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Abstract

Integrating physics models within machine learning models holds considerable1

promise toward learning robust models with improved interpretability and abilities2

to extrapolate. In this work, we focus on the integration of incomplete physics3

models into deep generative models. In particular, we introduce an architecture of4

variational autoencoders (VAEs) in which a part of the latent space is grounded by5

physics. A key technical challenge is to strike a balance between the incomplete6

physics and trainable components such as neural networks for ensuring that the7

physics part is used in a meaningful manner. To this end, we propose a regularized8

learning method that controls the effect of the trainable components and preserves9

the semantics of the physics-based latent variables as intended. We not only10

demonstrate generative performance improvements over a set of synthetic and real-11

world datasets, but we also show that we learn robust models that can consistently12

extrapolate beyond the training distribution in a meaningful manner. Moreover, we13

show that we can control the generative process in an interpretable manner.14

1 Introduction15

Data-driven modeling is often opposed to theory-driven modeling, yet their integration has also been16

recognized as an important approach known as gray-box or hybrid modeling. In statistical machine17

learning, incorporation of physics (in a broad sense; including knowledge of biology, economics, etc.)18

has also been attracting attention. Gray-box / hybrid modeling in machine learning holds considerable19

promise toward learning robust models with improved abilities to extrapolate beyond the distributions20

that they have been exposed to during training. Moreover, it can bring significant benefits in terms of21

model interpretability since parts of a model get semantically grounded to concrete inductive bias.22

A technical challenge in gray-box deep modeling is to ensure an appropriate use of physics models.23

A careless design of models and learning can lead to an erratic behavior of the components meant to24

represent physics (e.g., with erroneous estimation of physics parameters), and eventually, the overall25

gray-box model just learns to ignore them. This is particularly the case when we bring together26

simplified or imperfect physics models with very expressive data-driven machine learning models27

such as deep neural networks. Such cases call for principled methods for striking an appropriate28

balance between physics and data-driven models to prevent the detrimental effects during learning.29

Integration of physics models into machine learning has been considered in various contexts (see,30

e.g., [41, 38] and our Section 4), but most existing studies focus on prediction or forecasting tasks31

and are not directly applicable to other tasks. More importantly, hardly any have addressed the32

careful orchestration of physics-based and data-driven components to avoid the detrimental effects.33

A notable exception is Yin et al. [44], in which they proposed a method to harness the action of34

trainable components of a hybrid model of differential equations. Their method has been developed35

for dynamics forecasting and is limited to additive combinations of physics and trainable models.36
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In this work, we aim at the integration of (incomplete) physics models into deep generative models,37

variational autoencoders (VAEs, [15, 28]) in particular, while the basic idea is applicable to other38

models. In our VAE, the decoder comprises physics-based models and trainable neural networks, and39

some of the latent variables are semantically grounded to the parameters of the physics models. Such40

a VAE, if appropriately trained, is by construction partly interpretable. Moreover, since it can by41

construction capture the underlying physics, it will be robust in out-of-distribution regime and exhibit42

meaningful extrapolation properties. We propose a regularized learning framework for ensuring the43

meaningful use of the physics models and the preservation of the semantics of the latent variables in44

the physics-integrated VAEs. We empirically demonstrate that our method can learn a model that45

exhibits better generalization, and more importantly, can extrapolate robustly in out-of-distribution46

regime. In addition, we show how the direct access to the physics-grounded latent variables allows us47

to alter properties of generation meaningfully and explore counterfactual scenarios.48

2 Physics-integrated VAEs49

We first describe the structure of VAEs we consider, which comprise physics models and machine50

learning models such as neural nets. We suppose that the physics models can be solved analytically51

or numerically with a reasonable cost, and the (approximate) solution is differentiable with regard to52

the quantities on which the solution depends. This assumption holds in most physics models known53

in practice, which come in different forms such as algebraic and differential equations. If there is no54

closed-form solution of algebraic equations, we can utilize differentiable optimizers [3] as a layer of55

the model. For differential equations, differentiable integrators [see, e.g., 7] will constitute a layer.56

Handling non-differentiable and/or overly-complex simulators remains an important open challenge.57

2.1 Example58

We start with an example to demonstrate the main concepts. Let us suppose that data comprise59

time-series of the angle of pendulums following an ordinary differential equation (ODE):60

d2θ(t)/dt2 + ω2 sin θ(t)︸ ︷︷ ︸
given as prior knowledge, fP

+ ζdθ(t)/dt− u(t)︸ ︷︷ ︸
to be learned by NN, fA

= 0, (1)

where θ is the pendulum’s angle, and ω, ζ, and u are the pendulum’s angular velocity, damping61

coefficient, and external force, respectively. We suppose that a data point x is a sequence of θ(t), i.e.,62

x = [θ(0) θ(∆t) · · · θ((τ − 1)∆t)]T ∈ Rτ for some ∆t ∈ R and τ ∈ N, where θ(t) is the solution63

of (1) with a particular configuration of ω, ζ, and u. In this example, we learn a VAE on a dataset64

comprising such x with different configurations of ω, ζ, and u.65

Suppose that the first two terms of (1) are given as prior knowledge, i.e., we know that the governing66

equation should contain fP(θ, ω) := θ̈ + ω2 sin θ. We will use such prior knowledge, fP, by67

incorporating it in the decoder of the VAE. Since fP misses some effects of the true pendulum system68

(1), we complete it by augmenting the decoder with an auxiliary function fA(θ,zA), which we model69

with a neural network. The VAE’s latent variable will have two parts, zP and zA, respectively linked70

to fP and fA. One one hand, zA works as an ordinary VAE’s latent variable since fA is a neural71

net, and we suppose zA ∈ Rd, p(zA) := N (0, I). On the other hand, we semantically ground zP72

to the parameter of fP, that is, zP := ω ∈ R in this example. In summary, the augmented decoder73

here is E[x] = ODEsolveθ
[
fP(θ(t), zP) + fA(θ(t), zA) = 0

]
, where ODEsolveθ denotes some74

differentiable solver of an ODE with regard to θ. The encoder will have corresponding recognition75

networks for zP and zA. The situation in this example will be numerically examined in Section 5.1.76

2.2 General formulation77

We now present the concept of our physics-integrated VAEs in a general form. Note that our interest is78

not limited to additive cases nor ODEs. In fact, the general formulation below subsumes non-additive79

augmentation of various physics models (i.e., not only ODEs). The notation introduced in this section80

will be used to explain the proposed regularized learning method later in Section 3.81

For clarity, we suppose that a VAE decoder comprises two parts: a physics-based model fP and a82

trainable auxiliary function fA. More general cases, for example with multiple trainable functions83

fA,1, fA,2, . . . used in different ways, are handled in Appendix A.84
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2.2.1 Latent variables and priors85

We consider two types of latent variables, zP ∈ ZP and zA ∈ ZA, which respectively will be used in86

fP and fA. The latent variables can be in any space, but for simplicity of discussion, we suppose ZP87

and ZA are (subsets of) the Euclidean space and set their prior distribution as multivariate normal:88

p(zP) := N (zP |mP, v
2
PI) and p(zA) := N (zA | 0, I), (2)

wheremP and v2P are defined in accordance with prior knowledge of fP’s parameters. Note that zP89

will be directly interpretable as they will be semantically grounded to the parameters of the physics90

model fP; for example in Section 2.1, zP := ω was the angular velocity of a pendulum.91

2.2.2 Decoder92

The decoder of a physics-integrated VAE comprises two types of functions1, fP : ZP → YP and93

fA : YP ×ZA → YA. For notational convenience, we consider a functional F that evaluates fP and94

fA, solve an equation if any, and finally gives observation x ∈ X . X may be the space of sequences,95

images, and so on. Assuming Gaussian observation noise, we write the observation model as96

pθ(x | zP, zA) := N
(
x | F [fA(fP(zP), zA)],Σx

)
. (3)

Note that f may have other arguments besides z, but they are omitted for simplicity. We denote the97

set of trainable parameters of fA and fP (and Σx) by θ, while fP may have no trainable parameters.98

Let us see the semantics of F first in the light of the example of Section 2.1. Recall that there we99

considered the additive augmentation of ODE (as in [44] and other studies). It is subsumed by the100

expression (3) by setting fA(fP(zP), zA) := fP(zP) + fA′(zA) and F [f ] := ODEsolve[f = 0],101

where fA′ is a neural network. Let us generalize the idea. Our definition of the decoder in (3) allows102

not only additive augmentation of ODE but also broader range of architectures. The composition103

of fP and fA is not limited to be additive because we consider general function composition104

fA(fP(zP), zA). Moreover, the form of the physics model is not limited to ODEs:105

• If equation fP = 0 has a closed-form solution SfP , then F is simply, e.g., F [fP, fA] := fA(SfP).106

• If an algebraic equation fP = 0 or fA ◦ fP = 0 has no closed-form solution, then F will have a107

differentiable optimizer, e.g., F [fP, fA] := fA(arg min ‖fP‖2) or F := arg min ‖fA ◦ fP‖2.108

• fP = 0 or fA ◦ fP = 0 can be a stochastic differential equation (and F contains its solver), for109

which zP and/or zA would become a sequence encoding the realization of the process noise.110

The role of fA can also be diverse; it can work not only as a complement of physics models inside111

equations, but also as correction of numerical errors of solvers or optimizers, downsampling or112

upsampling, and observables (e.g., from angle sequence to video of a pendulum).113

2.2.3 Encoder114

The encoder of a physics-integrated VAE accordingly comprises two parts: posterior inference of zP115

and that of zA. We consider the following decomposition of the approximated posterior:116

qψ(zP, zA, | x) := qψ(zA | x)qψ(zP | x, zA),

where qψ(zA | x) := N
(
zA | gA(x),ΣA

)
, qψ(zP | x, zA) := N

(
zP | gP(x, zA),ΣP

)
.

(4)

gA : X → ZA and gP : X ×ZA → ZP are recognition networks. We denote the trainable parameters117

of gA and gP (and ΣA and ΣP) as ψ. This particular dependency is for our regularization method in118

Section 3.2, where gP should first remove the information of zA from x and then infer zP.119

2.3 Evidence lower bound120

The VAE is to be learned as usual by maximizing the lower bound of the marginal log likelihood121

known as evidence lower bound (ELBO). In our case, it is straightforward to derive:122

ELBO(θ, ψ;x) = Eqψ(zP,zA|x) log pθ(x | zP, zA)

+DKL

[
qψ(zA | x) ‖ p(zA)

]
+ Eqψ(zA|x)DKL

[
qψ(zP | x, zA) ‖ p(zP)

]
.

(5)

1The distinction between fP and fA depends on the origin of the functional forms (and not if trainable or not).
The form of fP depends on physics’ insight and thus fixed. On the other hand, the form of fA is determined only
from utility as a function appoximator, and we can use whatever useful (e.g., feed-forward NNs, RNNs, etc.).
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3 Regularizing physics-integrated VAEs123

We propose a regularized learning objective for physics-integrated VAEs. It comprises two types of124

regularizers. The first one is for harnessing unnecessary flexibility of function approximators like125

neural networks and presented in Section 3.1. The second ones are for grounding encoder’s output to126

physics parameters and presented in Section 3.2. The overall objective is summarized in Section 3.3.127

3.1 Harnessing trainable functions by PPC-like procedure128

If the trainable component of the physics-integrated VAE (i.e., fA) has rich expression capability,129

as is often the case with deep neural networks, merely maximizing the ELBO in (5) provides no130

guarantee that the physics-based component (i.e., fP) will be used in a meaningful manner; e.g., fP131

may just be ignored. We want to ensure that fA does not unnecessarily dominate the behavior of the132

entire model and that fP is not ignored. To this end, we borrow an idea from the posterior predictive133

check (PPC), a procedure to check the validity of a statistical model [see, e.g., 9]. Whereas the134

standard PPCs examine the discrepancy between model’s and data’s posterior predictive distributions,135

we compute the discrepancy between those of the physics-integrated model and its “physics-only”136

reduced model for monitoring and balancing the contributions of parts of the model.137

For the sake of argument, suppose that a given physics model fP is completely correct for given data.138

Then, the discrepancy between the original model and its “physics-only” reduced model (where fA is139

somehow invalidated) should be close to zero because the decoder of both the original model (with140

fP and fA working) and the reduced model (with only fP working) should coincide in an ideal limit141

with the true data-generating process. Even if fP captures only a part of the truth, the discrepancy142

should be kept small, if not zero, to ensure meaningful use of the physics models in the overall model.143

The “physics-only” reduced model is created as follows. Recall that the original VAE is defined by144

Eqs. (3) and (4). We define the decoder of the reduced model by replacing fA : YP ×ZA → YA of145

(3) with a baseline function hA : YP → YA. That is, the reduced observation model is146

prθ,θr(x | zP, zA) := N
(
x | F [hA(fP(zP))],Σx

)
. (3r)

We denote the set of the trainable parameters of hA as θr, while it may often be empty. The147

corresponding encoder is defined as follows. Recall that in the original model, posterior distributions148

of both zP and zA are inferred in (4) and then used for reconstructing each input x in (3). On the149

other hand, in the “physics-only” reduced model, zA is not referred to by (3r), which makes it less150

meaningful to place a particular posterior of zA for each x. Hence, we define the “physics-only”151

encoder by marginalizing out zA and using prior2 p(zA) instead. That is, the reduced posterior is152

qrψ(zA, zP | x) := p(zA)

∫
qψ(zP, zA, | x)dzA. (4r)

Below we give a guideline for the choice of the baseline function, hA:153

• If the ranges of fP and fA are the same (i.e., YP = YA), then hA can be an identity function154

hA = Id. Note that in the additive case fA ◦ fP = fP + fA′ , where fA′ is a trainable function,155

replacing fA with hA = Id is equivalent to replacing fA′ with hA′ = 0.156

• If YP 6= YA, then hA can be a linear or affine map from YP to YA. For example, if YP = RdP and157

YA = RdA (dP 6= dA), then we can set hA(fP(zP)) = W fP(zP) whereW ∈ RdA×dP .158

The idea is to minimize the discrepancy between the full model and the “physics-only” reduced159

model. In particular, we minimize the discrepancy between the posterior predictive distributions160

DKL

[
pθ,ψ(x̃ | X) ‖ prθ,θr,ψ(x̃ | X)

]
, where

pθ,ψ(x̃ | X) =

∫
pθ(x̃ | zP, zA)qψ(zP, zA | x)pd(x | X)dzPdzAdx,

prθ,θr,ψ(x̃ | X) =

∫
prθ,θr(x̃ | zP, zA)qrψ(zP, zA | x)pd(x | X)dzPdzAdx.

(6)

pd(x | X) is the empirical distribution with the support on data X = {x1, . . . ,xn}. We use x̃161

(instead of x) just for avoiding notational confusion by clarifying the target of integral
∫

dx.162

2It is just for defining qrψ on the common support with qψ . Any non-informative distributions of zA are fine.
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Unfortunately, analytically computing (6) is usually intractable. Hence, we take the following upper163

bound of (6) (a proof is in Appendix B, and further remarks are in Appendix C):164

Proposition 1. Let pθ and prθ be the shorthand of pθ(x̃ | zP, zA) in (3) and prθ,θr(x̃ | zP, zA) in165

(3r), respectively. Let pP and pA be some distributions of zP and zA, e.g., p(zP) and p(zA) using166

the priors in (2), respectively. The KL divergence in (6) can be upper bounded as follows:167

DKL

[
pθ,ψ(x̃ | X) ‖ prθ,θr,ψ(x̃ | X)

]
≤ Epd(x|X)

[
Eqψ(zP,zA|x)DKL[pθ ‖ prθ]

+DKL[qψ(zA | x) ‖ pA] + Eqψ(zA|x)DKL[qψ(zP | zA,x) ‖ pP]
]
. (7)

Definition 1. Let us denote the upper bound (7) by Epd(x|X)D̂(θ, θr, ψ;x). The regularization for168

harnessing unnecessary flexibility of trainable functions is defined as minimization of169

RPPC(θ, θr, ψ) := Epd(x|X)D̂(θ, θr, ψ;x). (8)
Remark 1. When multiple trainable functions are differently used in a model (e.g., inside and outside170

an equation solver), which is often the case in practice, the definition of RPPC should be generalized171

to consider marginal contribution of every trainable function. See Appendix A.172

3.2 Grounding physics encoder by physics-based data augmentation173

Toward properly learning physics-integrated VAEs, minimizing RPPC solely may not be enough174

because inferred zP may be still meaningless but makes RPPC not that large (e.g., with solution of175

fP fluctuating around the mean pattern of data). Though it is difficult to avoid such a local solution176

perfectly, we can alleviate the situation by considering additional objectives to encourage a proper use177

of the physics. The idea is to use the physics model as a source of information for data augmentation,178

which helps us to ground the output of the recognition network, gP in (4), to the parameters of fP.179

Let z∗P be a sample drawn from some distribution of zP (e.g., prior p(zP)). We artificially generate sig-180

nals x∗ by feeding z∗P to the “physics-only” decoding process in (3r), that is, x∗z∗P := F [hA(fP(z∗P))].181

We want the physics-part recognition network, gP, to successfully estimate z∗P given the correspond-182

ing x∗z∗P , which is necessary to say that the result of the inference by gP is grounded to the parameters183

of fP. However, in general, real data x and the augmented data x∗ have different natures because fP184

may miss some aspects of the true data-generating process. We handle this issue by considering a185

specific design of the physics-part recognition network, gP.186

Let us decompose gP as gP(x, zA) = gP,2(gP,1(x, zA)) without loss of generality. On one hand,187

gP,1 should transform real data x into x′ such that x′ resembles the physics-based augmented signal188

x∗. In other words, gP,1 should “cleanse” real data into a virtual “physics-only” counterpart. On189

the other hand, gP,2 should receive such “cleansed” data x′ and return the (sufficient statistics of)190

posterior of zP. As gP,2 works on x′, which should resemble x∗, we can directly self-supervise gP,2191

with x∗. We define a couple of regularizers for setting such functionality of gP,1 and gP,2 as follows:192

Definition 2. Let sg(·) be the stop-gradient operator. Let x′ := F [hA(fP(gP(x, zA)))]. The193

regularization for the physics-based data augmentation is defined as minimization of194

RDA,1(ψ) := Epd(x|X)q(zA|x)
∥∥gP,1(x, zA)− sgx′

∥∥2
2

and (9)

RDA,2(ψ) := Ez∗P

∥∥gP,2( sgx∗z∗P
)
− z∗P

∥∥2
2
. (10)

Remark 2. If both gP,1 and gP,2 work as intended (i.e., both RDA,1 and RDA,2 are small enough),195

x′ is the virtual “physics-only” counterpart of x. RDA,1 is for ensuring the functionality of gP,1 to196

“cleanse” x to x′. RDA,2 is for giving the supervision to gP,2 with the augmented data (z∗P,x
∗).197

3.3 Overall regularized learning objective198

The overall regularized learning problem of the proposed physics-integrated VAEs is as follows:199

minimize
θ,θr,ψ

− Epd(x|X)ELBO(θ, ψ;x) + αRPPC(θ, θr, ψ) + βRDA,1(ψ) + γRDA,2(ψ),

where each term appears in (5), (8), (9), and (10), respectively. Recall that θ, ψ, and θr are the sets of200

the parameters of the full model’s decoder (3), encoder (4), and the reduced model’s decoder (3r),201

respectively, while θr may be empty. If we cannot specify a reasonable sampling distribution of z∗P202

needed in (10), we do not compute RDA,1 and RDA,2 and set β = γ = 0; it may happen when the203

semantics of zP are not inherently grounded, e.g., when fP is a neural Hamilton’s equation [37].204
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4 Related work205

The integration of theory-driven and data-driven methodologies has been sought in various ways.206

Ones in model design, which we followed, are one of the key approaches. Other approaches have also207

been studied; e.g., physics-informed neural nets (PINNs) [27] incorporate physics knowledge in the208

definition of loss function. We overview these perspectives in this section and more in Appendix D.209

Physics+ML in model design Integration in model design, often called gray-box or hybrid mod-210

eling, has been a subject of study for decades [e.g., 24, 29, 36] and is still active, with deep neural211

networks employed in various applications [e.g., 45, 26, 21, 39, 23, 1, 2, 8, 46, 40, 32, 16, 22, 5,212

33, 25, 19]. Most recent studies focus on prediction, and the generative modeling has been less213

investigated. Moreover, mechanisms to harness trainable components have hardly been addressed.214

The work of Yin et al. [44] is notable here because they consider a mechanism to harness a trainable215

component to preserve the utility of physics in the model, even though it is only focused on dynamics216

learning for forecasting. They learn an additive hybrid ODE model ẋ = fP(x) + fA(x), where fP is217

a prescribed physics model, and fA is a neural network. Such a model is subsumed in our architecture218

as exemplified in Section 2. Moreover, Yin et al. [44] propose to harness fA by minimizing ‖fA‖2.219

Such a term also appears in one of our regularizers, RPPC; when the observation noise is Gaussian,220

the first term of the rhs of (7) becomes E‖(fA ◦ fP) − fP‖22 = E‖fP + fA′ − fP‖22 = E‖fA′‖22.221

Therefore, we get a “VAE variant” of Yin et al. [44] by switching off a part of RPPC and the other222

regularizers, RDA,1 and RDA,2. We examine cases similar to it in our experiment for comparison.223

Yıldız et al. [43] and Linial et al. [20] developed VAEs whose latent variable follows ODEs. Linial224

et al. [20] also suggest grounding the semantics of the latent variable by providing sparse supervision225

on it. It is feasible only when we have a chance to observe the latent variable (e.g., with an increased226

cost) and may often be inherently infeasible in some problem settings including ours. In our method,227

we never assume availability of observation of latent variables and instead use the physics models in228

a self-supervised manner. While direct comparison is not meaningful due to the difference of settings,229

we examine a baseline close to the base model of Linial et al. [20] in our experiment for comparison.230

Toth et al. [37] propose a model where the latent variable sequence is governed by the Hamiltonian231

mechanics with a neural Hamiltonian. While it does not suppose very specific physics models232

but considers general mechanics, they can also be included in our framework; that is, fP can be a233

Hamilton’s equation with a neural Hamiltonian. We try such a model in one of our experiments.234

Physics+ML in objective design Another prevailing strategy is to define objective functions based235

on physics knowledge [e.g., 34, 14, 27, 12, 42, 13, 47, 30, 6]. In generative modeling, for example,236

Stinis et al. [35] use residuals from physics models as a feature of GAN’s discriminator. Golany et al.237

[10] regularize the generation from GANs by forcing it close to a prescribed physics relation. These238

approaches are often easy to deploy, but an inherent limitation is that given physics knowledge should239

be complete to some extent, otherwise a physics-based loss is not well-defined.240

5 Experiments241

We performed experiments on two synthetic datasets and two real-world datasets, for which we242

prepared instances of physics-integrated VAEs. We show each particular architecture of physics-243

integrated VAEs and the corresponding results; some details are deferred to Appendix E. While direct244

comparison is impossible due to the differences of the problem settings, the baseline methods we245

examined (listed below) are similar to some existing methods [4, 43, 37, 20, 44].246

NN-only Ordinary VAE [15, 28]; the decoder is Ex = fA(zA), where fA is a neural net.247

Phys-only Physics VAE; the decoder is Ex = F(fP(zP)), while the encoder is with neural248

nets as usual. Almost equivalent to Aragon-Calvo and Carvajal [4] in Section 5.3.249

NN+solver VAE with physics solvers; the decoder is Ex = F(fA(zA)), where fA is a neural250

net, and F includes some equation-solving process (e.g., ODE/PDE solver). It is251

similar to the methods of, for example, Yıldız et al. [43] and Toth et al. [37].252

NN+phys Physics-integrated VAE learned without the regularizers (i.e., α = β = γ = 0);253

almost equivalent to the base model of Linial et al. [20]. Finer ablations are also254

studied, among which the cases with β = 0 or γ = 0 are similar to Yin et al. [44].255
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Figure 1: Reconstruction and ex-
trapolation of a test sample of the
pendulum data. Range 0 ≤ t < 2.5
is reconstruction, whereas t ≥ 2.5
is extrapolation.
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Figure 2: Counterfactual generation for the pendulum data. Horizontal axis is time t. The center
panel shows the original data, and the rest is the generation with zP (i.e., ω) altered while zA fixed.

NN+phys+reg Our proposal; physics-integrated VAE learned with the proposed regularizers.256

We aligned the total dimensionality of the latent variables of each method (except phys-only);257

when dim zA = dA and dim zP = dP in NN+phys+reg, we set dim zA = dA + dP in NN-only and258

NN+solver. The hyperparameters, α, β, and γ, were chosen with validation set performance. We259

investigated the performance sensitivity to them. No large degradation of performance was observed260

even if we changed the values by ×10 or × 1
10 from the chosen values; details are in Appendix F.261

5.1 Forced damped pendulum262

Dataset We generated data from (1) with u(t) = Aω2 cos(2πφt). Each data-point x is a sequence263

x := [θ1 · · · θτ ] ∈ Rτ , where θj is the value of a solution θ(tj) at tj := (j − 1)∆t. We randomly264

drew a sample of the initial condition θ1 (with θ̇1 = 0 fixed) and the values of ω, ζ , A, and φ for each265

sequence. We generated 2,500 sequences of length τ = 50 with ∆t = 0.05 and separated them into266

a training, validation, and test sets with 1,000, 500, and 1,000 sequences, respectively.267

Setting We set fP as in Section 2.1, i.e., fP(θ, zP) := θ̈ + z2P sin(θ), where zP ∈ R should268

work as angular velocity ω. We augmented it by fA,1(θ, zA,1) additively, where fA,1 was a multi-269

layer perceptron (MLP) and zA,1 ∈ R. The ODE fP + fA,1 = 0 is solved with the Euler update270

scheme in the model. The model has another MLP3 fA,2 with another latent variable zA,2 ∈271

R2 for further modifying the solution of the ODE. In summary, the decoding process is F :=272

fA,2(solveθ[fP(θ, zP) + fA,1(θ, zA,1) = 0], zA,2). The construction of the proposed regularizer for273

such multiple fA’s is elaborated in Appendix A. We used hA,1 = 0 and hA,2 = Id as the baseline274

functions. The recognition networks g were modeled with MLPs. We used the initial element of each275

x as an estimation of the initial condition θ1.276

Results Figure 1 demonstrates a unique benefit of the hybrid modeling. We show an example277

of reconstruction with extrapolation. Recall that the training data comprise sequences of range278

0 ≤ t < 2.5 only; so the results in t ≥ 2.5 are extrapolation (in time) rather than mere reconstruction.279

We can observe that while NN+solver cannot extrapolate even if it is equipped with an neural ODE,280

NN+phys+reg can reconstruct and extrapolate correctly.281

Figure 2 illustrates well the advantage of the proposed regularizers. We show an example of generation282

from learned models with zP manipulated. Recall that zP is expected to work as pendulum’s angular283

velocity ω. We took a test sample with ω ≈ E[zP] ≈ 2.15 and generated signals with the original284

and different values of zP, keeping the values of zA to be the original posterior mean. We can see285

that the generation from NN+phys+reg matches better with the signals from the true process.286

Table 1 (left half) summarizes the performance in terms of the reconstruction error and the inference287

error of physics parameter ω on the test set. The errors are reported in mean absolute errors (MAEs).288

The inference error of ω is evaluated by |E[zP]− ωtrue|. NN+phys+reg achieves small values in both289

reconstruction error and inference error. The MAE of ω inferred by NN+phys is significantly worse290

than the others, which indicates the importance of the proposed regularizers.291

3We used MLP as the data are fixed length. The same holds hereafter. Extension to other networks is easy.
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Table 1: Reconstruction errors and inference errors on test sets of the pendulum data and the
advection-diffusion data. Averages (and SDs) over 20 random trials are reported.

Pendulum Advection-diffusion

MAE of reconst. MAE of inferred ω MAE of reconst. MAE of inferred a

NN-only 0.438 (2.9×10−2) – 0.0396 (2.2×10−4) –
Phys-only 1.55 (7.1×10−4) 0.232 (5.9×10−3) 0.393 (9.5×10−4) 0.0103 (1.5×10−3)
NN+solver 0.439 (2.3×10−2) – 0.0388 (1.7×10−4) –
NN+phys 0.370 (4.3×10−2) 1.04 (2.2×10−1) 0.0404 (1.2×10−2) 0.258 (3.2×10−1)
NN+phys+reg 0.363 (4.8×10−2) 0.229 (3.8×10−2) 0.0437 (1.5×10−3) 0.00951 (6.2×10−3)

A
bl

at
io

ns α = 0 0.396 (4.3×10−2) 0.889 (1.9×10−1) 0.0461 (1.3×10−2) 0.0444 (1.4×10−2)
β = 0 0.372 (4.1×10−2) 0.223 (3.6×10−2) 0.0747 (2.4×10−2) 0.199 (2.3×10−1)
γ = 0 0.381 (4.1×10−2) 0.276 (4.2×10−2) 0.0588 (9.1×10−4) 0.0548 (9.4×10−7)

s Truth

s Phys-only

s NN+solver

s NN+phys

0 5 10
time t

s NN+phys+reg

Figure 3: Reconstruction and extrapolation of
a test sample of the advection-diffusion data.
Range 0 ≤ t < 1 is reconstruction, whereas
t ≥ 1 is extrapolation; dashed line is the border.

Data NN-only

NN+phys NN+phys+reg

Figure 4: (left) Subset of the galaxy image
data. (right three) Random generation from the
NN-only model and the NN+phys+reg models.

5.2 Advection-diffusion system292

Dataset We generated data from advection-diffusion PDE ∂T/∂t− a · ∂2T/∂s2 + b · ∂T/∂s = 0,293

where s is the 1-D spatial dimension. We approximated the solution T (s, t) on the 12-point even grid294

from s = 0 to s = smax, so each data-point x is a sequence of 12-dim vectors, i.e., x := [T1 · · · Tτ ] ∈295

R12×τ , where Tj := [T (0, tj) · · · T (smax, tj)]
T at tj := (j − 1)∆t. We set the boundary condition296

as T (0, t) = T (smax, t) = 0 and the initial condition as T (s, 0) = c sin(πs/smax). We randomly297

drew a, b, and c for each x. We generated 2,500 sequences with τ = 50 and ∆t = 0.02 and separated298

them into a training, validation, and test sets with 1,000, 500, and 1,000 sequences, respectively.299

Setting We set fP as the diffusion PDE, i.e., fP(T, zP) := ∂T/∂t− zP∂2T/∂s2, where zP ∈ R300

should work as diffusion coefficient a. We augmented it by fA(T, zA) additively, where fA was an301

MLP and zA ∈ R4. Hence, the decoding process is F := solveT [fP(T, zP) + fA(T, zA) = 0]. We302

used hA = 0 as the baseline function. The recognition networks g were modeled with MLPs. We303

used the initial snapshot of each sequence x as an estimation of the initial condition T1.304

Results Figure 3 shows an example of reconstruction with extrapolation. As the training data305

only comprise sequences of range 0 ≤ t < 1, the remaining range t ≥ 1 is extrapolation. Only306

NN+phys+reg (the bottom panel) achieves adequate extrapolation; phys-only lacks advection,307

NN+solver has unnatural artifacts, and NN+phys infers zP (i.e., diffusion coefficient a) wrongly.308

Table 1 (right half) summarizes the reconstruction and inference errors, which are consistent with309

the results in the pendulum example. We also show the performance of ablations of NN+phys+reg,310

where either of the regularizers was turned off (i.e., α = 0, β = 0, or γ = 0). Not surprisingly their311

performance is worse than the full regularization, especially in terms of the inference error.312

5.3 Galaxy images313

Dataset We used images of galaxy of the Galaxy10 dataset [18]. We selected the 589 images of the314

“Disk, Edge-on, No Bulge” class and separated them into training, validation, and test sets with 400,315

100, and 89 images, respectively. Each image is of size 69× 69 with three channels. We performed316

data augmentation with random rotation and increased the size of the training set by 20 times.317
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Figure 5: Reconstruction of a test sample of the gait data. Horizontal axis is normalized time.

Setting We set fP : R4
>0 → R69×69 as an exponential profile of the light distribution of galaxies318

[see 4, and references therein] whose input is zP := [I0 A B θ]T ∈ R4
>0. Let [fP(zP)]i,j denote319

the (i, j)-element of the output of fP. Then, for 1 ≤ i, j ≤ 69, [fP(zP)]i,j := I0 exp(−ri,j), where320

r2i,j := (Xj cos θ − Yi sin θ)2/A2 + (Xj sin θ + Yi cos θ)2/B2, and (Xj ,Yi) is the coordinate on321

the 69× 69 even grid on [−1, 1]× [−1, 1]. We modify the output of fP using a U-Net-like neural322

network fA : R69×69 × Rdim zA → R69×69×3. Thus, the decoding process is F := fA(fP(zP), zA).323

We set dim zA = 2 for NN+phys+reg. We set hA : R69×69 → R69×69×3 to be the repeat operator324

along the channel axis. The encoding process is as follows: first, features are extracted from an image325

x by a convolutional net like [4]. The extracted features are flattened and fed to MLPs gP and gA.326

Results Figure 4 shows an example of original data and random generation from the learned models.327

NN-only tends to generate non-realistic images, and NN+phys generates slightly better but still spuri-328

ously, whereas NN+phys+reg consistently generates galaxy-like images. More results (reconstruction,329

counterfactual generation, and inspection of latent variable) are deferred to Appendix F.330

5.4 Human gait331

Dataset We used a part of the dataset provided by [17], which contains measurements of locomotion332

at different speeds of 50 subjects. We extracted the angles of hip, knee, and ankle in the sagittal plane.333

Data originally comprise sequences of each stride normalized to be 100 steps, so each data-point x is334

a sequence x := [θ1 · · ·θ100] ∈ R3×100, where θj := [θhip,j θknee,j θankle,j ]
T. We used different 400,335

100, and 344 sequences as training, validation, and test sets, respectively.336

Setting Biomechanical modeling of gait is a long-standing problem [see, e.g., 31]. We did not337

choose a specific model but let fP be a trainable Hamilton’s equation as in [37, 11]. zP ∈ R2dH338

works as the initial conditions of it, where dH is the dimensionality of the generalized position.339

We let dH = 3 and modeled the neural Hamiltonian with an MLP. The solution of fP = 0 is340

transformed by fA that also takes zA ∈ R15 as an argument. In summary, the decoding process341

is F = fA(solve[fP = 0], zA). We set hA to be an affine transform at each timestep, which has a342

weight matrix and a bias as θr. The recognition networks g were modeled with MLPs.343

Results Figure 5 is for visually comparing the difference of the learned models’ behavior due to344

the proposed regularizers. We compare the reconstructions by NN+phys and NN+phys+reg. The345

dashed lines show an intermediate of the decoding process, i.e., solve[fP = 0], and the red solid346

lines show the final reconstruction, i.e., fA(solve[fP = 0]). Without the regularization (upper row),347

solve[fP = 0] returns almost meaningless signals, and fA bears the most effort of reconstruction. On348

the other hand, with the regularization (lower row), solve[fP = 0] already matches well the data, and349

fA modifies it only slightly. Superiority of the regularized model was also confirmed quantitatively;350

the average test reconstruction errors were 0.273 with NN+phys and 0.259 with NN+phys+reg.351

6 Conclusion352

Physics-integrated VAEs by construction attain partial interpretability as some of the latent variables353

are semantically grounded to the physics models, and thus we can generate signals in a controlled354

manner. Moreover, they have extrapolation capability due to the physics models. In this work, we355

proposed a regularized learning objective for ensuring a proper functionality of the integrated physics356

models. We empirically validated the aforementioned unique capability of physics-integrated VAEs357

and the importance of the proposed regularization method.358
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