Under review as a conference paper at ICLR 2023

TWOFER: TACKLING CONTINUAL DOMAIN SHIFT
WITH SIMULTANEOUS DOMAIN GENERALIZATION
AND ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In real-world applications, deep learning models often run in non-stationary en-
vironments where the target data distribution continually shifts over time. There
have been numerous domain adaptation (DA) methods in both online and offline
modes to improve cross-domain adaptation ability. However, these DA methods
typically only provide good performance after a long period of adaptation, and
perform poorly on new domains before and during adaptation, especially when
domain shifts happen suddenly and momentarily. On the other hand, domain gen-
eralization (DG) methods have been proposed to improve the model generaliza-
tion ability on unadapted domains. However, existing DG works are ineffective
for continually changing domains due to severe catastrophic forgetting of learned
knowledge. To overcome these limitations of DA or DG in tackling continual
domain shifts, we propose Twofer, a framework that simultaneously achieves
target domain generalization (TDG), target domain adaptation (TDA), and forget-
ting alleviation (FA). Twofer includes a training-free data augmentation module
to prepare data for TDG, a novel pseudo-labeling mechanism to provide reliable
supervision for TDA, and a prototype contrastive alignment algorithm to align dif-
ferent domains for achieving TDG, TDA and FA. Extensive experiments on Digits,
PACS, and Domain Net datasets demonstrate that Twofer substantially outper-
forms state-of-the-art works in Continual DA, Source-Free DA, Test-Time/Online
DA, Single DG, Multiple DG and Unified DA&DG. We envision this work as
a significant milestone in tackling continual data domain shifts, with improved
performance across target domain generalization, adaptation, and forgetting alle-
viation abilities.

1 INTRODUCTION

A major concern in applying deep learning models to real-world applications is whether they are
able to deal with environment changes over time, which present significant challenges with data dis-
tribution shift. When the shift is small, deep learning models may be able to handle it because their
robustness is often evaluated and improved before deployment. However, when the data distribution
shifts significantly, model performance on new scenarios could deteriorate to a much lower level.
For example, surveillance cameras used for environmental monitoring can work normally with ex-
cellent performance on clear days, but have inferior performance or even become ‘blind’ when the
weather turns bad or the lighting conditions become poor (Bak et al., [2018). As another example,
consider conducting lung imaging analysis for corona-viruses, deep learning models may present
excellent performance after being trained on a large number of samples for certain variant (e.g.,
the Alpha variant of COVID-19), but are difficult to provide accurate and timely analysis for later
variants (e.g., the Delta or Omicron variant) and future types of corona-viruses (Singh et al., [2020)
when they just appear. Addressing such continual data shifts is very challenging. In the following,
we will first discuss some of the related works in domain adaptation and generalization, highlight
their limitations, and then introduce our approach.

Domain adaptation (DA) methods have been proposed to tackle continual data drifts in dynamic
environment in either online or offline mode. For example, Continual DA (Liu et al., 2020; Ros-
tami, [2021)) starts from a labeled source domain and continually adapts the model to various tar-
get domains, while keeping the model performance from degrading significantly on seen domains.

Under review as a conference paper at ICLR 2023

However, existing Continual DA works often assume that the source domain can be accessed at all
time, which may be difficult to guarantee in practical scenarios, especially considering the possi-
ble limitation on memory storage and regulations on privacy or intellectual property. Source-Free
DA (Yang et al.| 2021} |Qu et al., [2022) can overcome this issue and achieve target adaptation with-
out the source domain data. In addition, Test-Time or Online DA (Wang et al., 2022} Iwasawa &
Matsuo, 2021} |[Panagiotakopoulos et al.l 2022)) can improve the target model performance with a
small training cost; however, the target domain data is only learned once by the model and the per-
formance improvement is limited (higher improvement would require a large amount of data). With
these DA methods, although the model may perform better on the new target domain after sufficient
adaptation, its performance on the target domain before and during the adaptation process, which
we call the ‘unfamiliar period’, is often poor. In cases where the domain shift is sudden and the
duration of seeing new target domain is short, this problem becomes even more severe. In this work,
we believe that for many applications, it is very important to ensure that the model can also perform
reasonably well in such ‘unfamiliar period’ (i.e., before seeing a lot of target domain data). For in-
stance in environment surveillance, having poor performance under uncommon/unfamiliar weather
or lighting conditions may cause significant security and safety risks. In the example of lung imag-
ing analysis for corona-viruses, being able to quickly provide good performance for detecting new
variant is critical for the early containment and treatment of the disease.

Domain generalization (DG) methods also solve the learning problem on multiple data domains,
especially for cases where the target domain is unavailable or unknown during training. However,
existing DG works are typically based on accurate supervision knowledge of the source domain
data, whether it is drawn from a single domain (Wang et al.| 2021} [Li et al.| 2021)) or multiple
domains (Yao et al.,|2022; Zhang et al., [2022)), which may not be achievable in continually changing
scenarios. Moreover, when DG is applied in scenarios with continual domain shifts, as it focuses
more on the target domain, there could be severe catastrophic forgetting on domains that have been
learned. There are also some works unifying DA and DG (Ghifary et al., 2016; Motiian et al.,
2017; Jin et al.| 2021)); however they can only be used in standard DA or DG individually, thus still
suffering their limitations. [Bai et al.| (2022) and [Nasery et al.| (2021) study the smooth temporal
shifts of data distribution, but they cannot handle large domain shifts over time.

Our Approach and Contribution. In this work, we initiate the study of Continual Domain Shift
Learning (CDSL) problem. In CDSL, we assume that the learning model is first trained on a labeled
source domain and then face a series of unlabeled target domains that appear continually. The model
can be trained on these target domains as each domain is assumed to last for a period of time called
a training stage. The goal is to achieve reasonably good performance before and during the training
stage of each previously-unseen target domain (addressing the limitations of DA) and also prevent
catastrophic forgetting of these domains after they are trained (addressing the limitations of DG).

To solve CDSL, we propose a framework called Two fer that provides the capabilities of both DG
and DA by optimizing three objectives: (1) to improve the model generalization performance on
a new target domain before and during its training, which is called rarget domain generalization
(TDG), (2) to provide good model performance on a target domain right after its training, called
target domain adaptation (TDA), and (3) to maintain good performance on a trained domain after
the model is trained with other domains, called forgetting alleviation (FA). For improving TDG,
Twofer includes a training-free data augmentation module that is based on Random Mixup, and
this module can generate data outside of the current target domain. For TDA, Twofer includes a
Top? Pseudo Labeling mechanism that lays more emphasis on samples with higher distinguishabil-
ity, which can produce more accurate pseudo labels. Finally, for optimizing the model towards TDG,
TDA, and FA at the same time, Twofer includes a Prototype Contrastive Alignment algorithm that
is inspired by prototype learning (Saito et al., [2019). Extensive experiments and comprehensive
ablation studies on Digits, PACS and Domain Net datasets demonstrate that Twofer can substan-
tially outperform state-of-the-art works from Continual DA, Source-Free DA, Test-Time/Online DA,
Single DG, Multiple DG, and Unified DA&DG, on objectives of TDG and FA. Twofer can also
produce comparable state-of-the-art TDA performance as these baselines.

The major contributions of our work can be summarized as:
* We present the first work to consider a practical and important problem, namely Continual Domain

Shift Learning, with the goal to achieve three objectives (i.e., TDG, TDA, and FA) for continually
arriving domains with data distribution shift.

Under review as a conference paper at ICLR 2023

Performance

Source Labeled Feature
'«_ _Domain Samples Adaptation Extractor

PO Bunsixg - -]

\

s L ;L)‘ S \ 1
\Aa Bedd SIS \ NS i

1 3 I

'] !

\ - |

1

I

1

poliad Jeljiwejun

" .
ulewoq 1,45/181 1T

1st Target Unlabeled popy, Pseudo-labeled .. . AftefSPHfti_”E Feature (- ssifier }Tég
_ _Domain Samples Samples Augmentation Extractor /I

[Je;oml pasodoud

awi
oo

Figure 1: Overview of applying our framework Twofer for Continual Domain Shift Learning (CDSL).
Twofer first starts with a labeled source domain, applies RandMix on the full set of source data to generate
augmentation data, and uses a simplified version £ of PCA for model optimization. Then, for continually arriv-
ing target domains, Twofer uses T2PL to generate pseudo labels for all unlabeled samples, applies RandMi x
on a top subset of these samples based on their softmax confidence, and optimizes the model by PCA.

* We propose a novel framework called Twofer to solve CDSL. Twofer includes a training-free
data augmentation module that generates more data for improving TDG, a new pseudo labeling
mechanism to provide more accurate labels for improving TDA, and a prototype contrastive align-
ment algorithm that effectively aligns domains and simultaneously improves TDG, TDA, and FA.

* We conducted extensive experiments and comprehensive ablation studies that demonstrate the
advantages of our Twofer framework over a number of state-of-the-art baseline methods.

2 METHODOLOGY

We first formulate the problem of Continual Domain Shift Learning (CDSL) in Section |2;1'|, and
then introduce the three major modules of our framework Twofer for solving CDSL. Specifically,
Section [2.2] presents a Random Mixup data augmentation module RandMi x that generates data for
improving the target domain generalization (TDG) on unadapted domains. Section [2.3] presents a
Top? Pseudo Labeling approach T2PL that provides accurate labels for achieving target domain
adaptation (TDA) for continually arriving target domains. Finally, Section [2.4] presents a Prototype
Contrastive Alignment algorithm PCA to optimize the model for achieving TDG, TDA, and forget-
ting alleviation (FA) on seen domains together. Figure[I]shows the overall pipeline of Twofer.

2.1 PROBLEM FORMULATION OF CONTINUAL DOMAIN SHIFT LEARNING

We assume that there is a labeled source domain S = {(x;, yi)||xi ~ PS,yi ~ PSS at the
beginning of CDSL. Here Px and Py are the input and label distributions, respectively, while Ns
is the sample quantity. This paper chooses visual recognition as the learning task, in which the
number of data classes is K. Then, we consider a sequence of continually arriving target domains
T = {T*}L_,, where T denotes the total number of domains. The ¢-th domain contains N7+ data
samples x but no labels y, i.e., T'={x;||z; ~ P;t }f&f , and all the target domains share the same
label space with the source domain. Note that the domain order is randomly determined (including
the source domain), which means that the superscript ¢ does not always indicate the same domain.

The generalization performance for the ¢-th domain 7 depends on both the previously seen ¢ —1
target domains and the original source domain, i.e., S={S, Ut;% T7}. Considering the possible lim-
itation on memory storage and regulations on privacy or inteﬁectual property, like regular continual

learning (IRebufﬁ et al.l, |2017I), we also set an exemplar memory M to store % exemplars that are

closest to the class centroids for each domain in S, where Mt/t—‘ < N7, % < Ng. We assume that
the model is a deep neural network, and without loss of generality, the neural network consists of a
feature extractor © at the bottom and a classifier (2 at the top. For each target domain 7, in addition
to the current model Qf o ©1, its inherited version 2! 0 @ from the last domain is also stored for
later usage. To solve CDSL, we aim to continually generalize a model 2 o © to new unlabeled do-
mains T, starting from a labeled source domain S. The objective lies in three aspects: improving the

Under review as a conference paper at ICLR 2023

generalization performance on a new target domain before and during its training (TDG), providing
good adaptation performance right after its training (TDA), and preventing catastrophic forgetting
of it after the model is trained with other domains (FA).

2.2 RANDOM MIXUP AUGMENTATION

At the beginning of CDSL, only a labeled source domain is available. Thus CDSL faces a pure singe-
domain generalization problem where the model is trained on a single domain S and tested on the
other unseen domains T (each domain in T is possible as the domain order is random). We apply data
augmentation and design a Random Mixup (RandMix) method to solve this problem. RandMix
is not only helpful to improve cross-domain transferability from S to 7!, but also beneficial for
remaining model’s order agnostic generalization when it encounters low quality domains. RandMix

relies on IV, simple autoencoders G = {Fi}f\i‘fg”, where each autoencoder consists of an encoder
¢ and a decoder (. We want RandMix to be as simple as possible, preferably to work without
training. Inspired by (Wang et al., [2021), the encoder £ and the decoder (are implemented as a
convolutional layer and a transposed convolutional layer. With such implementation, even if the
parameters of £ and ¢ are randomly initialized from a normalized distribution, the autoencoder
can still generate reasonable augmentation data. In order to introduce more randomness, we apply
AdalN (Karras et al.,|2019) to inject noise to the autoencoder. Specifically, the used AdalN contains
two linear layers ¢1, ¢2, and when ¢, and ¢- are fed with a certain noisy input drawn from a
normalized distribution (n ~ Pyqp,1)), they can produce two corresponding noisy outputs with
smaller variances. As observed in our experiments (Section [3.1)), blindly pushing augmentation data
away from the original (L1 et al., 2021} |Wang et al., 2021) possibly hurts the model generalization
ability, and injecting randomness with a smaller variance is a better solution. The two noisy outputs
are injected to the representations of the autoencoder as multiplicative and additive noises:

[(x) = ¢ (¢1(n) x IN(§(2)) + d2(n)) , ()

where IN(-) represents element-wise normalization operation. RandMi x works as feeding training
data to all autoencoders and mixing the outputs with random weights drawn from a normalized
distribution (m ~ Px(o,1). Finally, the mixture is scaled by a sigmoid function o(z) = 1/(1+e~"):

Naug
1
G@) =0 | ——— |moz+ Y (mil'i(x))| | .)
Do My i=1

In mini-batch training, every time there is a new data batch, autoencoders (£, (), AdaIN-s (¢1,
¢2), AdalN noisy inputs (n) and mixup weights (1) are all required to be initialized again. With
RandMix, we can generate augmentation data with the same labels corresponding to all labeled
samples from the source domain. Then, these labeled augmentation samples will work together
with the original source data and be fed into the model for training. However, for the following con-
tinually arriving target domains, conducting RandMi x on all target data is unreasonable. In CDSL,
all target domains T = {7*}]_, are unlabeled. While we can apply approaches to produce pseudo
labels, the supervision is likely unreliable and inaccurate. Therefore, to avoid error propagation
and accumulation, we augment a subset of the target data rather than the full set. Specifically, we
determine whether a target sample is supposed to be augmented based on its prediction confidence:

- JG(x), ifmax[QO(x))]x > ptn T
T = { , otherwiseK T~ Py, @)

where max|[-] x denotes the maximum of a vector with K dimensions, and pyy, is a confidence thresh-
old that is set to 0.8 in our implementation (sensitivity analysis of pyy, is provided in Appendix).

2.3 Top? PSEUDO LABELING

In CDSL, all target domains arrive only with the data but no label. Thus we need a pseudo label-
ing mechanism to provide reasonably accurate supervision for subsequent optimizations. However,
existing pseudo labeling approaches have various limitations. For example, softmax-based pseudo
labeling (Lee et al., 2013) produces hard labels for unlabeled samples, but training with such hard
labels sacrifices inter-class distinguishability within the softmax predictions. To preserve inter-class
distinguishability, SHOT (Liang et al.| |2020) proposes a clustering-based approach to align unla-
beled samples with cluster centroids, but treats all samples equally during clustering. In this case,

Under review as a conference paper at ICLR 2023

samples with high distinguishability are not used well and those with low distinguishability pose
a negative impact to cluster construction. To address such issues, we propose a novel mechanism
called Top? Pseudo Labeling (T2PL). Specifically, we use the softmax confidence to measure the
distinguishability of data samples, and select the top 50% set to construct class centroids:

Nt
7, =0t {arg mox (0@ | F = Uy Uiezomer (), @

xe

where Q,(-) denotes the k-th element of the classifier outputs. py,p, controls the size of the selected
top set, and if the data is class balanced, top 50% corresponds to p¢.p, = 2. Then the top set F is used
to construct class centroids by a prediction-weighted aggregation on representations:

Zmie}' U, (O(x;)) - O(x;)
Ywier e (O(zi))
Subsequently, we can compute the cosine similarity between these centroids and representations of

all current unlabeled data, and also select the top half set of samples that have much higher similarity
to the centroids than the rest for each class:

x)-cl ,
{Hgéwiw:k”} } S U?:l {Uiez,g,weTt{(mq‘,, k)}} . (6)

&)

C =

Nt
= UPrtep X ¢ & a
¢ ’ { 6 eT
Then we use F” to fit a k-Nearest Neighbor (kNN) classifier and assign the pseudo label as follows:
&

= kNN (, F')ien ™ (7)

Euclidean ?

where the superscript prTfK and subscript Euclidean mean that the kNN works to find ———%
top t op

closest neighbors from F' with the measurement of Euclidean distance. We select the top 5% for
each class (pt,,, = 20) in our implementation (sensitivity analyses of piop and py,, are provided in
the Appendix). With this kNN, T2PL makes better use of unlabeled samples with relatively high
distinguishability than SHOT, and provides more accurate pseudo labels.

2.4 PROTOTYPE CONTRASTIVE ALIGNMENT

Prototype learning (PL) (Pan et al.| 2019} Kang et al., [2019; Tanwisuth et al., 2021; [Dubey et al.,
2021) has been demonstrated to be effective for solving cross-domain sample variability and sample
insufficiency. These two issues are reflected in our problem as the random uncertainty of augmenta-
tion data and limited data quantity of seen domains in the exemplar memory M. As a result, in this
work, we adopt the idea of PL and propose a new Prototype Contrastive Alignment (PCA) algorithm
to align domains together for improving model generalization ability.

First, we need to point out that regular PL is unsuitable to our problem. In regular PL, all samples are
fed into the model to extract representations, and these representations are aggregated class-by-class
for constructing prototypes w® = {w} }2_, of a certain domain 7, and then the model is optimized
with an alignment loss:

Y ws aert Lg=k© (x) K Ly, —1 exp (Wi O(x;
wtk = (“yl)e kd PL = Em ,P7—t Z —log Yi (k ())

Z(mhgi)e']’t Iy—r B Zle exp (Wi O(x;))

Iy is an indicator function that if the subscript condition is true, Iyye =1, otherwise, Iraise =0. To
achieve cross-domain alignment, prototypes of different domains for the same classes are aggregated
and averaged, and the alignment loss is computed on these average prototypes for training. However,
such domain alignment has a problem of adaptivity gap (Dubey et al., 2021). As shown in Figure[2]
we assume that there is an optimal prototype location wj, of class k for all domains (S U T), and
the objective is to move the source prototype wj, to the optimal by training on target domains (T)
one-by-one. Meanwhile, we also regard that there are optimal prototypes w}, for each domain itself,
and suppose that the regular PL is applied to align prototypes of all these domains. To illustrate the
problem of adaptivity gap, we take the alignment between the source S and the first target domain
T as an example, and assume that the distance between w;, and w} is larger than the distance
between w; and wy,. In this case, after the domain alignment, the location of the current prototype
is worse than the source prototype, which means that the adaptivity gap is enlarged. Although we

®)

Under review as a conference paper at ICLR 2023

Sﬁffzi/n 1 T | Metrics for each domain:
)y - TDG
/@ 1 mean of green elements
O Adaptivity . TDA
Gap the red element
- FA
T mean of blue elements

Figure 2: When the model encounters a domain whose
prototypes (w},) are far from the optimal ones (w}), domain

.) . . Figure 3: Three objectives/metrics of
alignment with regular prototype learning will enlarge the . = . Target Domain Generalization
CH . ~s ,~8l ~ ~1 .
adaptivity gap. Although RandMix (W§, W] , Wi, wk') (TDG), Target Domain Adaptation (TDA),
can help reduce the gap, regular prototype construction 4 Forgetting Alleviation (FA).
cannot take advantage of it.

can use RandMix to generate more data (wj,, w;) that might be helpful for reducing the adaptivity
gap, there is randomness for each use of RandMi x and we cannot guarantee the benefit of reducing
gap every time (e.g., what if the augmentation data is w;’ and W}’ in Figure . Therefore, a better
prototype construction strategy is needed to provide more representative prototypes.

Inspired by a semi-supervised learning work (Saito et al., [2019), we view neuron weights of the
classifier {2 as the prototypes. The classifier €2 consists of a single linear layer and is placed exactly
behind the feature extractor ©. Thus the dimension of its neuron weights is the same as the hidden
dimension of extracted representations. We construct such prototypes with a CrossEntropy Loss:

K T
Ly, —k exp (wi' O(x;) + by
'C’CE = Emi~73’)7;t E - log Y (k ())

= S exp (wiTO(x;) +b)

. ©))

where by, b, are biases of the linear layer, and we set them as zeros during training. Compared with
regular prototypes, such linear layer prototypes are built on a lot more data because RandMix is
initialized and used for every mini-batch during model training. Moreover, RandMix has general
effect on improving generalization ability, as shown in our experiments later in Section [3.2] Thus
we believe that linear layer prototypes have smaller adaptivity gaps than regular ones.

With linear layer prototypes, we can align domains in a better way. Unlike the alignment on regular
prototypes, we do not sum up and average prototypes of different domains. Instead, we simulta-
neously maximize the similarities of data samples to prototypes of different domains, although in
practice we may have prototypes of just two domains since there is only one old model being stored
(Section 2.1). We also introduce contrastive comparison into the domain alignment process that
can enhance the distinguishability of different classes and be beneficial for our pseudo labeling.
The contrastive comparison includes negative pairs of a particular sample and samples from other
classes. In this case, our prototype contrastive alignment is formulated as follows:

K _ tT) 1T _
Lpca = EmiNP;t {Z —]()g Hyi:k [exp (wk @(inz)i"‘ exp (wk 9(1131))] } . where
k=1

K K
A=) exp (wiO(x:)+) exp (wi'TO(@))+ D Ly, exp (O(xi) O(zy)).
c=1 c=1 x; €T, j#1
(10)
Furthermore, we also adopt knowledge distillation from the stored old model to the current model
for forgetting compensation. In this case, our final optimization objective is shown as follows:

L= Lck + Lpca + Lpis, where Lpis = Dk, [Qtfl (@tfl (:c)) 9 (@t(w))}wNP;t . 3D

Note that this optimization objective is used in all target domains. As for the source domain, there
is no distillation Lpjg and the nominator of Lpca only contains the first term, because there is no
stored old model in the stage of source training. We denote this simplified optimization loss as L’.

Under review as a conference paper at ICLR 2023

3 EXPERIMENTS

Our code is implemented in PyTorch (and provided in the Supplementary Materials). All experi-
ments are conducted on a server running Ubuntu 18.04 LTS, equipped with NVIDIA RTX A5000
GPUs. The datasets, experiment settings and comparison baselines are introduced below.

Datasets. Digits consists of 5 different domains with 10 classes, including MNIST (MT), SVHN
(SN), MNIST-M (MM), SYN-D (SD) and USPS (US). There are 266,504 images in total, and each
one is shaped with the size 32 x32. PACS contains 4 domains with 7 classes, including Photo (P), Art
painting (A), Cartoon (C) and Sketch (S). Each image is shaped with the size 224 x224, and there
are 9,991 images in total. Domain Net is the most challenging cross-domain dataset, including
Quickdraw (Qu), Clipart (Cl), Painting (Pa), Infograph (In), Sketch (Sk) and Real (Re). 26,013
images are selected (to reduce class imbalance; more in the Appendix), with the size 224 x224.

Experiment Settings. We apply ResNet-50 as the feature extractor for both PACS and Domain
Net, and apply DTN as the feature extractor for Digits (Liang et al., 2020). Unlike regular domain
adaptation works that use training data for testing, we split 80% data as the training set and the rest
20% as the testing set. The SGD optimizer with an initial learning rate of 0.01 is used for Digits,
and 0.005 for PACS and Domain Net. The exemplar memory size is set as 200 for all datasets, and
the batch size is 64. For all experiments, we conduct multiple runs with three seeds (2022, 2023,
2024), and report the average performance.

Comparison Baselines. To our best knowledge, there is no existing work that targets the exact
problem of CDSL. Therefore, to better demonstrate the effectiveness of our work, we compare
Twofer with a comprehensive set of state-of-the-art works from Continual DA [CoT (Wang et al.,
2022)), AuC (Rostamil, 2021)], Source-Free DA [SHO (Liang et al., [2020), GSF (Yang et al.,|2021)),
BMD (Qu et al., 2022)], Test-Time/Online DA [TEN (Wang et al.,[2020), T3A (Iwasawa & Matsuo,
2021)], Single DG [L2D (Wang et al., [2021), PDE (Li et al.| [2021)], Unified DA&DG [SNR (Jin
et al.,[2021)], and Multiple DG [PCL (Yao et al.,|2022)), EFD (Zhang et al., 2022)].

3.1 EFFECTIVENESS OF THE TwoFER FRAMEWORK

We assume that each domain corresponds to a single training stage. After the training of every stage,
we test the model performance on all domains. In this case, we can obtain an accuracy matrix in
which each row denotes the test performance of a particular domain at different stages, while each
column represents the test accuracy of different domains at a certain stage, as shown in Figure[J] We
design three metrics that measure TDG, TDA, and FA, respectively. TDG is measured by the mean
model performance on a domain before its training stage (mean of the green elements in Figure [3),
TDA by the performance on a domain right after finishing its training stage (the red element), and FA
by the mean performance on a domain affer the model has been updated with other domains (mean
of the blue elements). All these metrics are the higher, the better. Due to space limitation, we report
experiment results for Digits (Tables [I)) and PACS (Table [2) in two domain orders, and for Domain
Net (Table [3)) in one domain order. Results for more domain orders can be found in the Appendix.
We can observe that for all three datasets, Twofer achieves much higher performance than all
baselines across all three metrics. Specifically, Twofer substantially outperforms the second-
best baseline on TDG in all cases and by 3.1~10.7% in average, and the performance improvement
is particularly large over DA methods. For TDA and FA, Twofer is also the best in most cases
and clearly outperforms the second best; and even if not, very close to the best. These results
demonstrate that our method can effectively improve the model performance during the ‘unfamiliar
period’, adapt the model to different domains, and alleviate catastrophic forgetting on seen domains.

3.2 ABLATION STUDIES

To demonstrate the effectiveness of each module in Twofer, we conduct comprehensive ablation
studies for RandMix, T2PL, and PCA on Digits with the domain order US—SD—SN—MM—MT.

Effectiveness of RandMix. To evaluate the effectiveness of RandMix, we first remove it from
Twofer and see how the model performance will change. We also try to apply RandMix on a
few other baselines and explore if there will be a performance improvement, including SHO (Liang
et al., [2020), GSF (Yang et al.| [2021)), and PCL (Yao et al., 2022). The experiment results in Fig-
ure demonstrate that, removing RandMix from Twofer hurts the performance significantly,

Under review as a conference paper at ICLR 2023

Table 1: Performance comparisons between ours and other methods on Digits in TDG, TDA, and
FA under two domain orders (shown with |). We blue and bold the best, and bold the second best.

Order | Metric |CoT AuC SHO GSF BMD TEN T3A L2D PDE SNR PCL EFD (| Ours
MM [523 449 46.7 552 46.7 523 523 731 66.6 70.1 51.0 50.5 || 86.1
SN [24.1 158 196 283 186 30.6 26.8 36.0 354 357 23.1 12.1| 45.7
SD | 343 293 302 30.7 284 41.7 34.6 56.3 560 56.1 359 163 | 67.7
MT US |90.0 83.6 492 50.5 475 849 71.0 84.8 832 81.7 733 357 92.2
Avg. | 502 434 353 412 353 524 462 62.6 603 609 458 28.7| 72.9

MiM MT [99.0 99.1 993 994 9092 99.0 99.0 99.3 99.1 992 992 99.2 | 994
MM |41.7 414 757 543 759 575 515 874 844 850 550 14.0(90.3

M TDA | SN [17.8 185 9.7 137 99 294 252 553 500 51.1 22,6 9.5 | 70.6

TDG

SN SD |27.8 30.1 106 13.1 93 402 324 599 509 452 28.0 114 | 82.7
S% US |89.9 795 23.0 14.8 165 90.5 745 91.6 90.0 91.1 59.2 16.1| 949
Avg. | 552 537 437 39.1 422 633 565 78.7 749 743 52.8 358 | 87.6

UiS MT [939 92.6 36.2 339 360 989 86.0 924 915 92.0 832 344 96.1
FA MM | 33.1 485 127 105 11.8 552 449 707 69.8 711 382 16.2 | 82.0

SN [17.3 204 96 9.0 9.6 294 168 56.1 503 554 20.8 12.1] 70.3

SD |27.3 28.8 125 104 10.8 402 27.7 700 69.1 713 28.6 163 | 81.9

Avg.|429 476 17.8 16.0 17.1 559 439 723 70.2 725 427 19.8 | 82.6

SD |364 336 39.6 372 39.6 364 364 617 60.0 61.5 37.1 36.8 | 68.2

TDG SN [192 199 194 225 193 264 204 52.6 51.1 525 219 144 61.5
MM | 309 33.8 295 326 29.8 404 346 63.6 60.7 60.5 349 19.2 | 68.0

Us MT | 542 63.0 454 556 479 772 589 84.0 799 81.1 63.0 29.0| 87.0

Avg.|352 37.6 335 370 342 451 37.6 655 629 639 392 249| 71.2
S% US [985 98.6 98.7 983 987 985 985 99.0 98.8 989 98.6 98.3 | 98.9

SD 225 248 532 40.1 479 385 299 725 710 70.8 37.8 9.9 | 82.7
M TDA | SN (143 18.7 138 172 11.0 283 20.1 69.1 656 64.0 20.0 10.0| 78.2

SN MM 259 328 123 196 143 395 342 76.0 755 750 294 10.3 | 834
M‘%\/I MT | 443 550 93 195 287 795 674 87.0 854 839 555 19.6 | 95.7

Avg.|41.1 46.0 375 389 40.1 569 50.0 80.7 793 785 483 29.6| 87.8
N‘ILT US [953 919 37.6 49.7 39.7 984 76.1 93.6 91.0 922 821 11.3] 96.3

SD [199 258 13.1 221 153 37.1 235 72.7 704 69.5 27.6 10.7 | 82.0
SN | 137 19.7 113 87 104 279 123 56.8 559 56.0 182 14.1| 68.2
MM |26.1 30.1 10.1 9.8 172 406 164 742 70.1 712 29.0 29.0 || 85.1
Avg.|38.8 419 18.0 22.6 20.7 51.0 32.1 743 719 722 392 163 | 82.9

FA

920 90

DO Ours BER SHOWRM. SBR PCLWRM. W GSFwiRM 0008 Ours 0908 Ours

o Ours- £ER SHO mom Pl o Gs 0358 Ours- w/SHO 0302 Ours-

90 0008 Ours- w/BMD 0008 Ours- w/PL

80 9998 Ours- w/Softmax 9008 Ours- w/SC
0898 Ours- w/PCL

@
S

Performance (%)
o
S
Performance (%)
~
S
Performance (%)
~
S

10 60 60
TDG TDA FA TDG TDA FA TDA

(a) RandMix (R.M.) (b) T2PL (c) PCA

Figure 4: Ablation studies of RandMix, T2PL, and PCA on Digits. Average performance of all
domains for three metrics (TDG, TDA, FA) are shown. ‘Ours’ here denotes the full framework of
Twofer, while ‘Ours-’ represents removing a corresponding module (a, b or ¢) from Twofer,
‘Ours- w/” means replacing the corresponding module with a new one.

and attaching RandMix to other baseline methods clearly improves the model performance. Such
observations prove the effectiveness of RandMi x.

Effectiveness of T2PL. We replace T2PL in Twofer with other pseudo labeling approaches to

investigate the gain from T2PL, including Softmax 2013), SHO (Liang et al| [2020),
and BMD (Qu et al.| [2022). Figure 4(b)| shows that Twofer performs the best when it has T2PL,
proving the effectiveness of T2PL.

Effectiveness of PCA. We first remove Lpc 4 from the optimization objective, leaving only CrossEn-
tropy Loss and Logits Distillation. We then try to replace PCA with regular forwarding prototype
learning (PL), supervised contrastive learning (SC), and PCL 2022). Figure [4(c)| shows
that the performance of Twofer degrades significantly without Lpca, and when we use other
methods instead, the performance is still worse. This validates the effectiveness of PCA.

Under review as a conference paper at ICLR 2023

Table 2: Performance comparisons between ours and other methods on PACS in TDG, TDA, and
FA under two domain orders (shown with |). We blue and bold the best, and bold the second best.

Order | Metric |CoT AuC SHO GSF BMD TEN T3A L2D PDE SNR PCL EFD (| Ours
A |68.0 66.6 659 673 659 680 68.0 672 672 673 68.1 67.4 | 70.0

TDG| C [48.6 32.1 421 47.6 426 48.6 348 493 472 43.1 405 404 | 514

S |453 393 41.0 463 425 455 38.1 52.6 522 477 416 422 571

P Avg.|54.0 46.0 49.7 5377 503 54.0 47.0 564 555 527 50.1 50.0| 59.5
1 P (994 994 99.7 988 99.7 994 994 99.1 992 99.0 98.8 99.1| 99.7
A TDA A 732 649 885 87.6 868 729 68.8 724 71.1 72.0 77.1 749 87.1
1 C |66.1 569 563 719 582 66.7 612 614 60.7 62.0 63.1 3501 75.3
C S |51.0 581 56.1 70.6 688 523 612 682 655 66.6 64.6 32.8| 70.0
1 Avg. | 724 69.8 752 822 784 728 727 753 741 749 759 60.5 || 83.0
S P [985 971 958 70.8 962 98.5 98.6 942 94.0 955 745 814] 98.1
FA | A |732 733 809 414 821 732 655 674 660 673 60.8 60.1| 87.0

C [66.1 67.8 59.7 320 655 67.0 59.1 60.1 58.8 613 41.6 49.0 | 72.5

Avg. | 793 794 78.8 48.1 813 79.6 744 739 729 747 59.0 63.5| 85.9

C [61.6 53.7 446 610 446 616 616 64.1 63.1 64.0 503 64.7 || 68.4

TDG| A |[551 41.6 389 470 472 551 545 51.0 504 51.3 35.0 32.2] 66.6

P |60.7 528 71.6 59.7 73.7 60.7 67.2 69.8 70.0 71.1 63.7 34.6| 83.3

S Avg. |59.1 494 51.7 559 552 59.1 61.1 616 612 612 62.1 43.8| 72.8
+ S 1954 955 950 96.2 950 954 954 96.3 96.0 96.1 96.1 959 | 96.3
C TDA C |682 665 780 79.7 787 68.0 765 794 79.0 79.0 759 68.0 | 76.5
+ A 615 693 67.8 86.8 837 615 702 69.8 679 70.0 563 13.7| 89.3
A P 593 743 943 68.0 97.0 593 725 86.8 855 86.7 922 13.8] 99.1
+ Avg.|71.1 764 83.8 827 88.6 71.1 78.7 83.1 82.1 83.0 80.1 47.9| 90.3
P S 1940 715 852 872 86.0 95.0 939 88.6 88.0 893 90.7 8I.8] 94.0
FA | C |682 742 783 635 79.1 680 694 780 749 782 750 529 || 80.9

A 615 528 720 812 844 617 693 71.7 704 71.0 60.2 21.2| 87.8

Avg.|74.6 662 785 773 832 749 775 794 778 795 753 520/ 87.6

Table 3: Performance comparisons between ours and other methods on Domain Net in TDG, TDA,
and FA (domain order shown left with |). We blue and bold the best, and bold the second best.

Order Metric CoT AuC SHO GSF BMD TEN T3A L2D PDE SNR PCL EFD || Ours
Sk 282 28.6 236 29.7 236 282 282 31.7 298 299 279 303 | 32.8
Cl |519 42.6 30.8 522 285 521 494 521 502 51.0 414 28.0| 55.0
TDG| In |17.1 157 121 13.6 120 17.2 16.1 132 127 11.1 132 115} 17.5
Pa |254 231 139 26.6 125 256 208 24.1 23.0 243 139 133 42.9

Qu Re [52.8 41.7 348 444 337 532 492 39.6 379 37.0 36.7 18.1| 65.8
1 Avg.|35.1 303 230 333 221 353 327 32.1 30.7 30.7 26.6 202 | 42.8
Sk Qu [92.7 92.7 91.0 948 91.0 920 92.1 91.8 92.0 91.8 91.5 909 || 92.0
1 Sk |369 31.1 342 455 30.1 37.0 36.7 374 36.6 37.0 31.7 123 | 47.8
Cl TDA Cl |594 529 273 589 40.1 60.1 59.2 551 54.1 557 493 8.7 | 66.7
1 In |19.1 185 94 209 125 19.7 196 133 13.0 15.1 16.0 9.3 || 185
In Pa |30.8 302 142 281 11.8 312 312 160 150 203 10.6 12.6 || 50.6
1 Re |57.7 45.1 387 443 364 589 583 419 41.1 420 336 4.2 || 782
Pa Avg.|494 451 358 488 37.0 498 495 42.6 42.0 437 388 23.0| 59.0
1 Qu [914 844 496 759 549 913 823 79.6 779 80.0 80.8 64.2 | 89.3
Re Sk 369 35.0 29.7 362 283 373 36.6 325 31.7 328 303 157 53.8

FA | CI |59.0 543 26.1 428 387 605 535 444 433 450 427 20.0 || 66.1
In |193 180 132 119 16.6 197 201 129 119 120 143 11.6 || 20.3
Pa |31.7 312 132 308 145 31.0 302 153 173 20.1 81 7.5 || 54.5

Avg. |47.7 446 264 395 30.6 48.0 445 369 364 38.0 352 23.8]| 56.8

4 CONCLUSION

This paper is the first to consider a practical and important problem called Continual Domain Shift
Learning (CDSL), and proposes a novel framework Twofer that includes a training-free data aug-
mentation module RandMix, a pseudo labeling mechanism T2PL, and a prototype contrastive
alignment training algorithm PCA. Extensive experiments demonstrate that Twofer can substan-
tially improve the performance across target domain generalization, target domain adaptation and
forgetting alleviation over various state-of-the-art methods from Continual DA, Source-Free DA,
Test-Time/Online DA, Single DG, Multiple DG, and Unified DA&DG.

Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

In this paper, our studies are not related to human subjects, practices to data set releases, discrim-
ination/bias/fairness concerns, and also do not have legal compliance or research integrity issues.
Our work is proposed to address continual domain shifts when applying deep learning models in
real-world applications. In this case, if the trained models are used responsibly for good purposes,
we believe that our proposed methods will not cause ethics issues or pose negative societal impacts.

REPRODUCIBILITY STATEMENT

The source code is provided in the Supplementary Materials. All datasets we use are public. In
addition, we also provide detailed experiment parameters and random seeds in the Appendix.

REFERENCES

Guangji Bai, Ling Chen, and Liang Zhao. Temporal domain generalization with drift-aware dynamic
neural network. arXiv preprint arXiv:2205.10664, 2022.

Slawomir Bak, Peter Carr, and Jean-Francois Lalonde. Domain adaptation through synthesis for
unsupervised person re-identification. In Proceedings of the European conference on computer
vision (ECCV), pp. 189-205, 2018.

Abhimanyu Dubey, Vignesh Ramanathan, Alex Pentland, and Dhruv Mahajan. Adaptive methods
for real-world domain generalization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14340-14349, 2021.

Muhammad Ghifary, David Balduzzi, W Bastiaan Kleijn, and Mengjie Zhang. Scatter component
analysis: A unified framework for domain adaptation and domain generalization. IEEE transac-
tions on pattern analysis and machine intelligence, 39(7):1414-1430, 2016.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic do-
main generalization. Advances in Neural Information Processing Systems, 34:2427-2440, 2021.

Xin Jin, Cuiling Lan, Wenjun Zeng, and Zhibo Chen. Style normalization and restitution for domain
generalization and adaptation. IEEE Transactions on Multimedia, 2021.

Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. Contrastive adaptation network
for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4893—-4902, 2019.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401-4410, 2019.

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3,
pp. 896, 2013.

Lei Li, Ke Gao, Juan Cao, Ziyao Huang, Yepeng Weng, Xiaoyue Mi, Zhengze Yu, Xiaoya Li,
and Boyang Xia. Progressive domain expansion network for single domain generalization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 224—
233, 2021.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In International Conference on Machine
Learning, pp. 6028-6039. PMLR, 2020.

Hong Liu, Mingsheng Long, Jianmin Wang, and Yu Wang. Learning to adapt to evolving domains.
Advances in Neural Information Processing Systems, 33:22338-22348, 2020.

Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gianfranco Doretto. Unified deep super-

vised domain adaptation and generalization. In Proceedings of the IEEE international conference
on computer vision, pp. 5715-5725, 2017.

10

Under review as a conference paper at ICLR 2023

Anshul Nasery, Soumyadeep Thakur, Vihari Piratla, Abir De, and Sunita Sarawagi. Training for
the future: A simple gradient interpolation loss to generalize along time. Advances in Neural
Information Processing Systems, 34:19198-19209, 2021.

Yingwei Pan, Ting Yao, Yehao Li, Yua Wang, Chong-Wah Ngo, and Tao Mei. Transferrable prototyp-
ical networks for unsupervised domain adaptation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 2239-2247, 2019.

Theodoros Panagiotakopoulos, Pier Luigi Dovesi, Linus Hérenstam-Nielsen, and Matteo Poggi.
Online domain adaptation for semantic segmentation in ever-changing conditions. arXiv preprint
arXiv:2207.10667, 2022.

Sanging Qu, Guang Chen, Jing Zhang, Zhijun Li, Wei He, and Dacheng Tao. Bmd: A general
class-balanced multicentric dynamic prototype strategy for source-free domain adaptation. arXiv
preprint arXiv:2204.02811, 2022.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001-2010, 2017.

Mohammad Rostami. Lifelong domain adaptation via consolidated internal distribution. Advances
in Neural Information Processing Systems, 34:11172—-11183, 2021.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. Semi-supervised do-
main adaptation via minimax entropy. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 8050-8058, 2019.

Dilbag Singh, Vijay Kumar, Manjit Kaur, et al. Classification of covid-19 patients from chest ct im-
ages using multi-objective differential evolution—based convolutional neural networks. European
Journal of Clinical Microbiology & Infectious Diseases, 39(7):1379—-1389, 2020.

Korawat Tanwisuth, Xinjie Fan, Huangjie Zheng, Shujian Zhang, Hao Zhang, Bo Chen, and
Mingyuan Zhou. A prototype-oriented framework for unsupervised domain adaptation. Advances
in Neural Information Processing Systems, 34:17194—-17208, 2021.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In International Conference on Learning Repre-
sentations, 2020.

Jindong Wang and Wang Lu. Deepdg: Deep domain generalization toolkit. https://github.
com/jindongwang/transferlearning/tree/master/code/DeepDG.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7201-7211, 2022.

Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, and Mahsa Baktashmotlagh. Learning to diversify
for single domain generalization. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 834-843, 2021.

Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, and Shangling Jui. Generalized
source-free domain adaptation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 8978-8987, 2021.

Xufeng Yao, Yang Bai, Xinyun Zhang, Yuechen Zhang, Qi Sun, Ran Chen, Ruiyu Li, and Bei Yu.
Pcl: Proxy-based contrastive learning for domain generalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7097-7107, 2022.

Yabin Zhang, Minghan Li, Ruihuang Li, Kui Jia, and Lei Zhang. Exact feature distribution matching
for arbitrary style transfer and domain generalization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 8035-8045, 2022.

11

https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG
https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG

Under review as a conference paper at ICLR 2023

SUMMARY OF THE APPENDIX

This Appendix includes additional details for the ICLR 2023 submission “Twofer: Tackling Con-
tinual Domain Shift with Simultaneous Domain Generalization and Adaptation”, including more
implementation details, additional experimental analysis and results, and sensitivity analysis on pa-
rameters used in the framework. The Appendix is organized as follows:

 Section |A| provides more implementation details, including detailed experiment settings, data
splitting strategy, implementation details of the baseline methods, and network structures.

* Section [B| presents experimental results of additional domain orders on three datasets. T-SNE
visualization is also given there.

* Section [C]provides detailed sensitivity analysis of three parameters used in Twofer.

A IMPLEMENTATION DETAILS

Experiment Settings. To classify the datasets, we apply ResNet-50 as the feature extractor for both
PACS and Domain Net. For Digits, we follow|Liang et al.|(2020) to use DTN as the feature extractor.
Unlike regular domain adaptation works that use all training data for testing, we follow [Wang & Lu
to split 80% data as the training set and the rest 20% as the testing set for all domains of these three
datasets. For each dataset, we keep the training steps per epoch the same for all domains in all
different domain orders. We use 800 steps for Digits, 50 steps for PACS and 70 steps for Domain
Net. Training epoch is 30 for all datasets and domains. The SGD optimizer with initial learning
rate 0.01 is used for Digits and 0.005 for PACS and Domain Net. Moreover, we use momentum of
0.9 and weight decay of 0.0005 to schedule the SGD. The exemplar memory is set as 200 for all
datasets, and we set the batch size of mini-batch training as 64. Only ResNet-50 is initialized as the
pre-trained version of ImageNet.

Subset of Domain Net. The original Domain Net is class imbalanced, with certain classes in some
domains containing very few images (~10). This makes it hard to assign pseudo labels for these
classes. Thus, we select the top 10 classes with most images in all domains, which contain 26,013
samples in total. This dataset is still class imbalanced, with the smallest sample number for a class
as 32, while the largest is 901. Therefore, this subset is still quite challenging.

Baseline Implementations. To our best knowledge, there is no existing study targeting the same
problem. For fair comparison, we try our best to extend all baseline methods in our problem set-
tings. AuC (Rostami, 2021) shares the most similar setting with us. Their exemplar memory size
is not limited and can be enlarged as more domains appear. They transform Digits to gray scale
images while we treat them as RGB images. For Test-Time/Online DA [CoT (Wang et al.| [2022),
TEN (Wang et al., 2020), T3A [Iwasawa & Matsuo|(2021))], we keep the setting that adapts the model
on each target domain only once. For Single DG [L2D (Wang et al., 2021), PDE (Li et al., | 2021)]
and Multiple DG [PCL (Yao et al., 2022)), EFD (Zhang et al., 2022)], we use SHO (Liang et al.,
2020) to assign pseudo labels for the optimization on target domains. SNR (Jin et al., 2021) directly
modifies the model structures to match statistics of different domains, thus it can be viewed as a uni-
fied approach for both DA and DG. In our implementation, we use SNR to modify the convolution
filters of the feature extractor and optimize the model with SHO. All baseline methods are equipped
with the same exemplar memory and the same feature extractor.

Network Structures. Our RandMi x augmentation network includes four autoencoders that consist
of a convolutional layer and a transposed convolutional layer. All these layers have 3 channels and
kernel sizes of 5, 9, 13, 17, respectively. The classification model contains a feature extractor,
a bottleneck module and a classifier. Specifically, pre-trained ResNet-50 is used as the feature
extractor for both PACS and Domain Net. Following Liang et al. (2020), DTN, a variant of LeNet is
used as the feature extractor for Digits. We also introduce a bottleneck module between the feature
extractor and the classifier. The bottleneck consists of a fully-connected layer (256 units for Digits
and 512 units for both PACS and Domain Net), a Batch Normalization layer, a ReLU layer and
another fully-connected layer (128 units for Digits and 256 units for both PACS and Domain Net).
The classifier is a fully-connected layer without the parameter fo bias. Both contrastive loss and
distillation loss are applied on the representation space after the bottleneck.

12

Under review as a conference paper at ICLR 2023

Table 4: Performance comparisons between ours and other methods on Digits in TDG, TDA, and
FA under an additional domain order (besides the ones in Table 1 of the main text). We blue and
bold the best average performance, and bold the second best.

Order | Metric CoT AuC SHO GSF BMD TEN T3A L2D PDE SNR PCL EFD || Ours
MT | 712 706 76.2 752 762 712 712 70.1 70.0 71.0 71.8 71.9| 73.8
MM | 432 49.0 57.1 417 57.8 52.6 51.0 59.7 555 579 57.6 438 | 67.6
SD {902 803 709 772 728 90.8 646 80.1 76.6 77.0 82.7 443 | 84.8
SN US | 619 748 858 79.0 89.6 821 67.7 722 70.1 73.8 85.8 39.8]| 88.1
1 Avg. | 66.6 68.6 725 683 74.1 742 63.6 705 68.1 699 74.5 50.0 | 78.6
MT SN (928 92.6 934 936 934 928 928 92.8 930 929 934 929 | 92.1
1 MT |47.8 734 98.6 979 985 746 694 788 76,5 79.0 86.6 62.2| 90.2
TDA | MM [345 454 748 59.0 84.0 524 364 67.7 654 67.0 650 15.6| 85.7

TDG

Mi\/[SD [88.5 689 59.7 652 769 90.1 457 82.0 79.8 813 76.6 12.2 | 88.5
SD US |533 7777 838 956 960 81.6 60.5 889 88.0 885 87.1 12.6| 92.7

1 Avg. | 634 716 82.0 823 89.8 783 61.0 82.0 80.5 81.7 81.7 39.1| 89.8
Us SN [885 635 305 90.1 46.6 920 40.8 823 81.0 814 689 16.0 | 75.6

MT |42.1 73.6 84.0 484 944 724 525 709 651 687 854 38.6| 91.3
MM |332 474 532 634 643 528 352 579 553 580 62.6 20.7| 803
SD | 885 679 540 79.0 692 90.1 49.7 71.1 700 72.6 759 17.8| 87.4
Avg. | 63.1 63.1 554 70.2 68.6 76.8 44.6 70.6 679 702 732 233 | 83.7

FA

Table 5: Performance comparisons between ours and other methods on PACS in TDG, TDA, and
FA under an additional domain order (besides the ones in Table 2 of the main text). We blue and
bold the best average performance, and bold the second best.

Order | Metric CoT AuC SHO GSF BMD TEN T3A L2D PDE SNR PCL EFD || Ours
65.0 64.0 612 67.0 612 650 650 63.7 63.0 63.5 63.1 699 | 70.2
973 937 964 96.6 963 973 973 973 97.0 97.0 964 957 96.7
623 5777 548 632 553 624 585 60.1 58.6 57.1 533 673 70.0
749 718 70.8 75.6 709 749 73.6 73.7 729 70.5 709 77.6| 79.0
96.1 963 956 973 956 96.1 96.1 96.0 959 96.0 963 949 | 959
74.8 67.0 829 853 849 748 70.1 715 70.7 71.0 64.6 79.3| 79.5
97.0 93.1 979 982 982 97.0 973 98.0 97.5 98.0 99.1 955 99.1
645 62.1 67.6 775 716 648 71.6 723 70.1 70.9 779 559|774
83.1 79.6 86.0 89.6 876 832 838 845 83.6 84.0 845 814 | 88.0
94.6 87.6 86.7 66.9 872 947 928 919 91.0 91.5 90.7 832 93.0
74.8 7477 722 522 764 748 68.7 709 703 71.0 664 71.1| 749
97.0 93.7 925 20.7 922 96.7 94.6 950 944 950 952 84.4| 979
88.8 853 838 46.6 853 887 854 859 852 858 84.1 79.6| 88.9

N

TDG

< »n

>
I

o 0O P>

TDA

< W

>
a2

N4 <4 Q<+ P>

FA

h-Neolre

Z
0

B ADDITIONAL EXPERIMENT RESULTS

We conduct more experiments with additional domain orders for the three datasets. For Digits,
we select the most complicated domain SVHN as the source domain (Table E]) For PACS, we
randomly select another order (Table @ For Domain Net, we select the reverse order as the one we
show in the main text (Table @) Under these additional domain orders, Twofer still achieves the
highest average performance in most cases, and is very close to the best in other cases. In particular,
Twofer achieves the best average TDG on all three datasets. Combining these results with the ones
shown in the main text, we can clearly see that Twofer is able to provide substantial and balanced
improvements across TDG, TDA, and FA over previous state-of-the-art methods.

C SENSITIVITY ANALYSIS

We conduct sensitive analysis of the confidence threshold pyj, in splitting RandMix, and pyop, and
Dio, 0 T2PL. All sensitive analysis experiments are conducted on Digits with the domain order
of US—SD—SN—-MM—MT. For splitting RandMix, py, controls the proportion of unlabeled
data that needs to be augmented. As shown in Figure different pyy,-s correspond to different
model performance, and we can obtain the best performance when py, = 0.8, which is adopted
in our experiments. As for the sensitivity analysis of the other two parameters, according to the
results shown in Figures and we can observe that a larger pio,, that corresponds to a

13

Under review as a conference paper at ICLR 2023

Table 6: Performance comparisons between ours and other methods on DomainNet in TDG, TDA,
and FA under an additional domain order (besides the one in Table 3 of the main text). We blue and
bold the best average performance, and bold the second best.

Order Metric CoT AuC SHO GSF BMD TEN T3A L2D PDE SNR PCL EFD || Ours
Pa |782 774 749 80.0 749 782 782 79.0 779 780 77.0 783 | 79.8
In 307 260 23.7 237 240 307 251 26.1 250 250 260 24.0 | 29.7
TDG | Cl |67.7 571 580 642 562 67.8 67.6 68.0 66.6 67.0 552 50.2| 68.6
Sk |64.1 60.5 581 585 558 643 626 633 625 62.8 557 420 | 64.7

Re Qu |22.1 245 219 249 209 221 207 229 219 223 155 13.7 || 24.6
+ Avg. |52.6 49.1 473 503 464 52.6 50.8 519 50.8 51.0 459 416 | 53.5
Pa Re [98.4 984 982 98.6 982 984 984 984 983 983 98.0 99.0 | 98.2
+ Pa |733 774 660 824 653 733 80.7 76.6 754 755 709 64.4 | 750
In TDA In 334 305 266 27.8 269 337 348 30.1 31.0 30.1 255 11.2 | 29.7
1 Cl |68.8 61.1 68.1 672 558 69.1 725 70.7 69.1 70.0 56.0 34.1| 70.3
Cl Sk |64.6 62.8 542 58.8 519 651 675 655 650 652 53.1 23.6| 66.7
3 Qu 228 314 337 296 267 237 267 270 30.1 288 21.5 14.0 || 69.0
Sk Avg. | 60.2 603 57.8 67.0 54.1 337 634 614 615 613 542 41.1] 68.2
1 Re [97.8 943 89.7 756 878 97.6 95.0 94.1 922 93.0 914 549 97.5
Qu Pa |73.4 782 652 533 632 735 757 713 70.0 71.1 64.0 37.8 || 743

FA | In 334 314 234 140 225 338 284 280 27.1 275 234 149 | 29.0
Cl |68.8 61.0 59.3 374 569 69.6 645 628 61.1 619 54.1 289 | 71.5
Sk |64.6 60.7 43.0 241 445 649 53.1 603 59.7 60.7 49.5 29.2 | 68.2

Avg. | 67.6 651 56.1 409 550 68.6 633 633 62.0 628 56.5 33.1| 68.5

smaller amount of fitting samples is detrimental to the model performance, while a larger pi,, that
corresponds to fewer nearest samples for the KNN classification leads to slightly better performance.
Therefore, we choose piop = 2 and py,,;, = 20 in our experiments.

95 95 95
e TDG TOA e FA % .o TDG TOA e FA .o TDG TOA e FA
90 . 90
s gL g
=85 =80 el 2 =85
[PSR ———— e - 3 3 e s .
S 80 s 75 S gol enerrennr -t
g . € 70 #rrrerns @ rnannny PO - 3
275 265 - 275
13 % 3
70 Qsssssses @usescsess L il e, . b2 SCEEEEREE PR @sssnnnns PO L .
55 .
65%.0 03 05 0.8 10 5073 3 5 10 20 6573 3 5 10 20
/
(a) Pth (b) Ptop (C) ptop

Figure 5: Sensitivity analysis of confidence threshold py, in RandMix; pyop and pgop in T2PL.

14

	Introduction
	Methodology
	Problem Formulation of Continual Domain Shift Learning
	Random Mixup Augmentation
	Top2 Pseudo Labeling
	Prototype Contrastive Alignment

	Experiments
	Effectiveness of the Twofer Framework
	Ablation Studies

	Conclusion
	Implementation Details
	Additional Experiment Results
	Sensitivity Analysis

