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Abstract

Conditional generative models of high-dimensional images have many applications,1

but supervision signals from conditions to images can be expensive to acquire.2

This paper describes Diffusion-Decoding models with Contrastive representations3

(D2C), a paradigm for training unconditional variational autoencoders (VAEs)4

for few-shot conditional image generation. D2C uses a learned diffusion-based5

prior over the latent representations to improve generation and contrastive self-6

supervised learning to improve representation quality. D2C can adapt to novel7

generation tasks conditioned on labels or manipulation constraints, by learning from8

as few as 100 labeled examples. On conditional generation from new labels, D2C9

achieves superior performance over state-of-the-art VAEs and diffusion models.10

On conditional image manipulation, D2C generations are two orders of magnitude11

faster to produce over StyleGAN2 ones and are preferred by 50% − 60% of the12

human evaluators in a double-blind study.13

1 Introduction14

Generative models trained on large amounts of unlabeled data have achieved great success in various15

domains including images [8, 47, 72, 40], text [53, 2], audio [24, 68, 88, 59], and graphs [34, 64].16

However, downstream applications of generative models are often based on various conditioning17

signals, such as labels [58], text descriptions [57], reward values [96], or similarity with existing18

data [43]. While it is possible to directly train conditional models, this often requires large amounts19

of paired data [54, 71] that are costly to acquire. Hence, it would be desirable to learn conditional20

generative models using large amounts of unlabeled data and as little paired data as possible.21

Contrastive self-supervised learning (SSL) methods can greatly reduce the need for labeled data in22

discriminative tasks by learning effective representations from unlabeled data [90, 35, 33], and have23

also been shown to improve few-shot learning [37]. It is therefore natural to ask if they can also24

be used to improve few-shot generation. Latent variable generative models (LVGM) are a natural25

candidate for this, since they already involve a low-dimensional, structured latent representation26

of the data they generate. However, popular LVGMs, such as generative adversarial networks27

(GANs, [32, 47]) and diffusion models [40, 80], lack explicit tractable functions to map inputs to28

representations, making it difficult to optimize latent variables with SSL. Variational autoencoders29

(VAEs, [49, 74]), on the other hand, can naturally adopt SSL through their encoder model, but they30

typically have worse sample quality.31
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Figure 1: Few-shot conditional generation with the unconditional D2C model (left). With a recogni-
tion model over the latent space (middle), D2C can generate samples for novel conditions, such as
image manipulation (right). These conditions can be defined with very few labels.

In this paper, we propose Diffusion-Decoding models with Contrastive representations (D2C), a32

special VAE that is suitable for conditional few-shot generation. D2C uses contrastive self-supervised33

learning methods to obtain a latent space that inherits the transferrability and few-shot capabilities of34

self-supervised representations. Unlike other VAEs, D2C learns a diffusion model over the latent35

representations. This latent diffusion model ensures that D2C uses the same latent distribution for36

both training and generation. We provide a formal argument to explain why this approach may lead37

to better sample quality than existing hierarchical VAEs. We further discuss how to apply D2C to38

few-shot conditional generation where the conditions are defined through labeled examples and/or39

manipulation constraints. Our approach combines a discriminative model providing conditioning40

signal and generative diffusion model over the latent space, and is computationally more efficient41

than methods that act directly over the image space (Figure 1).42

We evaluate and compare D2C with several state-of-the-art generative models over 6 datasets. On43

unconditional generation, D2C outperforms state-of-the-art VAEs and is competitive with diffusion44

models under similar computational budgets. On conditional generation with 100 labeled examples,45

D2C significantly outperforms state-of-the-art VAE [87] and diffusion models [80]. D2C can also46

learn to perform certain image manipulation tasks from as few as 100 labeled examples. Notably, for47

manipulating images, D2C is two orders of magnitude faster than StyleGAN2 [101] and preferred by48

50%− 60% of human evaluations, which to our best knowledge is the first for any VAE model.49

2 Background50

Latent variable generative models A latent variable generative model (LVGM) is posed as a con-51

ditional distribution pθ : Z → P(X ) from a latent variable z to a generated sample x, parametrized52

by θ. To acquire new samples, LVGMs draw random latent variables z from some distribution53

p(z) and map them to image samples through x ∼ pθ(x|z). Most LVGMs are built on top of three54

paradigms: variational autoencoders (VAEs, [49, 74]), Normalizing Flows (NFs, [26, 27]), Generative55

Adversarial Networks (GANs, [32]), and diffusion / score-based generative models [40, 81].56

Particularly, VAEs use an inference model from x to z for training. Denoting the inference distribution57

from x to z as qφ(z|x), the generative distribution from z to x as pθ(x|z), VAEs are trained by58

minimizing the following upper bound of negative log-likelihood:59

LVAE = Ex∼pdata
[Ez∼qφ(z|x)[− log p(x|z)] +DKL(qφ(z|x)‖p(z))] (1)

where pdata is the data distribution and DKL is the KL-divergence.60

Diffusion models Diffusion models [78, 40, 80] produce samples by reversing a Gaussian diffusion61

process. We use the index α ∈ [0, 1] to denote the particular noise level of an noisy observation62

x(α) =
√
αx +

√
1− αε, where x is the clean observation and ε ∼ N (0, I) is a standard Gaussian63

distribution; as α→ 0, the distribution of x(α) converges to N (0, I). Diffusion models are typically64
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parametrized as reverse noise models εθ(x(α), α) that predict the noise component of x(α) given65

a noise level α, and trained to minimize ‖εθ(x(α), α) − ε‖22, the mean squared error loss between66

the true noise and predicted noise. Given any non-decreasing series {αi}Ti=0 between 0 and 1, the67

diffusion objective for a clean sample from the data x is:68

`diff(x;w, θ) :=

T∑
i=0

w(αi)Eε∼N (0,I)[‖ε− εθ(x(αi), αi)‖
2

2], x(αi) :=
√
αix +

√
1− αiε (2)

where w : {αi}Ti=0 → R+ controls the loss weights for each α. When w(α) = 1 for all α, we recover69

the denoising score matching objective for training score-based generative models [81].70

Given an initial sample x0 ∼ N (0, I), diffusion models acquires clean samples (i.e., samples of x1)71

through a gradual denoising process, where samples with reducing noise levels α are produced (e.g.,72

x0 → x0.3 → x0.7 → x1). In particular, Denoising Diffusion Implicit Models (DDIMs, [80]) uses73

an Euler discretization of some neural ODE [13] to produce samples (Figure 2, left).74

We provide a more detailed description for training diffusion models in Appendix A.1 and sampling75

from DDIM in Appendix A.2. For conciseness, we use the notation p(α)(x(α)) to denote the marginal76

distribution of x(α) under the diffusion model, and p(α1,α2)(x(α2) | x(α1)) to denote the diffusion77

sampling process from x(α1) to x(α2) (assuming α1 < α2). This notation abstracts away the exact78

sampling procedure of the diffusion model, which depends on choices of α.79

Self-supervised learning of representations In self-supervised learning (SSL), representations80

are learned by completing certain pretext tasks that do not require extra manual labeling [65, 23]; these81

representations can then be applied to other downstream tasks, often in few-shot or zero-shot scenarios.82

In particular, contrastive representation learning encourages representations to be closer between83

“positive” pairs and further between “negative” pairs; contrastive predictive coding (CPC, [90]), based84

on multi-class classification, have been commonly used in state-of-the-art methods [35, 15, 17, 14, 79].85

Other non-contrastive methods exist, such as BYOL [33] and SimSiam [16], but they usually require86

additional care to prevent the representation network from collapsing.87

3 Problem Statement88

Few-shot conditional generation Our goal is to learn an unconditional generative model pθ(x)89

such that it is suitable for conditional generation. Let C(x, c, f) describe an event that “f(x) = c”,90

where c is a property value and f(x) is a property function that is unknown at training. In conditional91

generation, our goal is to sample x such that the event C(x, c, f) occurs for a chosen c. If we have92

access to some “ground-truth” model that gives us p(C|x) := p(f(x) = c|x), then the conditional93

model can be derived from Bayes’ rule: pθ(x|C) ∝ p(C|x)pθ(x). These properties c include (but are94

not limited to1) labels [58], text descriptions [57, 73], noisy or partial observations [11, 5, 44, 22],95

and manipulation constraints [66]. In many cases, we do not have direct access to the true f(x), so96

we need to learn an accurate model from labeled data [6] (e.g., (c,x) pairs).97

Desiderata Many existing methods are optimized for some known condition (e.g., labels in con-98

ditional GANs [8]) or assume abundant pairs between images and conditions that can be used for99

pretraining (e.g., DALL-E [71] and CLIP [70] over image-text pairs). Neither is the case in this paper,100

as we do not expect to train over paired data.101

While high-quality latent representations are not essential to unconditional image generation (e.g.,102

autoregressive [89], energy-based [29], and some diffusion models [40]), they can be beneficial103

when we wish to specify certain conditions with limited supervision signals, similar to how SSL104

representations can reduce labeling efforts in downstream tasks. A compelling use case is detecting105

and removing biases in datasets via image manipulation, where we should not only address well-106

known biases a-priori but also address other hard-to-anticipate biases, adapting to societal needs [62].107

Therefore, a desirable generative model should not only have high sample quality but also contain108

informative latent representations. While VAEs are ideal for learning rich latent representations due109

to being able to incorporate SSL within the encoder, they generally do not achieve the same level of110

sample quality as GANs and diffusion models.111

1When C refers to an event that is always true, we recover unconditioned generation.
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Table 1: A comparison of several common paradigms for generative modeling. [Explicit x→ z]: the
mapping from x to z is directly trainable, which enables SSL; [No prior hole]: latent distributions used
for generation and training are identical (Sec. 4.2), which improves generation; [Non-adversarial]:
training procedure does not involve adversarial optimization, which improves training stability.

Model family Explicit x→ z No prior hole Non-Adversarial
(Enables SSL) (Better generation) (Stable training)

VAE [49, 74], NF [26] 4 7 4
GAN [32] 7 4 7
BiGAN [28, 30] 4 4 7
DDIM [80] 7 4 4

D2C 4 4 4

4 Diffusion-Decoding Generative Models with Contrastive Learning112

To address the above issue, we present Diffusion-Decoding generative models with Contrastive Learn-113

ing (D2C), an extension to VAEs with high-quality samples and high-quality latent representations,114

and are thus well suited to few-shot conditional generation. Moreover, unlike GAN-based methods,115

D2C does not involve unstable adversarial training (Table 1).116

As its name suggests, the generative model for D2C has two components – diffusion and decoding;117

the diffusion component operates over the latent space and the decoding component maps from118

latent representations to images. Let us use the α index notation for diffusion random variables:119

z(0) ∼ p(0)(z(0)) := N (0, I) is the “noisy” latent variable with α = 0, and z(1) is the “clean” latent120

variable with α = 1. The generative process of D2C, which we denote pθ(x|z(0)), is then defined as:121

z(0) ∼ p(0)(z(0)), z(1) ∼ p(0,1)
θ (z(1)|z(0))︸ ︷︷ ︸

diffusion

, x ∼ pθ(x|z(1))︸ ︷︷ ︸
decoding

, (3)

where p(0)(z(0)) = N (0, I) is the prior distribution for the diffusion model, p(0,1)
θ (z(1)|z(0)) is the122

diffusion process from z(0) to z(1), and pθ(x|z(1)) is the decoder from z(1) to x. Intuitively, D2C123

models produce samples by drawing z(1) from a diffusion process and then decoding x from z(1).124

In order to train a D2C model, we use an inference model qφ(z(1)|x) that predicts proper z(1) latent125

variables from x; this can directly incorporate SSL methods [94], leading to the following objective:126

LD2C(θ, φ;w) := LD2(θ, φ;w) + λLC(qφ), (4)

LD2(θ, φ;w) := Ex∼pdata,z(1)∼qφ(z(1)|x)[− log p(x|z(1)) + `diff(z
(1);w, θ)], (5)

where `diff is defined as in Eq.(2), LC(qφ) denotes any contrastive predictive coding objective [90]127

with rich data augmentations [35, 15, 17, 14, 79] (details in Appendix A.3) and λ > 0 is a128

weight hyperparameter. The first two terms, which we call LD2, contains a “reconstruction loss”129

(− log p(x|z(1))) and a “diffusion loss” over samples of z(1) ∼ qφ(z(1)|x). We illustrate the D2C130

generative and inference models in Figure 2, and its training procedure in Appendix A.4.131

4.1 Relationship to maximum likelihood132

The D2 objective (LD2) appears similar to the original VAE objective (LVAE). Here, we make an133

informal statement that the D2 objective function is deeply connected to the variational lower bound134

of log-likelihood; we present the full statement and proof in Appendix B.1.135

Theorem 1 (informal). For any valid {αi}Ti=0, there exists some weights ŵ : {αi}Ti=0 → R+ for the136

diffusion objective such that −LD2 is a variational lower bound to the log-likelihood, i.e.,137

−LD2(θ, φ; ŵ) ≤ Epdata [log pθ(x)], (6)

where pθ(x) := Ex0∼p(0)(z(0))[pθ(x|z(0))] is the marginal probability of x under the D2C model.138

Proof. (sketch) The diffusion term `diff upper bounds the KL divergence between qφ(z1|x) and139

p
(1)
θ (z(1)) for suitable weights [40, 80], which recovers a VAE objective.140
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Figure 2: Illustration of components of a D2 model. On top of the encoding and decoding between
x and z(1), we use a diffusion model to generate z(1) from a Gaussian z(0). The red lines describe
several smooth ODE trajectories from α = 0 to α = 1 corresponding to DDIM.

4.2 D2 models address latent posterior mismatch in VAEs141

While D2C is a special case of VAE, we argue that D2C is non-trivial in the sense that it addresses a142

long-standing problem in VAE methods [86, 83], namely the mismatch between the prior distribution143

pθ(z) and the aggregate (approximate) posterior distribution qφ(z) := Epdata(x)[qφ(z|x)]. A mis-144

match could create “holes” [76, 41, 3] in the prior that the aggregate posterior fails to cover during145

training, resulting in worse sample quality, as many latent variables used during generation are likely146

to never have been trained on. We formalize this notion in the following definition.147

Definition 1 (Prior hole). Let p(z), q(z) be two distributions with supp(q) ⊆ supp(p). We say that148

q has an (ε, δ)-prior hole with respect to (the prior) p for ε, δ ∈ (0, 1), δ > ε, if there exists a set149

S ∈ supp(P ), such that
∫
S
p(z)dz ≥ δ and

∫
S
q(z)dz ≤ ε.150

Intuitively, if qφ(z) has a prior hole with large δ and small ε (e.g., inversely proportional to the number151

of training samples), then it is very likely that latent variables within the hole are never seen during152

training (small ε), yet frequently used to produce samples (large δ). Most existing methods address153

this problem by optimizing certain statistical divergences between qφ(z) and pθ(z), such as the KL154

divergence or Wasserstein distance [84]. However, we argue in the following statement that prior155

holes might not be eliminated even if we optimize certain divergence values to be reasonably low,156

especially when qφ(z) is very flexible. We present the formal statement and proof in Appendix B.2.157

p(z)
q(z)

158

Theorem 2. (informal) Let pθ(z) = N (0, 1). For any ε > 0,159

there exists a distribution qφ(z) with an (ε, 0.49)-prior hole, such that160

DKL(qφ‖pθ) ≤ log 22and W2(qφ, pθ) < γ for any γ > 0, where W2 is161

the 2-Wasserstein distance.162

Proof. (sketch) We construct a qφ that satisfies these properties (top-right figure). First, we truncate163

the Gaussian and divide them into regions with same probability mass; then we support qφ over half164

of these regions (so δ > 0.49); finally, we show that the divergences are small enough.165

In contrast to addressing prior holes by optimization, diffusion models eliminate prior holes by166

construction, since the diffusion process from z(1) to z(0) is constructed such that the distribution167

of z(α) always converges to a standard Gaussian as α → 0. As a result, the distribution of latent168

variables used during training is arbitrarily close to that used in generation3, which is also the case in169

GANs. Therefore, our argument provides an explanation as to why we observe better sample quality170

results from GANs and diffusion models than VAEs and NFs.171

5 Few-shot Conditional Generation with D2C172

In this section, we discuss how D2C can be used to learn to perform conditional generation from173

few-shot supervision. We note that D2C is only trained on images and not with any other data174

modalities (e.g., image-text pairs [71]) or supervision techniques (e.g., meta-learning [20, 6]).175

2This is reasonably low for realistic VAE models (NVAE [87] reports a KL divergence of around 2810 nats).
3We expand this argument in Appendix B.2.
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Algorithm 1 Conditional generation with D2C

1: Input n examples {(xi, ci)}ni=1, property c.
2: Acquire latents z(1)i ∼ qφ(z

(1)|x) for i ∈ [n];
3: Train model rψ(c|z(1)) over {(z(1)i , ci)}ni=1

4: Sample latents with ẑ(1) ∼ rψ(c|z(1)) · p(1)θ (z(1))
(unnormalized);

5: Decode x̂ ∼ pθ(x|ẑ(1)).
6: Output x̂.

Algorithm We describe the general algorithm176

for conditional generation from a few images177

in Algorithm 1, and detailed implementations178

in Appendix C. With a model over the latent179

space (denoted as rψ(c|z(1))), we draw condi-180

tional latents from an unnormalized distribution181

with the diffusion prior (line 4). This can be182

implemented in many ways such as rejection183

sampling or Langevin dynamics [63, 82, 25].184

Conditions from labeled examples Given a few labeled examples, we wish to produce diverse185

samples with a certain label. For labeled examples we can directly train a classifier over the186

latent space, which we denote as rψ(c|z(1)) with c being the class label and z(1) being the latent187

representation of x from qφ(z(1)|x). If these examples do not have labels (i.e., we merely want to188

generate new samples similar to given ones), we can train a positive-unlabeled (PU) classifier [31]189

where we assign “positive” to the new examples and “unlabeled” to training data. Then we use190

the classifier with the diffusion model pθ(z(1)|z(0)) to produce suitable values of z(1), such as by191

rejecting samples from the diffusion model that has a small rψ(c|z(1)).192

Conditions from manipulation constraints Given a few labeled examples, here we wish to learn193

how to manipulate images. Specifically, we condition over the event that “x has label c but is194

similar to image x̄”. Here rψ(c|z(1)) is the unnormalized product between the classifier conditional195

probability and closeness to the latent z̄(1) of x̄ (e.g., measured with RBF kernel). We implement line196

4 of Alg. 1 with a Lanvegin-like procedure where we take a gradient step with respect to the classifier197

probability and then correct this gradient step with the diffusion model. Unlike many GAN-based198

methods [12, 69, 92, 43, 93], D2C does not need to optimize an inversion procedure at evaluation199

time, and thus the latent value is much faster to compute; D2C is also better at retaining fine-grained200

features of the original image due to the reconstruction loss.201

6 Related Work202

Latent variable generative models Most deep generative models explicitly define a latent rep-203

resentation, except for some energy-based models [39, 29] and autoregressive models [89, 88, 10].204

Unlike VAEs and NFs, GANs do not explicitly define an inference model and instead optimize a205

two-player game. In terms of sample quality, GANs currently achieve superior performance over206

VAEs and NFs, but they can be difficult to invert even with additional optimization [45, 95, 7]. This207

can be partially addressed by training reconstruction-based losses with GANs [51, 52]. Moreover,208

the GAN training procedure can be unstable [9, 8, 60], lack a informative objective for measuring209

progress [4], and struggle with discrete data [97]. Diffusion models [25] achieves high sample quality210

without adversarial training, but its latent dimension must be equal to the image dimension.211

Addressing posterior mismatch in VAEs Most methods address this mismatch problem by im-212

proving inference models [61, 48, 85], prior models [86, 3, 83], or objective functions [98, 99, 100,213

1, 56]; all these approaches optimize the posterior model to be close to the prior. In Section 4.2,214

we explain why these approaches do not necessarily remove large “prior holes”, so their sample215

qualities remain relatively poor even after many layers [87, 18]. Other methods adopt a “two-stage”216

approach [21], which fits a generative model over the latent space of autoencoders [91, 72, 24, 71].217

Conditional generation with unconditional models To perform conditional generation over an218

unconditional LVGM, most methods assume access to a discriminative model (e.g., a classifier); the219

latent space of the generator is then modified to change the outputs of the discriminative model. The220

disciminative model can operate on either the image space [63, 67, 25] or the latent space [77, 93]. For221

image space discriminative models, plug-and-play generative networks [63] control the attributes of222

generated images via Langevin dynamics [75]; these ideas are also explored in diffusion models [82].223

Image manipulation methods are based on GANs often operate with latent space discriminators [77,224

93]. However, these methods have some trouble manipulating real images because of imperfect225

reconstruction [102, 7]. This is not a problem in D2C since a reconstruction objective is optimized.226
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Figure 3: Generated samples on CIFAR-10 (left), fMoW (mid), and FFHQ 256× 256 (right).

7 Experiments227

We examine the conditional and unconditional generation qualities of D2C over CIFAR-10 [50],228

CIFAR-100 [50], fMoW [19], CelebA-64 [55], CelebA-HQ-256 [45], and FFHQ-256 [46]. Our D2C229

implementation is based on the state-of-the-art NVAE [87] autoencoder structure, the U-Net diffusion230

model [40], and the MoCo-v2 contrastive representation learning method [15]. We keep the diffusion231

series hyperparameter {αi}Ti=1 identical to ensure a fair comparison with different diffusion models.232

For the contrastive weight hyperparameter λ in Equation (4), we consider the value of λ = 10−4233

based on the relative scale between the LC and LD2; we find that the results are relatively insensitive234

to λ. We use 100 diffusion steps for DDIM and D2C unless mentioned otherwise, as running with235

longer steps is not computationally economical despite tiny gains in FID [80]. We include additional236

training details, such as architectures, optimizers and learning rates in Appendix C.237

Table 2: Quality of representations and generations with LVGMs.

Model CIFAR-10 CIFAR-100 fMoW
FID ↓ MSE ↓ Acc ↑ FID ↓ MSE ↓ Acc ↑ FID ↓ MSE ↓ Acc ↑

NVAE [87] 36.4 0.25 18.8 42.5 0.53 4.1 82.25 0.30 27.7
DDIM [80] 4.16 2.5 22.5 10.16 3.2 2.2 37.74 3.0 23.5

D2C (Ours) 10.15 0.76 76.02 14.62 0.44 42.75 44.7 2.33 66.9

7.1 Unconditional generation238

For unconditional generation, we measure the sample quality of images using the Frechet Inception239

Distance (FID, [38]) with 50,000 images. In particular, we extensively evaluate NVAE [87] and240

DDIM [80], a competitive VAE model and a competitive diffusion model as baselines because we241

can directly obtain features from them without additional optimization steps4. For them, we report242

mean-squared reconstruction error (MSE, summed over all pixels, pixels normalized to [0, 1]) and243

linear classification accuracy (Acc., measured in percentage) over z1 features for the test set.244

We report sample quality results5 in Tables 2, and 3. For FID, we outperform NVAE in all datasets and245

outperform DDIM on CelebA-64 and CelebA-HQ-256, which suggests our results are competitive246

with state-of-the-art non-adversarial generative models. In Table 2, we additionally compare NVAE,247

DDIM and D2C in terms of reconstruction and linear classification accuracy. As all three methods248

contain reconstruction losses, the MSE values are low and comparable. However, D2C enjoys much249

better linear classification accuracy than the other two thanks to the contrastive SSL component. We250

further note that training the same contrastive SSL method without LD2 achieves slightly higher251

78.3% accuracy on CIFAR-10. We tried improving this via ResNet [36] encoders, but this significantly252

increased reconstruction error, possibly due to loss of information in average pooling layers.253

4For DDIM, the latent representations x(0) are obtained by reversing the neural ODE process.
5Due to space limits, we place additional CIFAR-10 results in Appendix D.
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Table 3: FID scores over different faces dataset with LVGMs.

Model CelebA-64 CelebA-HQ-256 FFHQ-256

NVAE [87] 13.48 40.26 26.02
DDIM [80] 6.53 25.6 -

D2C (Ours) 5.7 18.74 13.04

Table 4: Sample quality as a function of diffusion steps.

CIFAR-10 CIFAR-100 CelebA-64
Steps 10 50 100 10 50 100 10 50 100

DDPM [40] 41.07 8.01 5.78 50.27 21.37 16.72 33.12 18.48 13.93
DDIM [80] 13.36 4.67 4.16 23.34 11.69 10.16 17.33 9.17 6.53
D2C (Ours) 17.71 10.11 10.15 23.16 14.62 14.46 17.32 6.8 5.7

7.2 Few-shot conditional generation from examples254

We demonstrate the advantage of D2C representations by performing few-shot conditional generation255

over labels. We consider two types of labeled examples: one has binary labels for which we train256

a binary classifier; the other is positive-only labeled (e.g., images of female class) for which we257

train a PU classifier. Our goal here is to generate a diverse group of images with a certain label. We258

evaluate and compare three models: D2C, NVAE and DDIM. We train a classifier rψ(c|z) over the259

latent space of these models; we also train a image space classifier and use it with DDIM (denoted as260

DDIM-I). We run Algorithm 1 for these models, where line 4 is implemented via rejection sampling.261

As our goal is to compare different models, we leave more sophisticated methods [25] as future work.262

We consider performing 8 conditional generation tasks over CelebA-64 with 2 binary classifiers263

(trained over 100 samples, 50 for each class) and 4 PU classifiers (trained over 100 positively labeled264

and 10k unlabeled samples). We also report a “naive” approach where we use all the training265

images (regardless of labels) and compute its FID with the corresponding subset of images (e.g., all266

images versus blond images). In Table 5, we report the FID score between generated images (5k267

samples) and real images of the corresponding label. These results suggest that D2C outperforms the268

other approaches, and is the only one that performs better than the “naive” approach in most cases,269

illustrating the advantage of contrastive representations for few-shot conditional generation.

Table 5: FID scores for few-shot conditional generation with various types of labeled examples.
Naive performs very well for non-blond due to class percentages.

Method Classes (% in train set) D2C DDIM NVAE DDIM-I Naive

Binary

Male (42%) 13.44 38.38 41.07 29.03 26.34
Female (58%) 9.51 19.25 16.57 15.17 18.72

Blond (15%) 17.61 31.39 31.24 29.09 27.51
Non-Blond (85%) 8.94 9.67 16.73 19.76 3.77

PU

Male (42%) 16.39 37.03 42.78 19.60 26.34
Female (58%) 12.21 15.42 18.36 14.96 18.72

Blond (15%) 10.09 30.20 31.06 76.52 27.51
Non-Blond (85%) 9.09 9.70 17.98 9.90 3.77

270

7.3 Few-shot conditional generation from manipulation constraints271

Finally, we consider image manipulation where we use binary classifiers that are learned over 50272

labeled instances for each class. We perform Amazon Mechanical Turk (AMT) evaluations over273

two attributes in the CelebA-256 dataset, blond and red lipstick, over D2C, DDIM, NVAE and274
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Original D2C StyleGAN2 NVAE DDIM

Figure 4: Image manipulation results for blond (top) and red lipstick (bottom). D2C is better than
StyleGAN2 at preserving details of the original image, such as eyes, earrings, and background.

0.0 0.1 0.2 0.3 0.4 0.5

D2C

StyleGAN2

NVAE

DDIM

Red lipstick

0.0 0.1 0.2 0.3

D2C

StyleGAN2

NVAE

DDIM

Blond

Figure 5: AMT evaluation over image manipulations. x-axis shows the percentage that the evaluator
selects the image generated from the corresponding model out of 4 images from each model.

StyleGAN2 [47] (see Figure 4). The evaluation is double-blinded: neither we nor the evaluators know275

the correspondence between generated image and underlying model during the study. We include276

more details (algorithm, setup and human evaluation) in Appendix C and additional qualitative results277

(such as beard and gender attributes) in Appendix D.278

In Figure 5, we show the percentage of manipulations preferred by AMT evaluators for each model;279

D2C slightly outperforms StyleGAN2 for blond and significantly outperforms StyleGAN2 for red280

lipstick. When we compare D2C with only StyleGAN2, D2C is preferred over 51.5% for blond281

and 60.8% for red lipstick. An additional advantage of D2C is that the manipulation is much faster282

than StyleGAN2, since the latter requires additional optimization over the latent space to improve283

reconstruction [101]. On the same Nvidia 1080Ti GPU, it takes 0.013 seconds to obtain the latent284

code in D2C, while the same takes 8 seconds [101] for StyleGAN2 (615× slower). As decoding is285

very fast for both models, D2C generations are around two orders of magnitude faster to produce.286

8 Discussions and Limitations287

We introduced D2C, a VAE-based generative model with a latent space suitable for few-shot condi-288

tional generation. To our best knowledge, our model is the first unconditional VAE to demonstrate289

superior image manipulation performance than StyleGAN2, which is surprising given our use of a290

regular NVAE architecture. We believe that with better architectures, such as designs from Style-291

GAN2 or Transformers [42], D2C can achieve even better performance. It is also interesting to292

formally investigate the integration between D2C and other types of conditions on the latent space, as293

well as training D2C in conjunction with other domains and data modalities, such as text [71], in a294

fashion that is similar to semi-supervised learning. Nevertheless, we note that our model have to be295

used properly in order to mitigate potential negative societal impacts, such as deep fakes.296
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applicable? [Yes] In Appendix C.590

(b) Did you describe any potential participant risks, with links to Institutional Review591

Board (IRB) approvals, if applicable? [N/A] No biomedical data is used.592

(c) Did you include the estimated hourly wage paid to participants and the total amount593

spent on participant compensation? [Yes] In Appendix C.594
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