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Abstract

One of the most overlooked challenges in dance generation is that the auto-1

regressive frameworks are prone to freezing motions due to noise accumulation.2

In this paper, we present two modules that can be plugged into the existing mod-3

els to enable them to generate non-freezing and high fidelity dances. Since the4

high-dimensional motion data are easily swamped by noise, we propose to learn a5

low-dimensional manifold representation by an auto-encoder with a bank of latent6

codes, which can be used to reduce the noises in the predicted motions, thus pre-7

venting from freezing. We further extend the bank to provide explicit priors about8

the future motions to disambiguate motion prediction, which helps the predictors9

to generate motions with larger magnitude and higher fidelity than possible before.10

Extensive experiments on AIST++, a public large-scale 3D dance motion bench-11

mark, demonstrate that our method notably outperforms the baselines in terms of12

quality, diversity and time length.13

1 Introduction14

Dancing to music has been one of the most popular art forms since ancient days. It can vividly15

express humans emotions and fulfill social communications even before symbolic languages came16

along. Nowadays, there are a booming number of people sharing their dance videos on the popu-17

lar media platforms such as YouTube and TikTok, which drives the strong need for automatic AI18

choreography to help users create their own dances. The task is related to general human motion19

prediction [19, 22, 27, 34, 35, 37] except that it poses new challenges: i) dance generation needs to20

produce high-fidelity motions for about three minutes to cover a music which is much longer than21

that in general motion prediction; ii) dance generation needs to handle more diverse and stylistic mo-22

tions (e.g., ballet Jazz, hip-pop, etc.). The high spatio-temporal complexity requires more expressive23

models in order to generate high-fidelity motions.24

The state-of-the-art methods follow a cross-modal prediction framework where the future motions25

are predicted based on the past motions and music in an auto-regressive way [10,14,18,26]. However,26

the generated motions are prone to freezing and small-magnitude motions after only several seconds.27

The main reason is that the prediction error will accumulate in the generation process, and eventually28

can not be handled by the predictors. Besides, motion prediction suffers from huge uncertainty and29

ambiguity because of the high spatio-temporal complexity of the task. As a result, the models tend30

to predict mean poses [37] instead of large-magnitude and high-fidelity motions if there are not31

informative priors about the future motions.32

In this paper, we present two modules that can be plugged into the existing auto-regressive models33

to achieve non-freezing large-magnitude motion generation. Figure 1 shows an overview. Firstly,34

to prevent from error accumulation, we present RefineBank to learn a low-dimensional manifold35

representation for the high-dimensional motion data. It equips an auto-encoder with a bank of36
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Figure 1: The motion prediction framework. It first uses the past motions to query TransitBank to
retrieve the priors about the future motions, which are fed to the predictor to get high-fidelity motion
predictions. Then RefineBank refines the predictions to reduce error accumulation.

latent codes to tightly constrain the manifold to be close to the ground-truth (GT) motions and37

meanwhile far from the ones with noises. This representation allows us to remove the noises in38

the predicted motions by projecting them to the learned manifold as illustrated in Figure 2. With39

RefineBank, the baseline method [18] can already generate full choreography for complete musics40

in the dataset without freezing. Secondly, inspired by the fact that most dances can be coarsely41

constructed by a number of basic motion segments, we present TransitBank to learn and memorize42

the frequently used <past, future> motion dynamics on top of the manifold. Given past motions, it43

provides explicit priors about the future motions which help reduce the uncertainty and ambiguity44

in motion prediction. It can effectively facilitate the higher-fidelity dance motion generation with45

larger magnitude than possible before.46

We evaluate our approach on the AIST++ dataset [18]. Not only does our method notably outperform47

the baselines on the existing metrics, but also shows better results on our newly introduced freezing48

rate metric. In addition, the user study indicates that people have obvious preferences toward the49

dances generated by our method. Our contributions are summarized as follows: 1) This is the first50

time we see evidence that the prediction-based methods can generate long-term dance motions on51

AIST++, which paves the way for full choreography for entire music; 2) We present RefineBank and52

TransitBank which can be plugged into most motion-prediction based methods to achieve long-term53

non-freezing dance generation; 3) We introduce new metrics that can quantitatively evaluate the54

freezing situations in the motion sequences.55

2 Related Work56

Prediction-based Methods This line of work treats dance generation as a motion prediction prob-57

lem and has achieved promising results. A number of network architectures have been proposed58

including CNNs [8, 14], RNNs [1, 10, 28, 31, 36], GCNs [4, 23, 32], GAN [26] and Transform-59

ers [11, 16–18]. Several works focus on the alignment of motion and music. For instance, Sun60

et al. [26] and Li et al. [16] use a classifier to test the authenticity of the predicted motion condi-61

tioned on the music. Zhang et al. [36] and Huang et al. [11] learn the dance style embeddings to62

provide prior information to the predictor. Few works have studied the freezing problem. Huang63

et al. [10] propose a curriculum learning strategy to bridge the gap between training and inference64

by alternately feeding predicted and ground-truth motions to the predictor. Li et al. [18] present65

future-n full-attention to replace the traditional shift-by-1 casual-attention to leverage the temporal66

context. However, the predicted motions still freeze after several seconds.67

Retrieval-based Methods Some earlier works compose a complete dance by retrieval [12, 21, 24,68

25]. They select the closest predefined motion segments in a pre-built database based on music, and69

construct a sequence with the proper transition routines. Lee et al. [15] and Ye et al. [33] use deep70

networks to generate future motion segments from the input music and past motion segments. Duan71

et al. [3] propose an attention-based MLP to translate all music phrases to motion segments. Chen72
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Figure 2: RefineBank: It takes a motion sequence with l frames as input, projects them to a low-
dimensional manifold, and reconstructs the sequence with minimum noises.

et al. [2] propose to generate dance sequences through traversing the node transition routines on a73

motion graph and introduce the choreography-oriented constraints. However, they cannot generate74

new motions beyond the database. Our approach is a prediction-based method so it enjoys all of75

the benefits such as being able to generate new motions beyond the database. But different from76

the previous methods, we present two plug-in modules that allow longer-term motion generation.77

Our approach is also inspired by the retrieval-based methods in that we construct a bank/database to78

learn common motion dynamics for the predictor. The difference is that the bank is automatically79

learned from data without human efforts.80

3 Preliminaries81

Given the past and future music features m1:t ∥ mt+1:t+K , and the past dance motions d̂1:t, we82

aim to predict the future motions d̂t+1:t+K . The input music features mt ∈ R35 are obtained83

from Librosa [20] and the motions are represented by SMPL parameters. Since shapes are dance-84

irrelevant, we only use the pose parameters and global translation vector in SMPL for d̂t ∈ R219.85

We follow the state-of-the-art dance generation architecture [18] as shown in Figure 1. It has a86

music feature extractor Em, a dance feature extractor Ed, and a cross-modal predictor Pc. The87

auto-regressive prediction process can be mathematically expressed as:88

d̂t+1:t+K = Pc(Em(m1:t+K), Ed(d̂1:t)). (1)

Although previous works such as [10, 18] have attempted to improve the long-term prediction per-89

formance, the predictions may still freeze after only several seconds.90

4 Method91

The dance motions are believed to lie on a low-dimensional manifold since the body parts are highly92

correlated [9]. We take advantage of the nice property and present RefineBank (RB) to reduce the93

noises in the motions. It learns an auto-encoder with a bank of latent codes to tightly represent the94

compact motion manifold. By projecting noisy or corrupted motions onto the manifold, we can95

remove the noises in the motions, which prevents error accumulation in the auto-regressive gener-96

ation. Secondly, we propose TransitBank (TB) on top of the learned manifold, which maintains a97

past-future motion dynamics bank to provide explicit priors about the future motions. The priors nar-98

row down the motion prediction space which facilitates high-fidelity motion generation with large99

magnitude. Mathematically, the prediction process can be formulated as:100

d̂t+1:t+K = RB(Pc(Em(m1:t+K), Ed(d̂1:t), TB(d̂1:t) )). (2)
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items to reduce the uncertainty and ambiguity in motion prediction.

4.1 RefineBank101

Figure 2 shows the components of RefineBank which has an encoder ERB , a decoder DRB , and a102

manifold bank BM ∈ RC×N . The bank BM has N learnable latent codes of dimension C which103

span the low-dimensional dance manifold. As will be described later, the bank is learned from the104

GT motions so it can be interpreted as a prior probabilistic distribution where the motion data with105

noises will have small likelihood.106

For a (noisy) motion sequence d̂1:l produced by the predictor, we first transform each of them to107

a latent feature by a transformer-based encoder ERB . We uniformly sample n features at different108

time steps z =
{
zt|t ∈

{
0, l

n−1 ,
2l

n−1 , ..., l
}}

to represent the sequence. Then we project each zt109

to the manifold represented by the bank to remove the prediction error. Specifically, for each latent110

feature zt, we compute the similarity scores between zt and the latent codes in BM , and use the111

weights to project zt onto the manifold to get ẑt:112

ẑt = BM · softmax(BT
Mzt). (3)

The projected latent features {ẑt} will be fed to the transformer-based decoder DRB to generate the113

motions that we expect to have little noise.114

4.2 TransitBank115

The high spatio-temporal complexity of the motion space increases the uncertainty and ambiguity of116

motion prediction. Hence, the motion predictors are prone to generating small-magnitude motions.117

To address the problem, we present TransitBank which is inspired by the fact that there exist a118

number of basic short motion segments that are frequently used in many dances. TransitBank aims119

to exploit such cues to estimate the prior distributions for future motion prediction.120

Concretely, TransitBank works by dividing a motion sequence into past and future sub-sequences121

and storing them as past-future pairs. Then given the past motions as input, it queries the bank and122

reads the corresponding future motion dynamics from the bank. This prior information is fed to the123

cross-modal predictor to reduce the uncertainty and ambiguity in motion prediction.124

Figure 3 shows the structure of TransitBank. It consists of an query encoder ETB , a past-future bank125

BPF , and a read decoder DTB . The bank BPF =
{
(K,V)|K,V ∈ RC×N

}
is also learned from126

training data. As for ETB and DTB , we use a simple transformer structure for encoder and decoder,127

respectively. To avoid information leakage in case that the cross-modal predictor directly copies the128

motions in TransitBank, we design the query-read process by using the attention mechanism rather129

than finding closest one which will effectively blur the future motions. Specifically, we encode input130

motion d1:l via ETB and take the average pooling of all outputs as the query vector q. Then we131

compute the similarity between q and key features K as:132

sim(K, q) = (K)Tq. (4)

In the read process, we compute the future motion prior r as the weighted average of the correspond-133

ing values V:134

r = V · softmax(sim(K, q)). (5)
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Figure 4: Constructing the past-future bank from the manifold bank.

Finally, we decode the vector r via DTB and feed it to the cross-modal predictor as additional135

tokens.136

4.3 Model Learning137

This section describes how we learn the two banks from training data. It is worth noting that the138

two banks are not independent. Instead, TransitBank is a temporal extension of RefineBank. In the139

following part, we first illustrate how we learn the bank in RefineBank and then describe how to140

derive the one in TransitBank. Finally, we describe the training optimization strategy.141

Bank in RefineBank We first initialize the bank by clustering. Specifically, we obtain a number142

of motion segments by applying a sliding window with length l to all training motion sequences.143

Then AP clustering [5] is used to obtain a number of cluster centers from the segments. We apply144

a transformer-based encoder EM to encode each cluster center di
1:l and compute the average of the145

encoding outputs of the l frames to initialize one bank elements bi ∈ BM .146

After initialization, we train the encoder EM , decoder DM and the bank BM to reconstruct all147

motion segments d1:l using the method described in Section 4.1. The only difference is that we148

project the latent feature z to its closest item b of BM as:149

ẑ = arg min
b∈BM

∥z − b∥ . (6)

Bank in TransitBank Constructing BPF from BM is straightforward. As shown in Figure 4, for150

each element b ∈ BM , we decode it to a motion sequence d̂1:l via the learned transformer decoder151

DM . Then we divide the sequence into two parts: d̂1:l/2 and d̂l/2+1:l, which are fed to the encoder152

EM to obtain the latent codes representing the past (K) and future (V), respectively. In that way,153

we obtain BPF =
{
(K,V)|K,V ∈ RC×N

}
.154

Optimization Strategy We train our model in three stages. In the first stage, we optimize the155

manifold bank by minimizing the following loss:156

LManifoldBank =
∥∥∥d̂1:l − d1:l

∥∥∥2
2
+ ∥sg[z]− ẑ∥22 + β∥z − sg[ẑ]∥22. (7)

The first term minimizes the reconstruction error. The second part is the “item loss” [29] to update157

items in manifold bank, where sg denotes “stop gradient”. This objective function moves the items158

close to the outputs of the encoder. The sg[·] operator is implemented by the identification function159

during forward computation with zero partial derivatives. The third part is “commitment loss” [29]160

to ensure the output of encoder commits to an item and the value of β is set as 0.2, empirically. We161

optimize the encoder with the first and third loss terms. The bank items are updated with only the162

second loss term and the decoder is trained with only the first term. Once we finalize the manifold163

bank, we can compute the past-future bank. Note that we do not update these two banks in the164

following stages.165

In the second stage, we train the encoder and decoders in RefineBank to reconstruct all motion166

sequences of the training set with only reconstruction loss.167

LRefineBank =
∥∥∥d̂1:l − d1:l

∥∥∥2
2
, (8)
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In the third stage, we train the whole framework in an end-to-end manner with the L2 loss between168

predicted motion and ground truth motion.169

LPrediction =
∥∥∥d̂t+1:t+K − dt+1:t+K

∥∥∥2
2
, (9)

5 Experiments170

5.1 Experimental Settings171

Dataset We evaluate our method on the largest AIST++ [18] dance dataset. It has 60 music pieces172

belonging to 10 dance genres. In total, there are 992 3D pose sequences at 60 FPS. Following [18],173

we use 952 samples for training and the rest 40 for evaluation.174

Implementation Details The model takes 240 frames of music and 120 frames of motions as175

input and predicts the next K = 20 frames of motions. We use the same network structures for the176

music extractor, motion extractor and cross-modal predictor as FACT [18]. For the encoders and177

decoders in RefineBank and TransitBank, we use transformers with 4 layers and 10 attention heads178

with 2048 hidden size. The number of items in manifold bank and past-future bank is 256 and each179

item is a 2048-dim latent vector. The input to RefineBank and TransitBank is a motion sequence180

with l = 120 frames. Since K < l, we concatenate the previous l −K frames of motions with the181

predictor output to feed to RefineBank. We construct a separate manifold bank and past-future bank182

for each dance genre. In the first training stage, we adopt Adam optimizer [13] with a learning rate183

of 1× 10−4 to train the manifold bank for 50 epochs. In the second training stage, we pre-train the184

RefineBank using Adam optimizer with a learning rate of 1× 10−4 for 25 epochs. In the third stage,185

we train the whole framework with Adam optimizer for 150 epochs. The learning rate starts with186

1 × 10−4 and decreases to
{
1× 10−5, 1× 10−6

}
after {30, 90} epochs, respectively. The whole187

training process takes about four days on four 2080Ti GPUs.188

Metrics The previous works mainly evaluate the dance generation results from three aspects: qual-189

ity, diversity and alignment. Following [18], we compute FID [7] (Frechet Inception Distances) on190

the kinetic features (denoted as FIDk) and geometric features (denoted as FIDg), respectively, to191

measure quality. We use the fairmotion toolbox [6] to extract the features. For diversity, we com-192

pute the average Euclidean distance in the kinetic (denoted as Distk) and geometric (denoted as193

Distg) feature space across the generated motions. For dance-music alignment, we adopt Beat194

Alignment Score in [18] to compute average distance between every kinematic beat and its nearest195

music beat. Since the freezing problem is largely overlooked previously, there are no metrics avail-196

able to evaluate. We propose to compute the average values of the temporal differences of the pose197

and translation parameters in the whole sequence, which are termed as ∆Pose and ∆Trans, respec-198

tively. In addition, we also calculate the Freezing Rate of each sequence. We divide a sequence199

into non-overlapping sub-sequences of 60 frames, and for each sub-sequence, if ∆Pose ≤ ∆gt
Pose and200

∆Trans ≤ ∆gt
Trans where ∆gt is a predefined threshold statistically derived from the training set, we201

regard it as a freezing sub-sequence. Then we compute the percentage of freezing sub-sequences.202

5.2 Comparison to the State-of-the-arts203

We compare our approach to a number of recent methods including Li et al. [17], Dancenet [38],204

DanceRevolution [10], and FACT [18]. Our approach employs the same structure as FACT except205

that it has RefineBank and TransitBank. For each music, we generate a motion sequence with 1200206

frames (20 seconds). The experiment results are shown in Table 1. Since DanceRevolution [10]207

predicts 3D keypoint positions, we cannot compute the SMPL-based freezing metrics. The approach208

in [17] does not predict the translation parameters. As shown, our approach outperforms the state-of-209

the-art methods on all metrics. Interestingly, the ∆Trans of our method is even larger than that of GT.210

We visually compare our generated motions and GT motions and find that it is because GT often211

have stationary poses at transition moments. By contrast, it is difficult for learning-based methods212

to predict stationary poses due to the lack of sufficient data.213

We present a detailed analysis for one sequence in Figure 5. As we can see, the motion and trans-214

lation changes of FACT gradually decrease to a small number suggesting that the freezing situation215
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Table 1: Comparison to the state-of-the-art methods on the AIST++ dataset.

Quality Diversity Align User Study
Method FIDk ↓ FIDg ↓ ∆Pose ↑ ∆Trans ↑ Freeze ↓ Distk ↑ Distg ↑ BeatAlign ↑ Win Rate ↑

GT - - 3.28 1.16 18.7% 9.06 7.31 0.292 31.7%

Li et al. [17] 86.43 20.58 1.02 - 59.0% 6.85 4.93 0.232 95.8%
DanceNet [38] 69.18 17.76 1.25 0.80 46.8% 2.86 2.72 0.232 90.8%
Revolution [10] 73.42 31.01 - - - 3.52 2.46 0.220 84.2%
FACT [18] 35.35 22.11 1.33 1.07 39.0% 5.94 6.18 0.241 86.7%

Ours 25.96 14.42 1.64 1.36 29.6% 7.68 6.59 0.249 -

FACT

Seed Motion Ours

(a) Frame-level Pose Change (b) Frame-level Translation Change (c) Frame-level Freezing Determination

Figure 5: The top row shows the motions generated by FACT and our method for the same music.
The bottom provides frame-level statistics for the two sequences. In figure (c), 0 represents non-
freezing and 1 means freezing. Best viewed in color.

occurs. In contrast, the numbers of our method are always above those of FACT and do not freeze.216

The results validate that our proposed bank-based manifold projection and past-future dynamic pri-217

ors indeed improve the quality of the generated motions.218

User Study We conduct a user study to investigate how people think of the dances generated by219

our method and the other ones. We invite 20 participants and each participant is asked to watch220

30 pairs of comparison videos. Each pair consists of our dance and one competitor’s generated221

with the same music. We ask each participant to determine “which person is dancing better to the222

music” and provide the statistics in Table 1 (last column). Our approach significantly outperforms223

the other methods in user study. We can keep at least 84.2% win rate to the SOTA methods including224

DanceRevolution and FACT. Notably, we can achieve 31.7% win rate compared to GT motions. We225

also collect detailed feed-backs and find that our generated dance is generally thought to be more226

diverse and non-freezing. The main problem with FACT is that the motions freeze frequently while227

the problem with DanceRevolution is that the motions are unnatural. Compared to GT motions, ours228

are thought to lack suitable transition motions and precise beat alignment which is a general problem229

faced by most prediction-based methods.230

5.3 Ablation Study231

Ablation Study of RefineBank and TransitBank The experiment results are shown in Table 2.232

Our first observation is that adding RefineBank to the baseline notably improves ∆Pose meaning233
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Table 2: Ablation study of RefineBank and TransitBank.

Quality Diversity Alignment
Method FIDk ↓ FIDg ↓ ∆Pose ↑ ∆Trans ↑ Freezing ↓ Distk ↑ Distg ↑ BeatAlign ↑

Baseline 35.35 22.11 1.33 1.07 39.0% 5.94 6.18 0.241
+ RefineBank 28.67 16.38 1.53 1.15 32.1% 6.65 6.34 0.246
+ TransitBank 31.24 19.18 1.49 1.31 34.3% 7.42 6.47 0.245

Ours 25.96 13.42 1.64 1.36 29.6% 7.68 6.59 0.249

(a) Baseline (b) With Only RefineBank (c) With RefineBank & TransitBank

Figure 6: t-SNE visualization of the generated dances. Each dot represents a 3D pose and different
colors represent different genres of the music used to generate the poses. Best viewed in color.

that the method reduces the chance of getting freezing motions. Meanwhile, the improvement also234

brings benefits to dance quality and diversity. However, the variation of the global positions of the235

dancers, i.e., ∆Trans, is only slightly improved. This is expected since RefineBank only guarantees236

that the refined motions are on the manifold. In contrast, adding TransitBank notably improves237

∆Trans. Meanwhile the diversity metrics are also notably improved. The results suggest that by238

exploiting the motion dynamic priors the method can predict high-fidelity and diverse motions with239

large magnitude instead of mean poses. Finally, the two modules are complementary to each other240

and combining them will further improve the results on all metrics.241

We visualize the poses in the generated dances using t-SNE [30] in Figure 6. We can see that242

the dances generated by the baseline tend to be mixed together with other genres. It means the243

motions may have lower fidelity, smaller magnitude and lack uniqueness. We think this is caused by244

the freezing problem and the high spatio-temporal complexity of the prediction space. In contrast,245

adding RefineBank alleviates the freezing problem which allows the poses to preserve the high-246

fidelity details and to be differentiable from other dances. Further adding TransitBank allows to247

generate more diverse dances with larger motion magnitude.248

Bank-based Auto-encoder We compare our bank-based auto-encoder with other options such as249

vanilla AE and VAE. The experimental results are shown in Table 3. Our bank-based auto-encoder250

achieves clearly better results than the other methods. This is because the bank of latent codes251

provide a tight characterization of the dance manifold. The tightness requires that the generated252

motion sequences strictly follow the dance styles.253

We also compare to a discrete variant of Bank-AE. Different from our current method, it uses the254

closest bank item instead of convex combinations of the neighboring items to reconstruct each da-255

tum similar to VQ-VAE [29]. We can see that it also reduces the the freezing rate. However, the256

quality and diversity metrics are notably worse than our method. This is because the discrete variant257

has limited capability to reconstruct data with sufficient accuracy, compared to our approach using258

convex combinations of multiple bank items.259

Number of Latent Features We study the impact of the number of latent features n for represent-260

ing a motion segment as discussed in section 4.1. The results are shown in Table 4. In general, using261

more latent features improves the prediction performance because it can capture more details. But262

keep increasing the number may lead to degeneration.263
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Table 3: Comparison of the bank-based AE and other options.

Quality Diversity Align
Method FIDk ↓ FIDg ↓ ∆Pose ↑ ∆Trans ↑ Freezing ↓ Distk ↑ Distg ↑ BeatAlign ↑

AE 29.85 17.64 1.52 1.32 33.5% 7.48 6.49 0.245
VAE 29.67 17.05 1.53 1.32 33.1% 7.49 6.50 0.245
Bank-AE (Discrete) 27.48 15.19 1.60 1.34 30.4% 7.45 6.48 0.247
Bank-AE (Ours) 25.96 13.42 1.64 1.36 29.6% 7.68 6.59 0.249

Table 4: Evaluation on the number of latent feature.

Quality Diversity Alignment
FIDk ↓ FIDg ↓ Pose ↑ Trans ↑ Freezing ↓ Distk ↑ Distg ↑ BeatAlign ↑

n=1 27.94 15.61 1.59 1.34 31.2% 7.51 6.52 0.246
n=2 26.72 14.78 1.62 1.35 30.6% 7.63 6.57 0.248
n=3 26.15 13.95 1.64 1.36 29.9% 7.66 6.59 0.249
n=4 25.96 13.42 1.64 1.36 29.6% 7.68 6.59 0.249
n=5 26.67 13.88 1.63 1.35 30.1% 7.72 6.63 0.248

Table 5: Evaluation on the number of bank items.

Quality Diversity Alignment
FIDk ↓ FIDg ↓ Pose ↑ Trans ↑ Freezing ↓ Distk ↑ Distg ↑ BeatAlign ↑

N=32 29.74 17.34 1.53 1.32 32.9% 7.50 6.49 0.245
N=64 29.14 16.98 1.54 1.33 31.7% 7.56 6.52 0.246

N=128 27.31 14.86 1.61 1.35 30.2% 7.62 6.54 0.248
N=256 25.96 13.42 1.64 1.36 29.6% 7.68 6.59 0.249
N=512 26.39 14.07 1.63 1.35 29.9% 7.64 6.56 0.248

Number of Bank Items We study the impact of the number of elements N in the two banks.264

The results are shown in Table 5. Initially, increasing the number of elements improves the results.265

This is reasonable because the expressive power of the bank is improved and more details can be266

preserved after projection. However, keep increasing N to 512 begins to have negative effects. We267

think this is because using too many items may increase the risk of over-fitting to the small levels268

of noises in the GT data. In addition, the introduced redundancy may also bring negative effects.269

Nevertheless, the method is relatively robust to this parameter and achieves reasonably good results270

when N is between 128 and 512.271

6 Conclusion272

In this work, we presented two general modules that can be plugged into the existing methods to273

address the freezing problem in dance motion generation. This largely overlooked problem has lim-274

ited motion generation to short segments of only several seconds. By reducing noise accumulation275

and exploiting dynamic priors, our approach can generate motions for at least 30 seconds with 60276

FPS, which is the maximum music length in current dataset AIST++, without freezing. Our user277

study also shows that our method has obvious advantages over other methods in terms of quality and278

diversity. The method paves the way for addressing a more valuable problem of full choreography279

for entire musics instead of short clips.280

Broader Impact We believe that our work has values for not only dance generation but also for281

more general motion prediction. This benefits areas including media platforms, robotics, and au-282

tonomous driving. On the other hand, our method can have negative downstream consequences283

such as being extended to generate fake videos conditioned on the generated human motions with284

GANs. The potential limitation is that due to the relatively short duration of music pieces in AIST++285

dataset, the test performance is not a precise evaluation for long-term dance generation capability.286
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