In table 2 we give the time taken to train to convergence
as we vary the dimension d. The time taken for GOLEM includes the time required to choose the
sparsity parameter λ via cross-validation. BCD Nets didn’t need any cross-validation to choose
sparsity parameters. All the methods were run on the same hardware, a single Nvidia 2080Ti GPU
with 16 CPUs. Our method takes more time to converge than GOLEM. This is not surprising, since
we are training a neural network with many Sinkhorn iterations per optimization step. The Ghoshal
algorithm [21] is very fast in comparison, consisting only of a precision estimation step then d stages
of matrix multiplication. At high d, GADGET is slower than our method. We found that speeding
up GADGET by reducing the number of iterations resulted in dramatically reduced performance.

5.5 Increasing Dataset Size

We expect that our method performs best in the low-data regime, where a Bayesian approach with
correctly-specified priors has an advantage over non-Bayesian methods. To show this, we perform
experiments with increased amounts of data, results of which are shown in figure 3. We see that the
advantage of BCD Nets is reduced as the quantity of data used is increased. We suspect that our
variational method suffers from a more challenging optimization problem as the posterior becomes
more peaked around the correct solution. Methods such as amortized inference or sequential Monte-
Carlo may help to combat this problem and improve our model at larger n.
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Figure 3: Structural Hamming Distance to the ground truth as a function of n, on 64-dimensional,
degree 1 Erdős-Renyi graphs. With large amounts of data, baselines catch up to BCD Nets.

5.6 Ablation

Table 2: The computing time required, in minutes,
to converge to a solution for several approaches.
d 8 16 32 64 128

GOLEM 25 30 40 65 90
GADGET 40 150 385 635 1200
GHOSHAL <1 <1 <1 3 15
BCD Nets (Ours) 50 160 300 350 900

Finally we perform an ablation of our algo-
rithm to illustrate the importance of architec-
tural choices. We use the d = 32 case, average
degree 1, with Gaussian likelihood. We report
the change in performance with a factored pos-
terior (Mean-Field) and with a Laplace prior
on the weights (Laplace) instead of a Horse-
shoe prior. We also report performance with
a fixed 100 Sinkhorn steps (Sinkhorn-100), as
opposed to the adaptive number that we use in our approach. We also report the KL-divergence
between the sample covariance and the covariance induced by the sampled parameters (Σ, L, P ),
which incorporates how well the posterior approximates the distribution of L, unlike SHD. We give
the results in table 3 and 4, in the appendix. Changing any of the parts of the algorithm result in
SHD increasing from 11 to around 30. Interestingly, under the Laplace prior the SHD is high but
the KL-divergence is only modestly higher than with the Horseshoe. This indicates a learned DAG
which can generate the data, but with extra edges due to an ineffective sparsity prior.

6 Conclusion

We introduce Bayesian Causal Discovery Nets, a framework for performing Bayesian causal discov-
ery for linear-Gaussian structural equation models. BCD Nets exploit recent advances in variational
inference to flexibly model the posterior distribution over SEM parameters given data, outperform-
ing methods that only return point estimates. An explicit posterior is also useful in the high-stakes,
low-data regimes where causal inference is increasingly used [57, 47].

On the other hand, while indications are that our method may be robust to a small amount of mis-
specification, the validity of the linear modelling assumption should be carefully considered in ap-
plications. Assuming a linear relationship is present where a highly non-linear one exists could
lead to harmfully incorrect inferences, particularly for minority groups with complex and under-
studied variable interactions. Furthermore, our approach assumes that no unobserved confounders
are present: variables which influence the observed variables but are not themselves observed. Since
it is difficult to obtain useful inferential results under the effects of possibly arbitrary unknown con-
founders, the assumption of no unobserved confounders is standard in many areas of causal infer-
ence [38]. However, this assumption is unlikely to hold exactly in real applications, and so the
possible influence of unobserved confounders must be seriously considered and their influence re-
duced as much as possible before using our method. Future work could explore improvements to
inference speed by replacing the Sinkhorn with more efficient algorithms from optimal transport.
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