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Abstract

We explore the capability of plain Vision Transformers (ViTs) for semantic seg-1

mentation and propose the SegViT. Previous ViT-based segmentation networks2

usually learn a pixel-level representation from the output of the ViT. Differently, we3

make use of the fundamental component—attention mechanism, to generate masks4

for semantic segmentation. Specifically, we propose the Attention-to-Mask (ATM)5

module, in which the similarity maps between a set of learnable class tokens and6

the spatial feature maps are transferred to the segmentation masks. Experiments7

show that our proposed SegViT using the ATM module outperforms its counter-8

parts using the plain ViT backbone on the ADE20K dataset and achieves new9

state-of-the-art performance on COCO-Stuff-10K and PASCAL-Context datasets.10

Furthermore, to reduce the computational cost of the ViT backbone, we propose11

query-based down-sampling (QD) and query-based up-sampling (QU) to build12

a Shrunk structure. With our Shrunk structure, the model can save up to 40%13

computations while maintaining competitive performance.14

1 Introduction15

Semantic segmentation is a dense prediction task in computer vision that requires pixel-level clas-16

sification of an input image. Fully Convolutional Networks (FCN) [1] are widely used in recent17

state-of-the-art methods. This paradigm includes a deep convolutional neural network as the en-18

coder/backbone and a segmentation-oriented decoder to provide dense predictions. A 1×1 convolu-19

tional layer is usually applied to a representative feature map to obtain the pixel level predictions.20

To achieve higher performance, previous works [2–4] focus on enriching the context information or21

fusing multi-scale information. However, the correlations among spatial locations are hard to model22

explicitly in FCNs due to the limited receptive field.23

Recently, Vision Transformers (ViT) [5], which make use of the spatial attention mechanism are24

introduced to the field of computer vision. Unlike typical convolution-based backbones, the ViT has25

a plain and non-hierarchical architecture that keeps the resolution of the feature maps all the way26

through. The lack of the down-sampling process (excluding tokenizing the image) brings differences27

to the architecture to do the semantic segmentation task using ViT backbone. Various semantic28

segmentation methods [6–8] based on ViT backbones have achieved promising performance due to29

the powerful representation learned from the pre-trained backbones. However, the potential of the30

attention mechanism is not fully explored.31

Different from previous per-pixel classification paradigm [6–8], we consider learning a meaningful32

class token and then finding local patches with higher similarity to it. To achieve this goal, we propose33

the Attention-to-Mask (ATM) module. More specifically, we employ a transformer block that takes34

the learnable class tokens as queries and transfers the spatial feature maps as keys and values. A35

dot-product operator calculates the similarity maps between queries and keys. We encourage regions36
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belonging to the same category to generate larger similarity values for the corresponding category37

(i.e. a specific class token). Fig. 1 visualizes the similarity maps between the features and the ‘Table’38

and ‘Chair’ tokens. By simply applying a Sigmoid operation, we can transfer the similarity maps to39

the masks. Meanwhile, following the design of a typical transformer block, a Softmax operation is40

also applied to the similarity maps to get the cross attention maps. The ‘Table’ and ‘Chair’ tokens are41

then updated as in any regular transformer decoders, by a weighted sum of the values with the cross42

attention maps as the weights. Since the mask is a byproduct of the regular attentive calculations,43

negligible computation is involved during the operation.44

Building upon this efficient ATM module, we propose a new semantic segmentation paradigm with45

the plain ViT structure, dubbed SegViT. In the paradigm, several ATM modules are employed on46

different layers, and we get the final segmentation mask by adding the outputs from different layers47

together. SegViT outperforms its ViT-based counterparts with less computational cost. However,48

compared with previous encoder-decoder structures that use hierarchical networks as encoders, ViT49

backbones as encoders are generally heavier. To further reduce the computational cost, we employ a50

Shrunk structure consisting of query-based down-sampling (QD) and query-based up-sampling (QU).51

The QD can be inserted into the ViT backbone to reduce the resolution by half and QU is used parallel52

to the backbone to recover the resolution. The Shrunk structure together with the ATM module as the53

decoder can reduce up to 40% computations while maintaining competitive performance.54

We summarize our main contributions as follows:55

• We propose an Attention-to-Mask (ATM) decoder module that is effective and efficient for56

semantic segmentation. For the first time, we utilize the spatial information in attention57

maps to generate mask predictions for each category, which can work as a new paradigm for58

semantic segmentation.59

• We managed to apply our ATM decoder module to the plain, non-hierarchical ViT backbones60

in a cascade manner and designed a structure namely SegViT that achieves mIoU 55.2% on61

the competitive ADE20K dataset which is the best and lightest among methods that use ViT62

backbones. We also benchmark our method on the PASCAL-Context dataset (65.3% mIoU)63

and COCO-Stuff-10K dataset (50.3% mIoU) and achieve new state-of-the-art performance.64

• We further explore the architecture of ViT backbones and work out a Shrunk structure65

to apply to the backbone to reduce the overall computational cost while still maintaining66

competitive performance. This alleviates the disadvantage of ViT backbones that are usually67

more computationally intensive compared to their hierarchical counterparts. Our Shrunk68

version of SegViT on the ADE20K dataset reaches mIoU 55.1% with the computational69

cost of 373.5 GFLOPs which is about 40% off compared to the original SegViT (637.970

GFLOPs).71

2 Related Work72

Semantic segmentation. Semantic segmentation which requires pixel-level classification on an73

input image is a fundamental task in computer vision. Fully Convolutional Networks (FCN) used74

to be the dominant approach to this task. Initial per-pixel approaches such as [9, 10] attribute the75

class label to each pixel based on the per-pixel probability. To enlarge the receptive field, several76

approaches [11, 12] have proposed dilated convolutions or apply spatial pyramid pooling to capture77

contextual information of multiple scales. With the introduction of attention mechanisms, [13, 14, 6]78

replace the feature merge conducted by convolutions and pooling with attention to better capture79

long-range dependencies.80

Recent works [15, 8, 16] decouple the per-pixel classification process. They reconstruct the structure81

by using a fixed number of learnable tokens and use them as weights for the transformation to82

apply on feature maps. Binary matching rather than cross-entropy is used to allow overlaps between83

feature maps and learnable tokens are used to dynamically generate classification probabilities. This84

paradigm enables the classification process to be conducted globally and alleviates the burden for85

the decoder to do per-pixel classification, which as a result, is more precise and the performance is86

generally better. However, for those methods, the feature map is still calculated in a static manner,87

usually requiring feature merge modules such as FPN [4].88
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Figure 1: The overall concept of out Attention-to-Mask decoder. In a typical attentive process,
the dot-product is first made between queries and keys to measure the similarity, illustrated on the
left. If the similarity map is applied with Softmax operation on the spatial dimension, the output is
the typical attention map (multiple heads are summed together). However, if the same similarity map
is applied with a per-pixel operation Sigmoid, it produces a mask that indicates the area with certain
similarity. Based on the assumption that the tokens within the same category have higher similarity,
we can train a token vector to have high similarity within tokens of the specific category and low
similarity elsewhere. In the meantime, this process does not violate the attention mechanism, so it
can process alongside the original transformer layers.

Transformers for vision. Attention-based transformer backbones have become powerful alterna-89

tives to standard convolution based networks for image classification tasks. The original ViT [5] is90

a plain, non-hierarchical architecture. Various hierarchical transformers such as [17–20] have been91

presented afterwards. These methods inherit some designs from convolution based networks such as92

hierarchical structures, pooling and down-sampling with convolutions. As a result, they can be used93

as a straightforward replacement for convolutional based networks and applied with previous decoder94

heads for tasks such as semantic segmentation.95

Plain-backbone decoders. High-resolution feature maps generated by backbones are important for96

dense prediction tasks such as semantic segmentation. Typical hierarchical transformers use feature97

merge techniques such as FPN [4] or dilated backbones to generate high-resolution feature maps.98

However, for plain, non-hierarchical transformer backbones, the resolution remains the same for all99

layers. SETR [6] proposed a simple strategy to treat transformer outputs in a sequence-to-sequence100

perspective to solve segmentation tasks. Segmenter [8] joints random initialized class embeddings101

and the transformer patch embeddings together and applies several self-attention layers to the joint102

token sequence to obtain updated class embeddings and patch embeddings semantic prediction. In103

our study, we consider learning a class token and then finding local patches with higher similarities104

with the help of the attention map, making the inference process more direct and efficient.105

3 Method106

3.1 Encoder107

Given an input image I ∈ RH×W×3, a plain vision transformer backbone reshapes it into a sequence108

of tokens F0 ∈ RL×C where L = HW/P 2, P is the patch size and C is the number of channels.109

Learnable position embeddings of the same size of F0 are added to capture the positional information.110

Then, the token sequence F0 is applied with m transformer layers to get the output. We define the111

output tokens for each layer as [F1,F2, . . . ,Fm] ∈ RL×C . Typically, a transformer layer consists of112

a multi-head self-attention block followed by a point-wise multilayer perceptron block with layer113

norm in between and then a residual connection is added afterward. The transformer layers are114

stacked repetitively several times. For a plain vision transformer like ViT, there are no other modules115

involved and for each layer, the number of the tokens is not changed.116
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Figure 2: The overall SegViT structure with ATM module. The Attention-to-Mask (ATM) module
inherits the typical transformer decoder structure. It takes in randomly initialized class embeddings
as queries and the feature maps from the ViT backbone to generate keys and values. The outputs of
the ATM module are used as the input queries for the next layer. The ATM module is carried out
sequentially with inputs from different layers of the backbone as keys and values in a cascade manner.
A linear transform is then applied to the output of the ATM module to produce the class predictions
for each token. The mask for the corresponding class is transferred from the similarities between
queries and keys in the ATM module.

3.2 Decoder117

Mask-to-Attention (ATM). Cross attention can be described as the mapping between two se-118

quences of tokens. We define two token sequences as G ∈ RN×C with the length N equals to the119

number of classes and Fi ∈ RL×C . First, linear transformations are applied to each of them to form120

query (Q), key (K) and values (V), as presented by Eq. (1).121

Q = ϕq(G) ∈ RN×C , K = ϕk(Fi) ∈ RL×C , V = ϕv(Fi) ∈ RL×C , (1)

The similarity map is calculated between the query and the key. Following the scaled dot-product122

attention mechanism, the similarity map and attention map are calculated by:123

S(Q,K) =
QKT

√
dk

∈ RN×L,

Attention(G,Fi) = Softmax(S(Q,K))V ∈ RN×C ,

(2)

where
√
dk is a scaling factor with dk equals to the dimension of the keys. The shape of the similarity124

map S(Q,K) is determined by the length of the two token sequences N and L. The attention125

mechanism is then to update G by a weighted sum of V , where the weight assigned to the summation126

is the similarity map applied with Softmax along the dimension L.127

Dot-product attention uses the Softmax function to exclusively concentrate the attention on the128

token that has the most similarity. However, we suppose that the tokens other than ones that yield129

maximum similarities are also meaningful. Based on this intuition, we design a lightweight module130

that generates semantic predictions more directly. To be more specific, we assign G as the class131

embeddings for the segmentation task and Fi as the output of layer i of the ViT backbone. We pair a132

semantic mask to each token in G to represent the semantic prediction for each class. The calculation133

for the mask is:134

Mask(G,Fi) = Sigmoid(S(Q,K)) ∈ RN×L (3)
The shape of the masks is N ×L, which can be further reshaped to N ×H/P ×W/P . The structure135

of the ATM mechanism is illustrated in the right part in Fig. 2. Masks are the middle output of136
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Figure 3: The structure comparison between SegViT with a single layer and the Shrunk version.
(a) illustrates the SegViT structure with ATM module used once with the last layer of the ViT
backbone as the input to generate predictions. (b) uses the query-based down-sampling (QD) module
to implement a naive way to shrink the resolution of the features of the backbone from 1/16 to
1/32 and thus reduces the overall computational cost. (c) is the proposed (shrunk) version which
applies the additional query-based up-sampling module. The Shrunk version can save up to 40% of
computational cost when using the ViT-Large backbone without much sacrifice to the performance.

the cross attention. The final output tokens from the ATM module are used for classification. We137

apply a linear transformation followed by a Softmax activation to the output class tokens to get class138

probability predictions. Note that we follow [15] to add a ‘no object’ category (Ø) in case the image139

doesn’t contain certain classes. During inference, the output is produced by the dot-product between140

the class probability and the mask groups.141

Plain backbones such as ViT does not have multiple stages with features of different scale. Thus,142

structures such as FPN to merge features with multiple scales are not applicable. However, fea-143

tures other than the last layer contain rich low-level semantic information and are beneficial to144

the performance. We designed a structure that can make use of the feature maps from different145

layers of ViT to compact with our ATM decoder namely SegViT. In this study, we also found a146

way to compact the computational cost for the ViT backbone without sacrificing performance. This147

proposed Shrunk version of SegViT uses query-based down-sampling (QD) module together with a148

query-based up-sampling (QU) module to compress the ViT backbone and bring an overall reduction149

to the computational cost.150

The SegViT structure. As illustrated in Fig. 2, an ATM decoder takes in N tokens as the class151

embeddings and another sequence of tokens as the base to calculate keys and values for the ATM152

module to generate masks. The output of the ATM is N updated tokens and N masks corresponding153

to each class token. We use random initialized learnable tokens as the class embeddings and the154

output of the last layer of the ViT backbone as the base first. To make use of multi-layer information,155

the output of the first ATM decoder is then used as the class embeddings for the next ATM decoder156

with the output of another layer of the ViT backbone as the base. This process is repeated another157

time so that we can get three groups of tokens and masks. Formally, the loss function of each layer158

can be formulated as,159

Lmask = λfocalLIoU + λdiceLdice

Loverall = Lcls + Lmask
(4)

In each group, the output tokens are supervised by the classification loss (Lcls) which is mentioned160

above and the masks are summed orderly and supervised by the mask loss (Lmask) which is a linear161

combination of a focal loss [21] and a dice loss [22] multiplied by hyper-parameters λfocal and λdice162

respectively as in DETR [23]. The loss of all three groups are then summed together. We have further163

experiments to show that this design is beneficial and efficient.164

The Shrunk structure. Plain transformer backbones such as ViT is known to have larger com-165

putational cost than their counterparts with similar performance. We propose a Shrunk structure166

using query-based down-sampling (QD) and up-sampling (QU). Since the shape of the output of the167

attention module is determined by the shape of the query, we can apply down-sampling before the168

query transformation to realize the QD or insert new query tokens during the cross attention to realize169
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the QU. By changing the resolution with the number of query tokens, the spatial size is changed170

according to the cross attention, providing more flexibility to preserve (recover) important regions.171

To be more specific, in the QD layer, we use the nearest sampling to reduce the number of the tokens.172

In the QU layer, we employ a transformer decoder structure [24] and initialize new learnable tokens173

as queries based on the desired output resolution.174

As illustrated in Fig. 3, we set out SegViT structure with one single layer as the baseline (a). We first175

tried a naive approach (b) which is to apply the QD once at the 1/3 depth of the backbone (e.g. the176

8th layer of a backbone with 24 layers) to reduce the resolution of the layer output from 1/16 to 1/32177

to reduce the overall computational cost. The performance drops as expected since the QD process178

involves lose in information. To compensate for the information loss in the naive shrink version, we179

further apply two QU layers in parallel with the backbone. This is our proposed Shrunk version (c).180

The first QU layer takes in features with 1/16 resolution from the low level of the backbone. Its output181

is then used as the query to make cross attention with the down-sampled features with 1/32 resolution182

from the last layer of the backbone. The shape of the output of this QU structure is of 1/16 resolution.183

Directly reducing the number of the query tokens will harm the final performance, however, with184

our designed QU layer and the ATM module, the Shrunk structure is able to reduce 40% of overall185

computational cost while still being competitive in performance.186

4 Experiments187

4.1 Datasets188

ADE20K [25] is a challenging scene parsing dataset which contains 20, 210 images as the training189

set and 2, 000 images as the validation set with 150 semantic classes.190

COCO-Stuff-10K [26] is a scene parsing benchmark with 9, 000 training images and 1, 000 test191

images. Even though the dataset contains 182 categories, not all categories exist in the test split. We192

follow the implementation of mmsegmentation [27] with 171 categories to conduct the experiments.193

PASCAL-Context [28] is a dataset with 4, 996 images in training set and 5, 104 images in the194

validation set. There are 60 semantic classes in total, including a class representing ‘background’.195

4.2 Implementation details196

Transformer backbone. We use the naive ViT [5] as the backbone. In particular, we use its ‘Base’197

variation for most ablation studies and provide results on the ‘Large’ variation. Since there can be a198

huge difference with different pre-trained weights, as suggested by Segmenter [8], we use the weights199

provided by Augreg [29] following the counterparts [8, 30] for a fair comparison. The weights are200

obtained by training on ImageNet-21k with strong data augmentation and regularization. For a simple201

reference, we report that for pre-trained weights provided by ViT [5] and Augreg [29], the mIoU202

scores using the same training recipe on ADE20K dataset are 51.7% and 54.6%, respectively.203

Training settings. We use MMSegmentation [27] and follow the commonly used training settings.204

During training, we applied data augmentation sequentially via random horizontal flipping, random205

resize with the ration between 0.5 and 2.0 and random cropping (512× 512 for all except that we206

use 480 × 480 for PASCAL-Context and 640 × 640 for ViT-large on ADE20K). The batch size207

is 16 for all datasets with a total iteration of 160k, 80k and 80k for ADE20k, COCO-Stuff-10k208

and PASCAL-Context respectively. Evaluation metric. We use the mean Intersection over Union209

(mIoU) as the metric to evaluate the performance. ‘ss’ means single-scale testing and ‘ms’ test time210

augmentation with multi-scaled (0.5, 0.75, 1.0, 1.25, 1.5, 1.75) inputs. All reported mIoU scores are211

in a percentage format. All reported computational costs in GFLOPs are measured using the fvcore 1212

library.213

4.3 Comparisons with the State-of-the-art Methods214

Results on ADE20K. Table 1 reports the comparison with the state-of-the-art methods on ADE20K215

validation set using ViT backbone. The SegViT uses the ATM module with multi-layer inputs from216

1https://github.com/facebookresearch/fvcore
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the original ViT backbone, while the Shrunk is the one that conducts QD to the ViT backbone and217

saves 40% of the computational cost without sacrificing too much performance. Our method achieves218

55.2% in terms of mIoU with the ViT-Large backbone. It is 1.0% better than the recent StructToken219

[30] using the same backbone. Besides, our Shrunk version can also achieve a similar performance220

55.1% with computational cost 373.5 GFLOPs which is much less than the ViT-Large backbone221

alone (612.3 GFLOPs).222

Table 1: Experiment results on the ADE20K val. split. ‘ms’ means that mIoU is calculated using
multi-scale inference. ‘†’ means the models use the backbone weights pre-trained by AugReg [29].
‘*’ represents the model is reproduced under the same settings as the official repo. The GFLOPs is
measured at single-scale inference with the given crop size.

Method Backbone Crop Size GFLOPs mIoU (ss) mIoU (ms)

UperNet* [31] ViT-Base 512× 512 >250 46.6 47.5
DPT* [7] ViT-Base 512× 512 219.8 47.2 47.9

SETR-MLA* [6] ViT-Base 512× 512 113.5 48.2 49.3
Segmenter* [8] ViT-Base 512× 512 129.6 49.0 50.0

StructToken [30] ViT-Base 512× 512 >150 50.9 51.8

SegViT (Ours) ViT-Base 512× 512 120.9 51.3 53.0

DPT* [7] ViT-Large† 640× 640 479.0 49.2 49.5
UperNet* [31] ViT-Large† 640× 640 >700 48.6 50.0

SETR-MLA [6] ViT-Large 512× 512 368.6 48.6 50.3
MCIBI [32] ViT-Large 512× 512 >400 - 50.8

Segmenter [8] ViT-Large† 640× 640 671.8 51.8 53.6
StructToken [30] ViT-Large† 640× 640 >700 52.8 54.2

SegViT (Shrunk, ours) ViT-Large† 640× 640 373.5 53.9 55.1
SegViT (ours) ViT-Large† 640× 640 637.9 54.6 55.2

Results on COCO-Stuff-10K. Table 2 shows the result on the COCO-Stuff-10K dataset. Our223

method achieves 50.3% which is higher than the previous state-to-the-art StrucToken by 1.2% with224

less computational cost. Our Shrunk version achieves 49.4% with 224.8 GFLOPs, which is similar to225

the computational cost of a dilated ResNet-101 backbone but with much higher performance.226

Table 2: Experiment results on the COCO-Stuff-10K test. split. Following published methods, we
report the results with multi-scale inference (denoted by ‘ms’). The GFLOPs is measured at single
scale inference with a crop size of 512× 512.

Method Backbone GFLOPs mIoU (ms)

PSPNet [11] Dilated-ResNet-101 257.0 38.9
DANet [33] Dilated-ResNet-101 289.3 39.7

MaskFormer [15] ResNet-101-fpn 81.7 39.8
EMANet [34] Dilated-ResNet-101 247.4 39.9

SpyGR [35] ResNet-101-fpn >80 39.9
OCRNet [3] HRNetV2-W48 167.9 40.5

GINet [36] JPU-ResNet-101 >200 40.6
RecoNet [37] Dilated-ResNet-101 >200 41.5

ISNet [38] Dilated-ResNeSt-101 228.3 42.1
MCIBI [32] ViT-Large >380 44.9

StructToken [30] ViT-Large >400 49.1

SegViT (Shrunk, ours) ViT-Large 224.8 49.4
SegViT (ours) ViT-Large 383.9 50.3

Results on PASCAL-Context. Table 3 shows the results on the PASCAL-Context dataset. We227

follow HRNet [39] to evaluate our method and report the results under 59 classes (without background)228
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and 60 classes (with background). SegViT reaches mIoU 65.3% and 59.3% respectively for those two229

metrics that outperform the state-of-the-art methods using the ViT backbones with less computational230

cost.231

Table 3: Expperiment results on the PASCAL-Context val. split. Following published methods,
we report the results with multi-scale inference (denoted by ‘ms’). mIoU59: mIoU averaged over 59
classes (without background). mIoU60: mIoU averaged over 60 classes (59 classes plus background).
Both metrics were used in the literature; and we report for the 60 classes. The GFLOPs is measured
at single scale inference with a crop size of 480× 480.

Method Backbone GFLOPs mIoU59 (ms) mIoU60 (ms)

DeepLab-v2 [2] Dilated-ResNet-101 - - 45.7
RefineNet [40] ResNet-152 - - 47.3

UNet++ [41] ResNet-101 - 47.7 -
PSPNet [11] Dilated-ResNet-101 157.0 47.8 -

Ding et al. [42] ResNet-101 - 51.6 -
EncNet [43] Dilated-ResNet-101 192.1 52.6 -
HRNet [39] HRNetV2-W48 82.7 54.0 48.3

NRD [44] ResNet-101 42.9 54.1 49.0
GFFNet [45] Dilated-ResNet-101 - 54.3 -

EfficientFCN [46] ResNet-101 52.8 55.3 -
OCRNet [3] HRNetV2-W48 143.9 56.2 -

SETR-MLA [6] ViT-Large 318.5 - 55.8
Segmenter [8] ViT-Large 346.2 - 59.0

SegViT (Shrunk, ours) ViT-Large 186.9 63.7 57.4
SegViT (ours) ViT-Large 321.6 65.3 59.3

4.4 Ablation Study232

In this section, we conduct the ablation study to show the effectiveness of our proposed methods.233

Effect of the ATM module. Table 4 shows the effect of the ATM module. We set the SETR-naive234

as the baseline, which uses two 1× 1 convolutions to get per-pixel classifications directly from the235

last layer of the ViT-Base transformer output. We can see that by applying the ATM module and236

supervise with a regular cross-entropy loss, ATM is capable of providing 0.5% of performance boost.237

However, it is more beneficial to decouple the classification and mask prediction process and use the238

mask and classification supervision separately (3.1% increase).239

Ablation of using different layers as input for SegViT. Table 5 shows the performance boost240

that multiple layers input can provide. We can see that the performance boost of feature maps from241

additional lower layers is obvious (+1.3%). We then involved more layers of features and see further242

performance gains. We empirically choose to use three layers for its best performance.243

Table 4: Comparison between our proposed ATM
module with other methods. ‘CE loss’ indicates
the cross-entropy loss that is commonly used in se-
mantic segmentation. The experiments are carried
out on the ViT-Base backbone using ADE20K
dataset.

Decoder Loss mIoU (ss)

SETR CE loss 46.5
ATM CE loss 47.0 (+0.5)
ATM Lmask loss 49.6 (+3.1)

Table 5: Ablation results of using differ-
ent layer inputs to the SegViT structure on
ADE20K dataset using ViT-Base as the back-
bone. Involving multi-layer features can bring
obvious performance gain.

Used layers mIoU (ss)

Single [12] 49.6
Cascade [6, 12] 50.9 (+1.3)
Cascade [6, 8, 12] 51.3 (+1.7)
Cascade [3, 6, 9, 12] 51.2 (+1.6)
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Table 6: The experiments use the Swin-Tiny [18]
backbone and are carried out on the ADE20K
dataset. The GFLOPs are measured at single scale
inference with a crop size of 512× 512.

Method mIoU (ss) GFLOPs

Maskformer [15] 46.7 57.3
Mask2former [47] 47.7 73.7

SegViT (Ours) 47.1 48.0

Table 7: Ablation of the QD module in terms of
the targets and methods to down-sample. The
experiments are carried out on the ViT-Large
backbone of ADE20K dataset.

Applied to Methods mIoU (ss)

Q Conv 44.5
Q, K, V Nearest 52.6
Q Nearest 53.9

SegViT on hierarchical backbones. Shown in Table 6, the SegViT structure is also able to244

apply to hierarchical backbones. We choose the most competitive methods Maskformer [15] and245

Mask2former [47] for comparison. Results indicate that even though our method is not designed for246

hierarchical backbones, we can still achieve competitive performance while being efficient in terms247

of computational cost.248

Ablation for the QD module. The motivation to use QD is to make use of the pre-train weights249

of the backbone. As in Table 7, if we use a stride 2 convolution with learnable parameters to down-250

sample the query, it will destroy the pre-train weights and dramatically decrease the performance. If251

the down-sampling is applied to both Q and (K, V), there will be an inevitable loss in information252

during the down-sampling process which is reflected in the weaker performance. We found that253

applying 2× 2 nearest down-sampling on query only for the QD module is the better option.254

Ablation of the components in Shrunk structure. Shown in Table 8, we studied the effect of255

each component (QD and QU) in the Shrunk structure. The results presented matches the structures256

illustrated in Fig. 3. QD can reduce the computational cost of the backbone while still making use of257

the same pre-trained parameters. However, by QD alone, the performance drops partially due to the258

decrease in resolution of the output. Thus, QU is used to preserve the resolution and at the same time259

provide low-level feature information. We can see that by using QD and QU jointly, the performance260

can be retained and the computational cost is reduced. ATM module can also be used as the decoder261

to form our Shrunk structure to further boost performance.262

Table 8: Ablation results of Shrunk version. The experiments are carried out on the ADE20K dataset.
The GFLOPs are measured at single scale inference with a crop size of 512× 512. From the results
we can see the effect of the QD and QU modules. When QD is applied, the performance decreases by
2.7% from the ‘Single’. However, by applying QU, the performance is recovered.

Structure QD QU Head mIoU (ss) GFLOPs

Single SETR 46.5 107.3
Single ATM 49.6 (+3.1) 115.8
Naive Shrunk ✓ ATM 46.9 (+0.4) 74.1
Shrunk ✓ ✓ ATM 50.0 (+3.5) 97.1

5 Conclusion263

We proposed an effective structure using plain ViT transformer backbones termed SegViT for the264

semantic segmentation task. For the first time, we utilize spatial information in attention maps for265

semantic segmentation. To implement this idea, we proposed an Attention-to-mask (ATM) module266

that can derive mask predictions during the attention calculation process. We show on a number267

of semantic segmentation benchmarks that our method is efficient and achieves state-of-the-art268

performance. We also proposed a Shrunk structure which is applied to the backbone and capable of269

reducing 40% of the computational cost while still maintaining competitive performance. We believe270

both structures can be strong paradigms especially for semantic segmentation using ViT backbones.271

Last but not the least, our method still has some limitations. One of the limitations is that the large272

amount of GPU memory consumed by the global attention mechanism might not be supported by273

some devices, which might restrict the applicability of our structures.274
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