
Batch Bayesian optimisation via density-ratio
estimation with guarantees

Rafael Oliveira1,2∗
rafael.oliveira@sydney.edu.au

Louis C. Tiao3
louis.tiao@sydney.edu.au

Fabio Ramos3,4
fabio.ramos@sydney.edu.au

1Brain and Mind Centre, the University of Sydney, Australia
2ARC Training Centre in Data Analytics for Resources and Environments, Australia

3School of Computer Science, the University of Sydney, Australia
4NVIDIA, USA

Abstract

Bayesian optimisation (BO) algorithms have shown remarkable success in ap-
plications involving expensive black-box functions. Traditionally BO has been
set as a sequential decision-making process which estimates the utility of query
points via an acquisition function and a prior over functions, such as a Gaussian
process. Recently, however, a reformulation of BO via density-ratio estimation
(BORE) allowed reinterpreting the acquisition function as a probabilistic binary
classifier, removing the need for an explicit prior over functions and increasing
scalability. In this paper, we present a theoretical analysis of BORE’s regret and
an extension of the algorithm with improved uncertainty estimates. We also show
that BORE can be naturally extended to a batch optimisation setting by recasting
the problem as approximate Bayesian inference. The resulting algorithms come
equipped with theoretical performance guarantees and are assessed against other
batch and sequential BO baselines in a series of experiments.

1 Introduction

Bayesian optimisation (BO) algorithms provide flexible black-box optimisers for problems involving
functions which are noisy or expensive to evaluate [1]. Typical BO approaches place a probabilistic
model over the objective function which is updated with every new observation in a sequential
decision-making process. Most methods are based on Gaussian process (GP) surrogates [2], which
provide closed-form analytic expressions for the model’s posterior distribution and allow for a number
of theoretical performance guarantees [3–5]. However, GP surrogates have a number of limitations,
such as not easily scaling to high-dimensional domains, high computational complexity and requiring
a careful choice of covariance function and hyper-parameters [2]. Non-GP-based BO methods have
also been proposed in the literature, such as BO methods based on neural networks [6, 7] and random
forests [8] regression models.

As an alternative to improving the model, Tiao et al. [9] focus on the acquisition function, which
in BO frameworks represents the guide that takes the model predictions into account. They show
that one can derive the acquisition function directly without an implicit model by reinterpreting

∗Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

the expected improvement [4, 1] via a density-ratio estimation problem. Applying this perspective,
the acquisition function can then be derived as a classification model, which can be represented
by flexible parametric models, such as deep neural networks, and efficiently trained via stochastic
gradient descent. The resulting method, called Bayesian optimisation via density-ratio estimation
(BORE) is then shown to outperform a variety of traditional GP-based and non-GP baselines.

Despite the significant performance gains, BORE has only been applied to a sequential setting and
not much is known about the method’s theoretical guarantees. Batch BO methods have the potential
to speed up optimisation in settings where multiple queries to the objective function can be evaluated
simultaneously [10–13]. Given its flexibility to apply models which can scale to large datasets, it is
therefore a natural question as to whether BORE can be readily extended to the batch setting in a
computationally efficient way.

In this paper, we extend the BORE framework to the batch setting and analyse its theoretical
performance. To derive theoretical guarantees, we first show that the original BORE can be improved
by accounting for uncertainty in the classifier’s predictions. We then propose a novel method, called
BORE++, which uses an upper confidence bound over the classifier’s predictions as its acquisition
function. The method comes equipped with guarantees in the probabilistic least-squares setting. We
provide extensions for both BORE and BORE++ to the batch setting. Lastly, we present experimental
results demonstrating the performance of the proposed algorithms in practical optimisation problems.

2 Background

We consider a global optimisation problem over a compact search space X ⊂ Rd of the form:

x∗ ∈ argmin
x∈X

f(x) , (1)

where f : X → R is assumed to be a black-box objective function, i.e., we have no access to gradients
nor analytic formulations of it. In addition, we are only allowed to run up to T rounds of function
evaluations, where we might collect single points or batches of observations yt := f(xt) + εt, which
are corrupted by additive noise εt, for t ∈ {1, . . . , T}.

2.1 Bayesian optimisation

Bayesian optimisation (BO) algorithms approach the problem in Equation 1 via sequential decision
making [1]. At each iteration, BO selects a query point by maximising an acquisition function a:

xt ∈ argmax
x∈X

a(x|Dt−1) (2)

The acquisition function encodes information provided by the observations collected so far Dt :=
{xi, yi}t−1i=1 using a probabilistic model over f , typically a Gaussian process (GP) [2], conditioned on
the data. After collecting an observation yt, the dataset is updated with the new query-observation
pair Dt := Dt−1 ∪ xt, yt. This process then repeats for a given number of iterations T .

2.2 Bayesian optimisation via density-ratio estimation (BORE)

The expected improvement (EI) [4, 14] is a popular acquisition function in the BO literature and
the basis for many BO algorithms. At each iteration t ≥ 1, one can define τ := mini<t yt as an
incumbent target. EI is then defined as:

aEI(x|Dt−1) := E[max {0, τ − f(x)} |Dt−1] . (3)

In the case of a GP prior on f |Dt−1 ∼ GP(µt−1, kt−1), the EI is available in closed form as a
function of the GP posterior. However, the EI may be reformulated without the need for a prior.

Under mild assumptions, Bergstra et al. [15] showed that the EI can be formulated as a density ratio
between two probability distributions. Let `(x) := p(x|y ≤ τ) represent the probability density
over x ∈ X conditioned on the observation y being below a threshold τ ∈ R. Conversely, let
g(x) := p(x|y > τ). For γ ∈ [0, 1], the γ-relative density ratio between these two densities is:

ργ(x) :=
`(x)

γ`(x) + (1− γ)g(x)
, x ∈ X , (4)

2

Algorithm 1: BORE
1 for t ∈ {1, . . . , T} do
2 τ := Φ̂−1t−1(γ)
3 zi := I[yi ≤ τ], i ∈ {1, . . . , t− 1}
4 D̃t−1 := {xi, zi}t−1i=1

5 π̂t ∈ argminπ L[π|D̃t−1]
6 xt ∈ argmaxx∈X π̂t−1(x)
7 yt := f(xt) + εt
8 end

noting that γ = 0 leads to the ordinary probability density ratio definition, ρ0(x) = `(x)/g(x). Now if
we choose τ := Φ−1(γ), where Φ(s) := p(y ≤ s) represents the cumulative distribution function of
the marginal distribution of observations,2 for s ∈ R, and then replace τ in Equation 3, Bergstra et al.
[15] have shown that3 aEI(x) ∝ ργ(x), for x ∈ X . Based on this fact, Tiao et al. [9] showed:

aEI(x) ∝ ργ(x) = γ−1π(x), x ∈ X , (5)

where π(x) := p(y ≤ τ |x) can be approximated by a probabilistic classifier trained with a proper
scoring rule, such as the binary cross-entropy loss:

Lt[π] :=

t∑
i=1

zi log π(xi) + (1− zi) log(1− π(xi)) . (6)

Other examples of proper scoring rules include the least-squares loss, which leads to probabilistic
least-squares classifiers [16], and the zero-one loss. We refer the reader to Gneiting and Raftery [17]
for a review and theoretical analysis on this topic.

BORE is summarised in Algorithm 1. As seen, the marginal observations distribution CDF
Φ(s) := p(y ≤ s) is replaced by the empirical approximation Φ̂t(s) := 1

t

∑t
i=1 I[yi ≤ s] and

its corresponding quantile function Φ̂−1t . At each iteration, observations are labelled according to
the estimated γth quantile τ , and a classifier π̂t is trained by minimising the loss L[π|D̃t] over the
data points D̃t. A query point xt is chosen by maximising the classifier’s probabilities, which in
our case corresponds to maximising the expected improvement. A new observation is collected,
and the algorithm continues running up to a given number of iterations T . As demonstrated, no
explicit probabilistic model for f is needed, only a classifier, which can be efficiently trained via, e.g.,
stochastic gradient descent.

3 Analysis of the BORE framework

In this section, we analyse limitations of the BORE framework in modelling uncertainty and analyse
its effects on the algorithm’s performance. As presented in Section 2.2, at each iteration t ≥ 1, the
original BORE framework trains a probabilistic classifier π̂t(x) to approximate p(y ≤ τ |x), where τ
denotes the γth quantile of the marginal observations distribution, i.e., p(y ≤ τ) = γ. This approach
leads to a maximum likelihood estimate for the classifier π̂, which may not properly account for the
uncertainty in the classifier’s approximation.

Since BORE is based on probabilistic classifiers, instead of regression models as in traditional BO
frameworks [1], a natural first question to ask is whether a classifier can guide it to the global optimum
of the objective function. The following lemma answers this question and is a basis for our analysis.
Lemma 1. Let f : X → R be a continuous function over a compact space X . Assume that, for
any x ∈ X , we observe y = f(x) + ε, where ε is i.i.d. noise with a strictly monotonic cumulative
distribution function Φε : R→ [0, 1]. Then, for any τ ∈ R, we have:

argmax
x∈X

p(y ≤ τ |x, f) = argmin
x∈X

f(x) . (7)

2Note that p(y ≤ s) =
∫
X p(y ≤ s|x)p(x) dx, where we may assume p(x) uniform.

3Bergstra et al. [15] and Tiao et al. [9] also rely on the mild assumption that p(x|y) ≈ `(x) for all y ≤ τ .

3

Proof. As the observation noise CDF is monotonic, by basic properties of the argmax, we have:

argmax
x∈X

p(y ≤ τ |x, f) = argmax
x∈X

Φε(τ − f(x)) = argmin
x∈X

f(x) , (8)

which concludes the proof.

According to this lemma, maximising class probabilities is equivalent to optimising the objective
function when the classifier is optimal, i.e., it has perfect knowledge of f . This result holds for any
given threshold τ ∈ R. We only make a mild assumption on the CDF of the observation noise Φε,
which is satisfied for any probability distribution with support covering the real line (e.g. Gaussian,
Student-T, Cauchy, etc.).4

To analyse BORE’s optimisation performance, we will aim to bound the algorithm’s instant regret:

rt := f(xt)− f(x∗), t ≥ 1, (9)

and its cumulative version RT :=
∑T
t=1 rt. Sub-linear bounds on RT lead to a no-regret algorithm,

since limT→∞
RT

T = 0 and mint≤T rt ≤ RT

T .

Assuming that there is an optimal classifier π∗ : X → [0, 1], which is such that π∗(x) = p(y ≤
τ |x, f), for a given τ ∈ R, we can directly relate the classifier probabilities to the objective function
f values, since:

π∗(x) = p(y ≤ τ |x, f) = Φε(τ − f(x)) ∴ f(x) = τ − Φ−1ε (π∗(x)) . (10)

The existence of the inverse Φ−1ε is ensured by the strict monotonicity assumption on Φε in Lemma 1.
Under this observation, the algorithm’s regret at any iteration t ≥ 1 can be bounded in terms of
classifier probabilities:

rt = f(xt)− f(x∗) = Φ−1ε (π∗(x∗))− Φ−1ε (π∗(xt)) ≤ Lε(π∗(x∗)− π∗(xt)) , (11)

where Lε is any Lipschitz constant for Φ−1ε , which exists since X is compact. Therefore, we should
be able to bound BORE’s regret by analysing the approximation error for π̂t at each iteration t ≥ 1.

Although approximation guarantees for classification algorithms under i.i.d. data settings are well
known [18], each observation in BORE depends on the previous ones via the acquisition function.
This process is also not necessarily stationary, so that we cannot apply known results for classifiers
under stationary processes [19]. In the next section, we consider a particular setting for learning a
classifier which allows us to bound the prediction error under BORE’s data-generating process.

3.1 Probabilistic least-squares classifiers

We consider the case of probabilistic least-squares (PLS) classifiers [20, 21]. In particular, we model a
probabilistic classifier π : X → [0, 1] as an element of a reproducing kernel Hilbert space (RKHS)H
associated with a positive-definite kernel k : X ×X → R. A RKHS is a space of functions equipped
with inner product 〈·, ·〉k and norm ‖·‖k :=

√
〈·, ·〉k [22]. For the purposes of this analysis, we will

also assume that k(x,x) ≤ 1, for all X .5 This setting allows for both linear and non-parametric
models. Gaussian assumptions on the function space would lead us to GP-based PLS classifiers [2],
but we are not restricted by Gaussianity in our analysis. If the kernel k is universal, as Φε is injective,
we can also see that the RKHS assumption allows for modelling any continuous function.

For a given τ ∈ R, a PLS classifier is obtained by minimising the regularised squared-error loss:

π̂t ∈ argmin
π∈H

t∑
i=1

(zi − π(xi))
2 + λ‖π‖2k , t ≥ 1, (12)

where λ > 0 is a given regularisation factor and zi := I[yi ≤ τ] ∈ {0, 1}. In the RKHS case, the
solution to the problem above is available in closed form [23, 16] as:

π̂t(x) = kt(x)T(Kt + λI)−1zt , x ∈ X , t ≥ 1, (13)

4This result could also be easily extended to distributions with bounded support as long as their CDF is
monotonic within it. However, we keep the support as R for simplicity, and the extension is left for future work.

5This assumption can always be satisfied by proper scaling.

4

where kt(x) := [k(x,x1), . . . , k(x,xt)]
T ∈ Rt, Kt := [k(xi,xj)]

t
i,j=1 ∈ Rt×t and zt :=

[z1, . . . , zt]
T ∈ Rt. This PLS approximation may not yield a valid classifier, since it is possi-

ble that π̂t(x) /∈ [0, 1] for some x ∈ X . However, it allows us to place a confidence interval on the
optimal classifier’s prediction, as presented in the following theorem, which is based on theoretical
results from the online learning literature [24, 25]. Our proofs can be found in the supplement.
Theorem 1. Given τ ∈ R, assume π(x) := Φε(τ − f(x)) is such that π ∈ H, and ‖π‖k ≤ b. Let
{xt}∞t=1 be a X -valued discrete-time stochastic process predictable with respect to the filtration
{Ft}∞t=0. Let {zt}∞t=1 be a real-valued stochastic process such that νt := zt − π(xt) is 1-sub-
Gaussian conditionally on Ft−1, for all t ≥ 1. Then, for any δ ∈ (0, 1), with probability at least
1− δ, we have that:

∀x ∈ X , |π(x)− π̂t(x)| ≤ βt(δ)σt(x), ∀t ≥ 1 , (14)

where βt(δ) := b+
√

2λ−1 log(|I + λ−1Kt|1/2/δ), with |A| denoting the determinant of matrix A,
and σ2

t (x) := k(x,x)− kt(x)T(Kt + λI)−1kt(x) , x ∈ X , t ≥ 1.

3.2 Regret analysis for BORE

We now consider BORE with a PLS classifier. For this analysis, we will assume an ideal setting
where τ is fixed, possibly corresponding to the true γth quantile of the observations distribution.
However, our results hold for any choice of τ ∈ R and can therefore be assumed to approximately
hold for a varying τ which is converging to a fixed value. In this setting, the algorithm’s choices are:
given by:

xt ∈ argmax
x∈X

π̂t−1(x) , (15)

where π̂t is the estimator in Equation 13. we can then apply Theorem 1 to the classifier-based regret
in Equation 11 to obtain a regret bound. For this result, we will also need the following quantity:

ξN := max
{xi}Ni=1⊂X

1

2
log |I + λ−1KN | , N ≥ 1 , (16)

where the maximisation is taken over the discrete set of locations {xi}Ni=1 ⊂ X and KN :=
[k(xi,xj)]

N
i,j=1. This quantity denotes the maximum information gain of a Gaussian process model

after N observations. We are now ready to state our theoretical result regarding BORE’s regret.
Theorem 2. Under the conditions in Theorem 1, with probability at least 1 − δ, δ ∈ (0, 1), the
instant regret of the BORE algorithm with a PLS classifier after T ≥ 1 iterations is bounded by:

rt ≤ Lεβt−1(δ)(σt−1(xt) + σt−1(x∗)), (17)

and the cumulative regret by:

RT ≤ LεβT (δ)

(√
4(T + 2)ξT +

T∑
t=1

σt−1(x∗)

)
. (18)

As Theorem 2 shows, the regret of the BORE algorithm in the PLS setting is comprised of two
components. The first term is related to the regret of a GP-UCB algorithm [see 26, Thr. 3] and its
known to grow sub-linearly for a few popular kernels, such as the squared exponential and the Matérn
class [3, 27]. The second term, however, reflects the uncertainty of the algorithm around the optimum
location x∗. If the algorithm never samples at that location, this second summation might have a
mostly linear growth, which will not lead to a vanishing regret. In fact, if we consider Equation 13
and a RKHS with a translation-invariant kernel, we see that, as soon as an observation zt = 1 is
collected at a location xt 6= x∗, that location will constitute the maximum of the classifier output.
Then the algorithm would keep returning to that same location, missing opportunities to sample at x∗.

It is worth noting that Theorem 2 reflects the regret of BORE in an idealistic setting where the
algorithm uses the optimal PLS estimator in the function spaceH. However, if we train a parametric
classifier, such as a neural network, via gradient descent, the behaviour will not necessarily be the
same, and the algorithm might still achieve a good performance. In the original BORE paper, for
instance, a parametric classifier is trained by minimising the binary cross-entropy loss [9] and leads
to a successful performance in experiments. Neural network models trained via stochastic gradient

5

descent are known to provide approximate samples of a posterior distribution [28, 29], instead of
an optimal best-fit predictor, which might make BORE behave like Thompson sampling [30] (see
discussion in the appendix). Nevertheless, Theorem 2 still shows us that BORE may get stuck into
local optima, which is not ideal for BO methods. In the next section, we present an extension of the
BORE framework which addresses this shortcoming.

4 BORE++: improved uncertainty estimates

As discussed in the previous section, the lack of uncertainty quantification in the estimation of the
classifier for the original BORE might lead to sub-optimal performance. To address this shortcoming,
we present an approach for uncertainty quantification in the BORE framework which leads to
improvements in performance and theoretical optimality guarantees. Our approach is based on using
an upper confidence bound (UCB) on the predicted class probabilities as the acquisition function for
BORE. Due to its improved uncertainty estimates, we call this approach BORE++.

4.1 Class-probability upper confidence bounds

We propose replacing π̂t in Algorithm 1 by an upper confidence bound which is such that:
∀t ≥ 1, π∗(x) ≤ πt,δ(x), ∀x ∈ X (19)

which with probability greater than 1− δ, given δ ∈ (0, 1). Therefore, πt,δ(x) represents an upper
quantile over the optimal class probability π∗(x). BORE++ selects xt ∈ argmaxx∈X πt−1,δ(x).

To derive an upper confidence bound on a classifier’s predictions π(x), we can take a few different
approaches. For a parametric model πθ, a Bayesian model updating the posterior p(θ|Dt) leads to
a corresponding predictive distribution over πθ(x). This is the case of ensemble models [31], for
instance, where we approximate predictions p(y ≤ τt|x,Dt) ≈ 1

M

∑M
i=1 πθi(x) with θi ∼ p(θ|Dt).

Instead of using the expected class probability, however, BORE++ uses an (empirical) quantile
approximation for πt,δ to ensure Equation 19 holds. Bayesian neural networks [32], random forests
[33], dropout methods, etc. [34], also constitute valid approaches for predictive uncertainty estimation.
An alternative approach is to place a non-parametric prior over π∗, such as a Gaussian process model
[2], which allows for the modelling of uncertainty directly in the function space where π∗ lies. In the
next section, we present a concrete derivation of BORE++ for the PLS classifier setting which takes
the non-parametric perspective and allows us to derive theoretical performance guarantees.

4.2 BORE++ with PLS classifiers

In the PLS setting, the result in Theorem 1 gives us a closed-form expression for a classifier upper
confidence bound satisfying the condition in Equation 19. Given δ ∈ (0, 1), we set:

πt,δ(x) := min(1,max(0, π̂t(x) + βt(δ)σt(x))) ∈ [0, 1] , x ∈ X , (20)
where σt and βt are set according to Theorem 1. We then obtain the following result for BORE++.
Theorem 3. Under the assumptions in Theorem 1, running the BORE++ algorithm with a PLS
classifier πt,δ as defined above yields, with probability at least 1− δ, an instant regret bound of:

rt ≤ 2Lεβt(δ)σt(x) , ∀t ≥ 1 , (21)
and a cumulative regret bound after T ≥ 1 iterations:

RT ≤ 4LεβT (δ)
√

(T + 2)ξT ∈ O
(√

T (b
√
ξT + ξT)

)
. (22)

According to Theorem 3, the regret of BORE++ vanishes if the maximum information gain ξT
grows sub-linearly, since limT→∞

RT

T = 0 and mint≤T rt ≤ RT

T . Sub-linear growth is known
to be achieved for popular kernels, such as the squared exponential, the Matérn family and linear
kernels [3, 27]. This result also tells us that theoretically BORE++ performs no worse than GP-UCB
since they share similar regret bounds [3, 26]. However, in practice, the BORE++ framework offers
a series of practical advantages over GP-UCB, such as no need for an explicit surrogate model,
and a classifier which does not need to be a GP and can therefore be more flexible and scalable to
high-dimensional problems and large amounts of data. The connection with GP-UCB, instead, brings
us new insights into how the density-ratio BO algorithm can still share some of the well known
guarantees of traditional BO methods.

6

5 Batch BORE

This section proposes an extension of the BORE framework which allows for multiple queries to
the objective function to be performed in parallel. Although many methods for batch BO have
been previously proposed in the literature, we here focus on approaching batch optimisation as
an approximate Bayesian inference problem. Instead of having to derive complex heuristics to
approximate the utility of a batch of query points, we can view points in a batch as samples from a
posterior probability distribution which uses the acquisition function as a likelihood.

5.1 BORE batches via approximate inference

Applying an optimisation-as-inference perspective to BORE, we can formulate a batch BO algorithm
which does not require an explicit regression model for f . The classifier π̂(x) ≈ p(y ≤ τ |x) naturally
turns out as a likelihood function over query locations x ∈ X . Since the search space X is compact,
we can assume a uniform prior distribution p(x) ∝ 1. Also note that the normalisation constant in
this case is simply

∫
X p(y ≤ τ |x)p(x) dx = p(y ≤ τ) = γ. Our posterior distribution then becomes:

`(x) = p(x|y ≤ τ) =
p(y ≤ τ |x)p(x)

p(y ≤ τ)
. (23)

Therefore, we formulate a batch version of BORE as an inference problem aiming for:
q∗ ∈ argmin

q∈P
DKL(q||`), (24)

where DKL(q||`) denotes the Kullback-Leibler (KL) divergence between q and `, and P represents
the space of probability distributions over X . Sampling from ` would allow us to obtain the points of
interest in the search space, including the optimum x∗ and other locations where y ≤ τ . However, as
the true p(y ≤ τ |x) is unknown, we instead formulate a proxy inference problem with respect to a
surrogate target distribution p̂t based on the classifier model. For BORE, we set p̂t(x) ∝ π̂t−1(x),
while for BORE++ the setting is p̂t(x) ∝ πt−1,δ(x). In contrast to `(x) ∝ p(y ≤ τ |x), the
normalisation constant for the surrogate distributions is unknown, leading us to a proxy problem of
minimising qt ∈ argminq∈P DKL(q||p̂t) at each iteration t ≥ 1. This variational inference problem
above can be efficiently solved via Stein variational gradient descent (SVGD) [35], described next.

5.2 Batch sampling via Stein variational gradient descent

In our implementation, we apply SVGD to approximately sample a batch Bt := {xt,i}Mi=1 of M ≥ 1
points from p̂t. Other approximate inference algorithms could also be applied. One of the main
advantages of SVGD, however, is that it encourages diversification in the batch, capturing the possible
multimodality of p̂t. Given the batch locations, observations can be collected in parallel and then
added to the dataset to update the classifier model.

SVGD is an approximate inference algorithm which represents a variational distribution q as a set of
particles {xi}Mi=1 [35]. The particles are initialised as i.i.d. samples from an arbitrary base distribution
and then optimised via a sequence of smooth transformations towards the target distribution, which
in our case corresponds to p̂t ∝ πt−1,δ . The SVGD steps are given by:

xit ← xit + αζt(x
i
t) , i ∈ {1, . . . ,M}, (25)

ζt(x) :=
1

M

M∑
j=1

k(xjt ,x)∇xj
t

log πt−1,δ(x
j) +∇xj

t
k(xjt ,x), (26)

where k : X × X → R is a positive-definite kernel, and α > 0 is a small step size. Intuitively,
the first term in the definition of ζt guides the particles to the modes of p̂t, while the second term
encourages diversification by repelling nearby particles. Theoretical convergence guarantees [36, 37]
and practical extensions, such as second-order methods [38, 39] and derivative-free approaches [40],
have been proposed in the literature. Further details on SVGD can be found in Liu and Wang [35].

5.3 Regret bound for Batch BORE++ with PLS classifiers

We follow the derivations in Oliveira et al. [41] to derive a distributional regret bound for batch
BORE++ with respect to its target sampling distribution `, which is presented in the following result.

7

Theorem 4. Under the same assumptions in Theorem 1, running batch BORE++ with πt,δ set as in
Equation 20, we obtain a bound on the instantaneous distributional regret:

r̄t := Ex∼p̂t [f(x)]− Ex∼`[f(x)] ≤ 2LεLπβt−1(δ)Eqt [σt−1] , t ≥ 1 , (27)

where Lπ := maxx∈X
1

π(x) , and on the cumulative distributional regret at T ≥ 1:

R̄T :=

T∑
t=1

r̄t ≤ 4LεLπβT (δ)
√

(T + 2)ξT ∈ O(
√
T (b
√
ξT +

√
ξT ξMT)) (28)

both of which hold with probability at least 1− δ.

As in the case of non-batch BORE++, the distributional regret bounds for the batch algorithm also
grow sub-linearly for most popular kernels, leading to an asymptotically vanishing simple regret.
Although different, to compare the distributional regret of batch BORE++ with the non-distributional
regret bounds for BORE++, we may consider a case where τ is set to the function minimum
τ := f(x∗) = minx∈X f(x) and the observation noise is small. In this case, the batch sampling
distribution would converge to a Dirac at the optimum, so that Ex∼`[f(x)] ≈ f(x∗). Compared to
the regret of non-batch BORE++ (Theorem 3) after collecting an equivalent number of observations
T ′ := MT , the expected regret of the batch version of BORE++ after T iterations is then lower by
a factor of ξT /ξMT , noting that ξT ≤ ξT ′ = ξMT . Therefore, batch BORE++ should be able to
achieve lower regret per runtime than sequential BORE++ with an equivalent number of observations.

6 Related work

Since their proposal by Schonlau et al. [42], batch Bayesian optimisation methods have appeared in
various forms in the literature. Many methods are based on heuristics derived from estimates given
by a Gaussian process regression model [11, 12, 43]. Others are based on Monte Carlo estimates of
multi-query acquisition functions [10, 13], optimising points over GP posterior samples [44], solving
local optimisation problems [45], or optimising over ensembles of acquisition functions [46]. Despite
that, the prevalent approaches to batch BO are still based on a GP regression model, which require
prior knowledge about the objective function and do not scale to high-dimensional problems. We
instead take a different approach by viewing BO as a density-ratio estimation problem following the
BORE framework by Tiao et al. [9]. For batch design, we take an optimisation-as-inference approach
[47, 48] by applying Stein variational gradient descent, a non-parametric approximate inference
method [35], which has been recently combined with GP-based BO [49, 50]. Our theoretical results,
however, are agnostic to the choice of inference algorithm. In contrast to traditional batch BO
methods, the inference approach does not require solving inter-dependent optimisation problems for
each batch point, as in heuristic-based approaches [43, 11, 12], Monte Carlo integration over the
GP posterior [10, 13], nor sampling from it [44]. SVGD allows batch selection to be solved in a
vectorised way, which can take advantage of hardware accelerators, such as GPUs.

7 Experiments

This section presents experiments assessing the theoretical results and demonstrating the practical
performance of batch BORE on a series of global optimisation benchmarks. We compared our
methods against GP-based BO baselines in both experiments sets. Additional experimental results,
including the sequential setting (Appendix E), a description of the experiments setup (Appendix E),
and further discussions on theoretical aspects can be found in the supplementary material.6

Theory assessment. We first present simulated experiments assessing the theoretical results in
practice, testing BORE and BORE++ in the PLS setting. As a baseline, we compare both methods
against GP-UCB. This experiment was run by generating a random base classifier in the RKHS
Hk and then a corresponding objective function via the inverse noise CDF Φ−1ε . The search space
was set as a uniformly-sampled finite subset of the unit interval X := [0, 1] ⊂ R. We applied the
theory-backed settings for BORE++ (Section 2.2) and GP-UCB [25], while BORE employed the
optimal PLS classifier (Equation 13).

6Code will be made available at https://github.com/rafaol/batch-bore-with-guarantees

8

https://github.com/rafaol/batch-bore-with-guarantees

(a) Regret (b) Objective function example

Figure 1: Theory assessment experiment. The plots show the averaged regret per iteration. Results
were averaged over 10 trials, and the shaded area indicates the 95% confidence interval.7

Figure 2: Performance on synthetic benchmarks. Plots show the simple regret, i.e., mint≤T rt, per
iteration. Results were averaged over 5 trials, and shaded areas indicate the 95% confidence interval.

As the results in Figure 1 show, BORE using an optimal PLS classifier simply gets stuck at a its initial
point, resulting in constant regret. BORE++, however, is able to progress in the optimisation problem
towards the global optimum, outperforming the GP-UCB baseline.

Global optimisation benchmarks. We evaluated the proposed SVGD-based batch BORE method
in a series of test functions for global optimisation comparing it against other BO baselines. In
particular, for our comparisons, we ran the locally penalised EI (LP-EI) method [11] and the Monte
Carlo based q-EI method [10], which are both based on the EI algorithm, like BORE. Results are
presented in Figure 2. All methods ran for T := 200 iterations and used of batch size of 10 evaluations
per iteration. Additional experimental details are deferred to the supplementary material.

As Figure 2 shows, batch BORE is able to outperform its baselines on most of the global optimisation
benchmarks. We also note that, in some case, due to its complexity the LP-EI method becomes
computationally infeasible after 100 iterations, having to be aborted halfway through the optimisation.
Batch BORE, however, is able to maintain steady performance throughout its runs.

Real-data benchmarks. Lastly, we compared the sequential version of BORE++ against BORE
and other baselines, including traditional BO methods, such as GP-UCB and GP-EI [1], the Tree-
structured Parzen Estimator (TPE) [15], and random search, on real-data benchmarks. In particular,
we assessed the algorithms on some of the same benchmarks present in the original BORE paper [9].

Results are presented in Figure 3. As the plots show, BORE++ presents significantly better perfor-
mance than BORE in the probabilistic least-squares (PLS) setting (i.e., βt := 0), as the theoretical
results suggested. In fact, it is possible to note that BORE (PLS) performs comparably to (or at

7Linear interpolation is applied to obtain the plotted confidence intervals when the number of trials is small.

9

(a) NN tuning on Parkinson’s dataset (b) NN tuning on CT slice dataset

(c) Racing line optimisation (d) Neural architecture search on MNIST data

Figure 3: Experimental results on real-data benchmarks. The plots show each algorithm’s simple
regret averaged across multiple runs. The shaded areas correspond to the 95% confidence intervals.

times worse than) random search, indicating that the optimal least-squares classifier by itself is
unable to properly capture the epistemic uncertainty. By using a neural network classifier trained
via gradient descent and a different loss function (cross-entropy), the original BORE is still able to
achieve top performance in most benchmarks. Both BORE versions are only surpassed by traditional
GP-based BO on the racing line optimisation problem, as observed in Tiao et al. [9], due to the
inherent smoothness the problem, and in the final iterations of the neural architecture search problem
by GP-EI. Interestingly, even though restricted to the kernel-based PLS setting, we observe that
BORE++ is able to surpass the original BORE in the NN tuning problems (SLICE and PARKINSONS),
while maintaining similar performance in other tasks. These results confirm that improved uncertainty
estimates can lead to practical performance gains.

8 Conclusion

This paper presented an extension of the BORE framework to the batch setting alongside the theo-
retical analysis of the proposed extension and an improvement over the original BORE. Theoretical
results in terms of regret bounds and experiments show that BORE methods are able to maintain
performance guarantees while outperforming traditional BO baselines. The main purpose of this
work, however, was to establish the theoretical foundations for the analysis and derivation of new
algorithmic frameworks for Bayesian optimisation via density-ratio estimation, equipping BO with
new tools based on probabilistic classification, instead of regression models.

As future work, we plan to investigate the theoretical properties of BORE under different loss
functions and analyse other batch design strategies. The theoretical contributions of this work can
also be extended to other versions of BORE, such as its recent multi-objective version [51], and
provide insights into other likelihood-free BO approaches [52]. We also consider integrating BORE++
with other probabilistic classification models embedded with uncertainty estimates, such as neural
network ensembles [53], random forests [54], and Bayesian generalised linear models, which should
enable further performance improvements.

10

Acknowledgments and Disclosure of Funding

The first author was supported by the Medical Research Future Fund (MRFF) Applied Artificial
Intelligence in Health Care grant (MRFAI000097).

References
[1] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Freitas. Taking

the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2016.

[2] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, Cambridge, MA, 2006.

[3] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian Process
Optimization in the Bandit Setting: No Regret and Experimental Design. In Proceedings of the
27th International Conference on Machine Learning (ICML 2010), pages 1015–1022, 2010.

[4] Adam D. Bull. Convergence Rates of Efficient Global Optimization Algorithms. Journal of
Machine Learning Research (JMLR), 12:2879–2904, 2011.

[5] Zi Wang, Beomjoon Kim, and Leslie Kaelbling. Regret bounds for meta Bayesian optimization
with an unknown Gaussian process prior. In Conference on Neural Information Processing
Systems, Montreal, Canada, 2018.

[6] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
M Patwary, Prabhat, and R Adams. Scalable Bayesian optimization using deep neural networks.
In International Conference on Machine Learning (ICML), Lille, France, 2015.

[7] Jost Tobias Springenberg, Klein Aaron, Stefan Falkner, and Frank Hutter. Bayesian optimization
with robust Bayesian neural networks. In Advances in Neural Information Processing Systems
(NIPS), Barcelona, Spain, 2016.

[8] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International conference on learning and intelligent
optimization, pages 507–523. Springer, 2011.

[9] Louis C Tiao, Aaron Klein, Matthias Seeger, Edwin V Bonilla, Cédric Archambeau, and Fabio
Ramos. Bayesian Optimization by Density-Ratio Estimation. In Proceedings of the 38th
International Conference on Machine Learning, Proceedings of Machine Learning Research.
PMLR, Jul 2021.

[10] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 2951–2959. Curran Associates,
Inc., 2012.

[11] Javier Gonzalez, Zhenwen Dai, Philipp Hennig, and Neil D. Lawrence. Batch Bayesian
optimization via local penalization. In International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 648–657, Cadiz, Spain, 2016.

[12] Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. Batched high-dimensional
Bayesian optimization via structural kernel learning. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 3656–3664, International Convention Centre, Sydney, Australia, 2017. PMLR.

[13] James T. Wilson, Frank Hutter, and Marc Peter Deisenroth. Maximizing acquisition functions
for Bayesian optimization. In 32nd Conference on Neural Information Processing Systems
(NeurIPS 2018), Montréal, Canada, 2018.

[14] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box
functions. Journal of Global Optimization, 13:455–492, 1998.

11

[15] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-
parameter Optimization. In Advances in Neural Information Processing Systems, pages 2546–
2554, 2011.

[16] Masashi Sugiyama, Hirotaka Hachiya, Makoto Yamada, Jaak Simm, and Hyunha Nam. Least-
squares probabilistic classifier: A computationally efficient alternative to kernel logistic regres-
sion. In Proceedings of International Workshop on Statistical Machine Learning for Speech
Processing (IWSML2012), Kyoto, Japan, 2012.

[17] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378, 2007.

[18] Andrew R Barron. Approximation and estimation bounds for artificial neural networks. Machine
learning, 14(1):115–133, 1994.

[19] Ingo Steinwart and Andreas Christmann. Fast learning from Non-i.i.d. observations. In Advances
in Neural Information Processing Systems 22, pages 1768–1776, 2009.

[20] Reinhard Selten. Axiomatic characterization of the quadratic scoring rule. Experimental
Economics, 1(1):43–62, 1998.

[21] J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classifier. Neural
Processing Letters, 9:293–300, 1999.

[22] Bernhard Schölkopf and Alexander J. Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT Press, Cambridge, Mass, 2002.

[23] Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Improved Algorithms for Linear
Stochastic Bandits. In Advances in Neural Information Processing Systems (NIPS), pages 1–19,
2010.

[24] Yasin Abbasi-Yadkori. Online Learning for Linearly Parametrized Control Problems. Phd,
University of Alberta, 2012.

[25] Audrey Durand, Odalric-Ambrym Maillard, and Joelle Pineau. Streaming kernel regression with
provably adaptive mean, variance, and regularization. Journal of Machine Learning Research,
19(1):650–683, 2018.

[26] Sayak Ray Chowdhury and Aditya Gopalan. On Kernelized Multi-armed Bandits. In Proceed-
ings of the 34th International Conference on Machine Learning (ICML), Sydney, Australia,
2017.

[27] Sattar Vakili, Kia Khezeli, and Victor Picheny. On information gain and regret bounds in
gaussian process bandits. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings
of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of
Proceedings of Machine Learning Research, pages 82–90. PMLR, 13–15 Apr 2021.

[28] Johnathan M Bardsley, Antti Solonen, Heikki Haario, and Marko Laine. Randomize-then-
optimize: A method for sampling from posterior distributions in nonlinear inverse problems.
SIAM Journal on Scientific Computing, 36(4):A1895 – A1910, 2014.

[29] Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic gradient descent as
approximate Bayesian inference. Journal of Machine Learning Research, 18, 2017.

[30] Daniel Russo and Benjamin Van Roy. An Information-Theoretic Analysis of Thompson
Sampling. Journal of Machine Learning Research (JMLR), 17:1–30, 2016.

[31] Lior Rokach. Ensemble-based classifiers. Artificial intelligence review, 33(1):1–39, 2010.

[32] William D Penny and Stephen J Roberts. Bayesian neural networks for classification: how
useful is the evidence framework? Neural networks, 12(6):877–892, 1999.

[33] Yali Amit and Donald Geman. Shape quantization and recognition with randomized trees.
Neural Computation, 9(7):1545–1588, 07 1997.

12

[34] Nicholas G. Polson and Vadim Sokolov. Deep learning: A Bayesian perspective. Bayesian
Analysis, 12(4):1275–1304, 2017.

[35] Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose Bayesian
inference algorithm. In Advances in Neural Information Processing Systems (NIPS), 2016.

[36] Qiang Liu. Stein variational gradient descent as gradient flow. In Advances in Neural Informa-
tion Processing Systems, pages 8854–8863, Long Beach, CA, USA, 2017.

[37] Anna Korba, Adil Salim, Michael Arbel, Giulia Luise, and Arthur Gretton. A non-asymptotic
analysis for Stein variational gradient descent. In Advances in Neural Information Processing
Systems, Vancouver, Canada, 2020.

[38] Gianluca Detommaso, Tiangang Cui, Alessio Spantini, Youssef Marzouk, and Robert Scheichl.
A Stein variational Newton method. In 32nd Conference on Neural Information Processing
Systems (NeurIPS 2018), Montréal, Canada, 2018.

[39] Chang Liu, Jingwei Zhuo, Pengyu Cheng, Ruiyi Zhang, Jun Zhu, and Lawrence Carin. Under-
standing and accelerating particle-based variational inference. In 36th International Conference
on Machine Learning (ICML 2019), Long Beach, CA, 2019.

[40] Jun Han and Qiang Liu. Stein variational gradient descent without gradient. In 35th International
Conference on Machine Learning (ICML 2018), 2018.

[41] Rafael Oliveira, Lionel Ott, and Fabio Ramos. No-regret approximate inference via Bayesian
optimisation. In Cassio de Campos and Marloes H. Maathuis, editors, Proceedings of the
Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, volume 161 of Proceedings
of Machine Learning Research, pages 2082–2092. PMLR, 27–30 Jul 2021.

[42] Matthias Schonlau, William J. Welch, and Donald R. Jones. Global versus local search
in constrained optimization of computer models. New Developments and Applications in
Experimental Design, 34:11–25, 1998.

[43] Javad Azimi, Alan Fern, and Xiaoli Z. Fern. Batch Bayesian optimization via simulation
matching. In Advances in Neural Information Processing Systems 23: 24th Annual Conference
on Neural Information Processing Systems 2010 (NIPS 2010), 2010.

[44] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabas Poczos. Asyn-
chronous Parallel Bayesian Optimisation via Thompson Sampling. In Proceedings of the 21st
International Conference on Artificial Intelligence and Statistics (AISTATS), Lanzarote, Spain,
2018.

[45] David Eriksson, Michael Pearce, Jacob R Gardner, Ryan Turner, and Matthias Poloczek.
Scalable global optimization via local Bayesian optimization. In 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019), 2019.

[46] Shuhan Zhang, Fan Yang, Changhao Yan, Dian Zhou, and Xuan Zeng. An efficient batch-
constrained Bayesian optimization approach for analog circuit synthesis via multiobjective
acquisition ensemble. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 41(1), 2022.

[47] Emanuel Todorov. General duality between optimal control and estimation. In Proceedings of
the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008.

[48] Matthew Fellows, Anuj Mahajan, Tim G. J. Rudner, and Shimon Whiteson. VIREL: A
variational inference framework for reinforcement learning. In 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 2019.

[49] Chengyue Gong, Jian Peng, and Qiang Liu. Quantile Stein Variational Gradient Descent for
Batch Bayesian Optimization. In Proceedings of the 36th International Conference on Machine
Learning, Long Beach, CA, USA, 2019.

[50] Rafael Oliveira, Lionel Ott, and Fabio Ramos. Distributional Bayesian optimisation for vari-
ational inference on black-box simulators. In 2nd Symposium on Advances in Approximate
Bayesian Inference, Vancouver, Canada, 2019.

13

[51] George De Ath, Tinkle Chugh, and Alma A. M. Rahat. MBORE: Multi-objective Bayesian
optimisation by density-ratio estimation. GECCO ’22, page 776–785, New York, NY, USA,
2022. Association for Computing Machinery.

[52] Jiaming Song, Lantao Yu, Willie Neiswanger, and Stefano Ermon. A general recipe for
likelihood-free Bayesian optimization. In Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages
20384–20404. PMLR, 17–23 Jul 2022.

[53] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles. In Neural Information Processing
Systems (NIPS), 2017.

[54] Matej Balog and Yee Whye Teh. The Mondrian Process for Machine Learning. Technical
report, University of Oxford, 2015.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [TODO]Code is
planned to be made available after the paper publication.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See supplement.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] Our focus is on theory assessments
rather than computational comparisons.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Background
	Bayesian optimisation
	Bayesian optimisation via density-ratio estimation (BORE)

	Analysis of the BORE framework
	Probabilistic least-squares classifiers
	Regret analysis for BORE

	BORE++: improved uncertainty estimates
	Class-probability upper confidence bounds
	BORE++ with PLS classifiers

	Batch BORE
	BORE batches via approximate inference
	Batch sampling via Stein variational gradient descent
	Regret bound for Batch BORE++ with PLS classifiers

	Related work
	Experiments
	Conclusion

