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ABSTRACT

Deep neural network (DNN) model compression for efficient on-device inference
becomes increasingly important to reduce memory requirements and keep user
data on-device. To this end, we propose a novel differentiable k-means clus-
tering layer (DKM) and its application to train-time weight-clustering for DNN
model compression. DKM casts k-means clustering as an attention problem and
enables joint optimization of the DNN parameters and clustering centroids. Un-
like prior works that rely on additional parameters and regularizers, DKM-based
compression keeps the original loss function and model architecture fixed. We
evaluated DKM-based compression on various DNN models for computer vision
and natural language processing (NLP) tasks. Our results demonstrate that DKM
delivers superior compression and accuracy trade-off on ImageNet1k and GLUE
benchmarks. For example, DKM-based compression can offer 74.5% top-1 Ima-
geNet1k accuracy on ResNet50 with 3.3MB model size (29.4x model compression
factor). For MobileNet-v1, which is a challenging DNN to compress, DKM de-
livers 62.8% top-1 ImageNet1k accuracy with 0.74 MB model size (22.4x model
compression factor). This result is 6.8% higher top-1 accuracy and 33% relatively
smaller model size than the current state-of-the-art DNN compression algorithms.
Additionally, DKM enables compression of DistilBERT model by 11.8x with min-
imal (1.1%) accuracy loss on GLUE NLP benchmarks.

1 INTRODUCTION

Deep neural networks (DNN) have demonstrated super-human performance on many cognitive
tasks (Silver et al., 2018). While a fully-trained uncompressed DNN is commonly used for
server-side inference, on-device inference is preferred to enhance user experience by reducing la-
tency and keeping user data on-device. Many such on-device platforms are battery-powered and
resource-constrained, demanding a DNN to meet the stringent resource requirements such as power-
consumption, compute budget and storage-overhead (Wang et al., 2019b; Wu et al., 2018).

One solution is to design a more efficient and compact DNN at the architecture level, such as
MobileNet (Howard et al., 2017). Another solution would be to compress a model with small
accuracy regression so that it takes less storage and reduces System on Chip (SoC) memory
bandwidth utilization, which can minimize power-consumption and latency. To this end, var-
ious DNN compression techniques have been proposed (Wang et al., 2019b; Dong et al., 2020;
Park et al., 2018; Rastegari et al., 2016; Fan et al., 2021; Stock et al., 2020). Among them, weight-
clustering/sharing (Han et al., 2016; Wu et al., 2018; Ullrich et al., 2017; Stock et al., 2020) has been
shown to deliver a high DNN compression ratio where weights are clustered into a few shareable
weight values (or centroids) based on well-known k-means clustering. Once weights are clustered,
to shrink the model size, one can store indices (2bits, 4bits, etc. depending on the number of clusters)
with a lookup table rather than actual floating-point values.

Designing a compact DNN architecture and enabling weight-clustering together could provide the
best solution in terms of efficient on-device inference. However, the existing model compression ap-
proaches do not usefully compress an already-compact DNN like MobileNet, presumably because
the model itself does not have significant redundancy. We conjecture that such limitation comes
from the fact that weight-clustering through k-means algorithm (both weight-cluster assignment
and weight update) has not been fully optimized with the target task. The fundamental complexity
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in applying k-means clustering for weight-sharing comes from the following: a) both weights and
corresponding k-means centroids are free to move (a general k-means clustering with fixed obser-
vations is already NP-Hard), b) the weight-to-cluster assignment is a discrete process which makes
k-means clustering non-differentiable, preventing effective optimization.

In this work, we propose a new activation layer for differentiable k-means clustering, DKM, based
on an attention mechanism (Bahdana et al., 2015) to capture the weight and cluster interactions
seamlessly, and further apply it to enable train-time weight-clustering for model compression. Our
major contributions include the following:

• We propose a novel differentiable k-means clustering layer (DKM) for deep learning,
which serves as a generic activation layer.

• We demonstrate that multi-dimensional k-means clustering can offer a high-quality model
for a given compression ratio target.

• We apply DKM to compress a DNN model and demonstrate the state-of-the-art results on
both computer vision and natural language models/tasks.

2 RELATED WORKS

Model compression using clustering: DeepCompression (Han et al., 2016) proposed to apply k-
means clustering for model compression. DeepCompression initially clusters the weights using
k-means algorithm. All the weights that belong to the same cluster share the same weight value
which is initially the cluster centroid. In the forward-propagation, the shared weight is used for each
weight. In the backward-propagation, the gradient for each shared weight is calculated and used to
update the shared value. This approach might degrade model quality because it cannot formulate
weight-cluster assignment during gradient back propagation (Yin et al., 2019).

HAQ (Wang et al., 2019b) uses reinforcement learning to search for the optimal quantization policy
on different tasks. For model compression, HAQ uses k-means clustering similar to DeepCompres-
sion (Han et al., 2016) yet with flexible bit-width on different layers. Our work is orthogonal to this
work because the k-means clustering can be replaced with our DKM with a similar flexible config-
uration. "And The Bit Goes Down" (Stock et al., 2020) algorithm is based on Product Quantization
and Knowledge Distillation. It evenly splits the weight vector of N elements into N/d contiguous
d dimensional sub-vectors, and clusters the sub-vectors using weighted k-means clustering to min-
imize activation change from that of a teacher network. GOBO (Zadeh & Moshovos, 2020) first
separates outlier weights far from the average of the weights of each layer and stores them uncom-
pressed while clustering the other weights by an algorithm similar to k-means.

Model compression using regularization: Directly incorporating k-means clustering in the train-
ing process is not straightforward (Wu et al., 2018). Hence, (Ullrich et al., 2017) models weight-
clustering as Gaussian Mixture Model (GMM) and fits weight distribution into GMM with addi-
tional learning parameters using KL divergence (i.e., forcing weight distribution to follow k Gaus-
sian distributions with a slight variance). (Wu et al., 2018) proposed deep k-means to enable weight-
clustering during re-training. By forcing the weights that have been already clustered to stay around
the assigned center, the hard weight-clustering is approximated with additional parameters. Both
(Ullrich et al., 2017) and (Wu et al., 2018) leverage regularization to enforce weight-clustering with
additional parameters, which will interfere with the original loss target and requires additional up-
dates for the new variables (i.e., singular value decomposition (SVD) in (Wu et al., 2018)). Also,
relying on the modified loss cannot capture the dynamic interaction between weight distributions
and cluster centroids within a batch, thus requiring an additional training flow for re-training.

Enhance Model compression using dropout: Quant-Noise (Fan et al., 2021) is a structured
dropout which only quantizes a random subset of weights (using any quantization technique) and
thus can improve the predictive power of a compressed model. For example, when combined
with (Stock et al., 2020), (Fan et al., 2021) showed good compression vs. accuracy trade-off on
ResNet50 for ImageNet1k.

Model quantization: Besides clustering and regularization methods, model quantization can also
reduce the model size, and training-time quantization techniques have been developed to improve
the accuracy of quantized models. EWGS (J. Lee, 2021) adjusts gradients by scaling them up or
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down based on the Hessian approximation for each layer. PROFIT (Park & Yoo, 2020) adopts an
iterative process and freezes layers based on the activation instability.

Efficient networks: Efficient architectures such MobileNet (Howard et al., 2017; Sandler et al.,
2018), Efficient Net (Tan & Le, 2019; 2021) and ESPNet (Mehta et al., 2019) are designed to be
memory-efficient. MobileNet-v1 (Howard et al., 2017) on ImageNet1k dataset has top-1 accuracy
of 70.3% with 16.1 MB of memory in comparison to a ResNet18 which has 69.3% accuracy with
44.6 MB of model size. Our method can be applied to these compact networks to reduce their model
sizes further while delivering competitive accuracies.

3 ALGORITHM

3.1 MOTIVATION

Popular weight-clustering techniques for DNN model compression (J. Lee, 2021; Han et al., 2016;
Dong et al., 2020; Stock et al., 2020) are based on k-means clustering along with enhancements
such as gradient scaling/approximation. Using k-means clustering, the weights are clustered and
assigned to the nearest centroids which are used for forward/backward-propagation during training
as illustrated in Fig. 1 (a). Such conventional approaches based on clustering have two critical
drawbacks:

• The weight-to-cluster assignment in conventional approaches are based on a distance metric
without being aligned with the training loss function.

• Gradients for the weights are computed in an ad-hoc fashion: the gradient of a centroid is
re-purposed as the gradient of the weights assigned to the centroid.

These limitations are more pronounced for the weights on the boundary such as i and j in Fig. 1 (a).
In the conventional approaches, i and j are assigned to the centroids C2 and C1 respectively, simply
because of their marginal difference in a distance metric. However, assigning i to C0 and j to C2

could be better for the training loss as their difference in distance is so small. Such lost opportunity
cost is especially higher with a smaller number of centroids (or fewer bits for quantization), as each
unfortunate assignment can degrade the training loss significantly, yet without recoverable solutions.

(a) Conventional weight-clustering (Han et al., 2016;
Wang et al., 2019b; Stock et al., 2020; J. Lee, 2021)

(b) Attention-based weight-clustering in DKM

Figure 1: In conventional weight-clustering algorithms, the boundary weights i and j are assigned
to clusters C2 and C1 based on the distance metric respectively, which is neither necessarily suitable
for the task nor differentiable against the loss function. DKM instead applies soft assignment using
attention mechanism during forward-propagation and enables differentiable backward-propagation,
which allows weights to consider other non-nearest clusters (especially helpful for the boundary
weights) and shuttle among multiple clusters in order to directly optimize their assignments based
on the task loss function.
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Figure 2: Weight-sharing using attention matrix A is iteratively performed in a DKM layer until the

centroids (C) converge. Once converged, a compressed weight, W̃ is used for forward-propagation.
Since DKM is a differentiable activation layer, backward-propagation will run through the iterative
loop and the gradients for the weights will be computed against the task loss function.

We overcome such limitations by interpreting weight-centroid assignment as distance-based atten-
tion optimization (Bahdana et al., 2015) in DKM as depicted in Fig. 1 (b) and letting each weight
interact with all the centroids. Note that such attention mechanism naturally allows differentiable
and iterative k-means clustering as in Fig. 2 to be an activation layer, and is highly effective in
weight-clustering for DNN compression.

3.2 DIFFERENTIABLE K-MEANS CLUSTERING LAYER FOR WEIGHT-CLUSTERING

DKM can perform a differentiable train-time weight-clustering iteratively for k clusters as shown
in Fig. 2 for the DNN model compression purpose. Let C ∈ Rk be a vector of cluster centers and
W ∈ RN be a vector of the weights, and then DKM performs as follows:

• In the first iteration C can be initialized either by randomly selected k weights from W or
k-means++. For all subsequent iterations, the last known C from the previous batch is used
to accelerate the clustering convergence.

• A distance matrix D is computed for every pair between a weight wi and a centroid cj
using a differentiable metric f (i.e., the Euclidean distance) using dij = −f(wi, cj).

• We apply softmax with a temperature τ on each row of D to obtain attention matrix A

where ai,j =
exp(

di,j

τ
)

∑
k
exp(

di,k

τ
)

represents the attention from wi and cj .

• Then, we obtain a new centroid C̃ by gathering all the attentions from W for each centroid

by computing c̃j =
∑

i
ai,jwi∑
i
ai,j

.

• We repeat this process till C̃ is close enough to C at which point k-means has converged,

and we compute AC to get W̃ for forward-propagation (as in Fig. 2).

The iterative process will be dynamically executed imperatively in PyTorch (Paszke et al., 2019)

and Tensorflow-Eager (Agrawal et al., 2019) and is differentiable for backward-propagation, as W̃
is based on the attention between weights and centroids. DKM uses soft weight-cluster assignment
which could be hardened in order to impose weight-clustering constraints. The level of hardness
can be controlled by the temperature τ in the softmax operation. During inference we use the last
attention matrix (i.e., A in Fig. 2) from a DKM layer to snap each weight to the closest centroid of the
layer and finalize weight-clustering as in prior arts (i.e., no more attention), but such assignment is
expected to be tightly aligned with the loss function, as the weights have been annealed by shuttling
among centroids.
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Using DKM for model compression allows a weight to change its cluster assignment during train-
time, but eventually encourages it to settle with the best one w.r.t the task loss. Optimizing both
weights and clusters simultaneously and channeling the loss directly to the weight-cluster assign-
ment is based on the attention mechanism. Since each step in DKM is without additional learnable
parameters and transparent to a model and loss function, we can reuse the existing training flow
and hyper-parameters. Therefore, the critical differences between DKM-based compression and the
prior works can be summarized as follows:

• Instead of hard weight-cluster assignment and approximated gradient (Han et al., 2016;
Wang et al., 2019b; J. Lee, 2021; Stock et al., 2020), DKM uses flexible and differentiable
attention-based weight-clustering and computes gradients w.r.t the task loss without approx-
imation.

• Instead of modifying the loss function with regularizers to enforce clustering (Ullrich et al.,
2017; Wu et al., 2018), DKM (as a differentiable activation) can be inserted into forward
functions, making the optimization fully aligned with the task objective (i.e., no interfer-
ence in loss).

• DKM requires no additional learnable parameters (Ullrich et al., 2017; J. Lee, 2021), thus
making the training flow simple. For example, DKM-base approach does not need to sub-
stitute a convolution layer with a specialized version with additional learning parameters.

• DKM requires no additional computation such as Hessian trace (Dong et al., 2020) or
SVD (J. Lee, 2021; Wu et al., 2018) for gradient approximation, because DKM uses a dif-
ferentiable process.

• DKM-based compression does not need a complex training flow such as freez-
ing/progress (Park & Yoo, 2020) or distillation (Stock et al., 2020), keeping training flow
simple and unchanged.

3.3 MULTI-DIMENSIONAL DKM

DKM can be naturally extended into multi-dimensional weight-clustering (Stock et al., 2020) due to
its simplicity, and is highly effective due to its differentiability. We split N elements of weights into
N
d

contiguous d dimensional sub-vectors and cluster the sub-vectors (W ∈ R
N
d
∗d). For example,

we simply flatten all the convolutional kernels into a (N
d
, d) matrix across both kernel and channel

boundaries and apply multi-dimensional DKM to the matrix for clustering in our implementation.
Accordingly, the cluster centroids will become d-dimensional as well (C ∈ Rk∗d) and the metric
calculation is done in the d-dimensional space. With the multi-dimensional scheme, the effective
bit-per-weight becomes b

d
for b-bit/d-dim clustering.

Such multi-dimensional clustering could be ineffective for conventional methods (i.e., DNN training
not converging) (Stock et al., 2020; Wang et al., 2019b; J. Lee, 2021), as now a weight might be on
the boundary to multiple centroids, and the chance of making wrong decisions grows exponentially
with the number of centroids. For example, there are only two centroids for 1bit/1dim clustering,
while there are 16 centroids in 4bit/4dim clustering, although both have the same effective bit-per-
weight. Intuitively, however, DKM can work well with such multi-dimensional configurations as
DKM naturally optimizes the assignment w.r.t the task objective and can even recover from a wrong
assignment decision over the training-time optimization process.

For a given sufficiently large N ≫ d in 32 bits, the compression ratio is 32d
b

and its entropy is b,
assuming all the clusters are at the same size. Since higher entropy indicates more flexibility in the
weight distribution and better model quality (Park et al., 2017), it can be expected that increasing
b and d at the same ratio as much as possible can improve the model quality for for a given target
compression ratio (see Section 4.1 for results).

The storage complexity of a DKM layer with N parameters is O(rN
d
2b) where r is the number of

iterations per Fig. 2, as all the intermediate results such as D and A at each iteration need to be
kept for backward-propagation. Therefore, when there are a large number of weights and the target
precision is high (i.e., more clusters), the training flow could suffer from out-of-memory error. One
solution to such memory overhead is to use a sparse representation for A by keeping top-k centroids
for each weight.
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Base DC HAQ ATB ATB DKM

Model Metrics 32bit 2bit flex small large configuration b/w∗

ResNet18
Top-1 (%) 69.8 65.8 61.1 65.2X cv†:6/8§

0.717
Size (MB) 44.6 1.58 1.07 1.00 fc‡:6/10

ResNet50
Top-1 (%) 76.1 68.9 70.6

73.8 68.2
74.5 cv:6/6

1.07774.3△ 68.8△

Size (MB) 97.5 6.32 6.30 5.34 3.43 3.31 fc:6/4

MobileNet Top-1 (%) 70.9 37.6 57.1
nc◦ nc

63.9 cv:4/4
1.427

v1 Size (MB) 16.1 1.09 1.09 0.72 fc:4/2

MobileNet Top-1 (%) 71.9 58.1 66.8
nc nc

67.9 cv:2/1
2.010

v2 Size (MB) 13.3 0.96 0.95 0.84 fc:4/4
∗ effective bit-per-weight (see Section 3.3); ◦ not converging
† the convolution layers ; ‡ the last fully connected layer
§ clustering with 6 bits and 8 dimensions
X also, 66.8 Top-1 accuracy and 1.49 MB superior to ATB small with cv:4/4, fc:8/4
△ ATB with quantization-noise (Fan et al., 2021)

Table 1: Top-1 accuracy and model compression for ImageNet1k: DKM-powered compression
outperforms existing compression approaches in both Top-1 accuracy and compressed model size
for all the tested convolutional networks.

4 EXPERIMENTAL RESULTS

We compared our DKM-based compression with multiple state-of-the-art quantization or compres-
sion schemes on various computer vision and natural language tasks and models. To study the
trade-off between model compression and accuracy regression, we disabled activation quantization
in every experiment for all approaches. All our experiments with DKM were done on two x86 Linux
machine with eight NVIDIA V100 GPUs each in a public cloud infrastructure, and activation layers
stayed unchanged, as our main goal is the model size reduction through compression. We used a
SGD optimizer with momentum 0.9, and fixed the learning rate at 0.008 (without individual hyper-
parameter tuning) for all the experiments for DKM. Each compression scheme starts with publicly
available pre-trained models.

4.1 IMAGENET1K

We compared our DKM-based compression with DeepCompression (or DC) (Han et al., 2016),
HAQ (Wang et al., 2019b), and "And The Bit Goes Down" (or ATB) (Stock et al., 2020) combined
with Quantization-noise (Fan et al., 2021) which are all designed for model compression, and sum-
marized results in Table 1. We set the mini-batch size 128 per GPU (i.e., global mini-batch size of
2048) and ran for 200 epochs for all DKM cases. Since the public ATB implementation does not
include MobileNet-v1/v2 cases (Howard et al., 2017; Sandler et al., 2018), we added the support for
these two by following the paper and the existing ResNet18/50 (He et al., 2016) implementations.
Instead of using a complex RL technique as in HAQ (Wang et al., 2019b), for DKM experiments,
we simply used static configurations for all the convolution layers (noted as cv) and the last fully
connected layer (note as fc), except that we applied 8 bit clustering to any layer with fewer than
10,000 parameters.

Even using such a simple method, DKM offers a Pareto superiority to other schemes as shown
in Table 1. For ResNet50 and MobileNet-v1/v2, DKM delivered compression configurations that
yielded both better accuracy and higher compression ratio than the prior arts. For ResNet18, DKM
was able to make a smooth trade-off between accuracy and compression and find Pareto superior
configurations to ATB: DKM can get 65.2% Top-1 accuracy with 1MB memory budget which is
superior to ATB-large (at 61.1% Top-1 accuracy with 1.07MB) and also ATB-small (at 65.8% Top-1
accuracy with 1.58MB). For MobileNet-v1/v2, ATB failed to converge, but DKM outperforms DC
and HAQ in terms of both accuracy and size at the same time.
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Metrics Base (32bit) RPS DKM 4/1 DKM 4/2 DKM 8/8§

Top-1 69.8 67.9 70.9 70.3 68.5

CR♦ 1 4 8 16 32

♦ compression ratio; § clustering with 8 bits and 8 dimensions

Table 2: GoogleNet training performance for ImageNet1k: DKM-based compression offered 2x
better compression ratio with 3% higher top-1 accuracy than RPS.

We also compared DKM with a well-known regularization-based clustering method on GoolgeNet
in Table 2, RPS (Wu et al., 2018) which has demonstrated superior performance to another regular-
ization approach (Ullrich et al., 2017). Note that only convolution layers are compressed, following
the setup in RPS (Wu et al., 2018). Table 2 clearly indicates that DKM can allow both much better
compression and higher accuracy than RPS even with 1 bit-per-weight.

ResNet18 ResNet50 MobileNet-v1 MobileNet-v2

Base (32 bit) 69.8 76.1 70.9 71.9

3
b
it

PROFIT 69.6 69.6

EWGS 70.5 76.3 64.4 64.5

PROFIT+EWGS 68.6 69.5

DKM 69.9 76.2 69.9 70.3

2
b
it

PROFIT 63.4 61.9

EWGS 69.3 75.8 52.0 49.1

DKM 68.9 75.3 66.4 66.2

1
b
it

PROFIT nc◦ nc

EWGS 66.6 73.8 8.5 23.0

DKM 1/1 65.0 72.1 5.9 50.8

DKM 4/4§ 67.0 73.8 60.6 55.0

DKM 8/8 67.8 oom� 64.3 62.4

1 2
b
it DKM 4/8 62.1 70.6 46.5 34.0

DKM 8/16 65.5 72.1 59.8 58.3

◦ not converging; � out of memory ; § clustering with 4 bits and 4 dimensions

Table 3: Top-1 accuracy for ImageNet1k: When compared with the latest weight quantization algo-
rithms, DKM-based algorithm shows superior Top-1 accuracy when the network is hard to optimize
(i.e., MobileNet-v1/v2) or when a low precision is required (1 bit). Further, with multi-dimensional
DKM (see Section 3.3), DKM delivers 64.3 % Top-1 accuracy for MobileNet-v1 with the 8/8 con-
figuration which is equivalent to 1 bit-per-weight.

For a comprehensive study, we also compared our DKM-based algorithm with the latest scalar
weight quantization approaches, PROFIT (Park & Yoo, 2020) and EWGS (J. Lee, 2021) (which
have outperformed the prior arts in the low-precision regimes) by running their public codes on our
environments with the recommended hyper-parameter sets. Table 3 summarizes our comparison
results on ResNet18, ResNet50, and MobileNet-v1/v2 for the ImageNet1k classification task. Fol-
lowing the experimental protocol in (Zhang et al., 2018; J. Lee, 2021; Rastegari et al., 2016), we did
not optimize the first and last layers for all the experiments in Table 3.

It clearly shows that our approach with DKM can provide compression comparable to or better than
other approaches, especially for the low-bit/high-compression regimes. We denote clustering with b
bits and d dimensions as b/d as it will assign b

d
bits in average to each weight, and the number of

weight clusters is 2b. Especially with multi-dim clustering such as 4/4 or 8/8 bits, our DKM-based
compression outperforms other schemes at 1 bit, while PROFIT cannot make training converge
for MobileNet-v1/v2. One notable result is 64.3% Top-1 accuracy of MobileNet-v1 with the 8/8
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ResNet18 ResNet50

GPU memory Per-epoch GPU memory Per-epoch

utilization (%) runtime (sec) utilization (%) runtime (sec)

3 bit 23.8 414.1 55.3 425.0

2 bit 21.7 401.2 49.2 429.3

1 bit 20.4 413.3 45.3 426.3

4/4§ bit 22.3 414.4 51.8 430.4

4/8 bit 20.7 423.6 46.7 410.4

8/8 bit 51.8 409.4 oom

8/16 bit 35.1 421.9 78.3 454.6

§ clustering with 4 bits and 4 dimensions

Table 4: Memory and Runtime overheads from DKM on ResNet18/50.

bit configuration (which is 1 bit-equivalent). DKM with 8/16 bits (effectively 0.5 bit per weight)
shows regression from the 8/8 bit configuration, but still retains a good accuracy level. We also tried
PROFIT+EWGS as proposed in (J. Lee, 2021), which showed good results on MobileNet-v1/v2 for
3 bits but failed to converge for 2 and 1 bits.

With the overall compression ratio (or bit-per-weight) fixed, our experiments with DKM confirm that
a higher d can yield a better quality training result. For the example of MobileNet-v2, DKM 8/16
yielded 24% better top-1 accuracy than DKM 4/8 although both have the same 1

2 bit-per-weight, and
the same trend is observed in other models. However, as discussed in Section 3.3, DKM 8/8 failed to
train ResNet50 due to the memory limitation, while DKM 8/16 successfully trained the same model,
because the larger dimension (i.e., 8 vs 16) reduces the memory requirement of the attention matrix.
In detail, Table 4 shows the GPU memory utilization and per-epoch runtime for the DKM cases in
Table 3. While DKM layers have negligible impacts on training speed, the GPU memory utilization
increases with more bits (i.e., more clusters) and with smaller dimensions.

(a) Top-1 accuracy (b) Weight distribution of the largest conv layer.

Figure 3: MobileNet-v2 convergence with DKM 1/1: DKM delivers 50.8% top-1 accuracy with 1
bit compression by gradually clustering the weights into two centroids using the task objective only.

Fig. 3 lastly shows that DKM-based compression can offer a smooth convergence and gradual
weight-clustering based on task loss back-propagated through DKM layers, without any extra regu-
larization or custom training flows.

4.2 GLUE NLP BENCHMARKS

We compared our compression by DKM with GOBO (Zadeh & Moshovos, 2020) and
EWGS (J. Lee, 2021) for BERT models on NLP tasks from the GLUE benchmarks (Wang et al.,
2019a), QNLI (Question-answering NLI) and MNLI (Multi NLI). We fixed the learning rate as 1e-4
for all the experiments which worked best for EWGS, and all experiments used mini-batch size 64
per GPU (i.e., global mini-batch size of 1024).
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ALBERT DistilBERT BERT-tiny MobileBERT

Base (32 bit) 90.6 88.2 78.9 89.6

3
b
it EWGS 83.3 87.6 78.3 87.8

DKM 85.1 88.2 80.0 89.0

2
b
it EWGS 79.6 85.4 77.9 81.6

DKM 81.7 87.4 80.0 83.7
1

b
it

EWGS 62.0 60.9 74.5 60.2

DKM 79.0 82.8 77.4 69.8

DKM 4/4§ 80.0 84.0 77.2 78.3

§ clustering with 4 bits and 4 dimensions

Table 5: Training performance for QNLI: DKM-based scheme outperforms EWGS in compressing
various transformed-based architectures. Also, multi-dimensional DKM (see Section 3.3) largely
improved the accuracy of MobileBERT with 1 bit-per-weight target using the 4/4 configuration.

Base GOBO DKM DKM

Metrics 32bit xform†3,emb‡4 xform4/2§,emb4 xform5/2,emb3

Top-1 82.4 81.3 81.3 81.3

Size (MB) 255.4 23.9 21.8 21.5

† the transformer layers ; ‡ the embedding layer
§ clustering with 4 bits and 2 dimensions

Table 6: DistillBert training performance for MNLI: DKM-based compression offered 10% smaller
model size with the same accuracy target than GOBO.

We compared our DKM-based compression against EWGS (J. Lee, 2021) on the QNLI dataset, and
Table 5 demonstrates that DKM offers better predictability across all the tested models (Lan et al.,
2019; Sanh et al., 2019; Turc et al., 2019; Sun et al., 2020) than EWGS. Note that the embedding
layers were excluded from compression in QNLI experiments. As in ImageNet1k experiments, the
4/4 bit configuration delivers better qualities than the 1 bit configuration on all four BERT models,
and especially performs well for the hard-to-compress MobileBERT. Table 5 also indicates that
different transformer architectures will have different levels of regression for a given compression
target. For the example of 1 bit, MobileBERT regressed most due to many hard-to-compress small
layers, yet recovered back to a good accuracy with DKM 4/4.

When DKM compared against GOBO (Zadeh & Moshovos, 2020) (which has outperformed the
prior arts on BERT compression) on DistilBERT with the MNLI dataset, our results in Table 6 clearly
show that DKM could offer a better accuracy-compression trade-off than GOBO, and also enable
fine-grained balance control between an embedding layer and others: using 2.5 bits for Transformer
and 3 bits for embedding is better than 2 bits for Transformer and 4 bits for embedding for the case
of DistilBERT.

5 CONCLUSION

In this work, we proposed a differentiable k-means clustering layer, DKM and its application
to model compression. DNN compression powered by DKM yields the state-of-the-art compres-
sion quality on popular computer vision and natural language models, and especially highlights its
strength in low-precision compression and quantization. The differentiable nature of DKM allows
natural expansion to multi-dimensional k-means clustering, offering more than 22x model size re-
duction at 63.9% top-1 accuracy for highly challenging MobileNet-v1. We plan to extend DKM
to handle weight-clustering and weight-pruning simultaneously for more aggressive DNN model
optimization, and apply sparse-format for the internal tensors to reduce the memory overheads.
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A ABLATION STUDY: HYPER-PARAMETER τ SEARCH

In the current DKM implementation, we use a global τ to control the level of softness in the attention
matrix. The selection of τ affects the model predictive power as shown in Fig. 4 where there appears
to be an optimal τ for a given DNN architecture. For examples of ResNet18/80, τ = 2e − 5 is the
best value for the 2 bit clustering.

(a) ResNet18/50 Accuracy and τ

Figure 4: ResNet18/50 compression using 2 bits with varying τ values.

In our experiments, we used a binary search to find out the best τ values w.r.t. the top-1 accuracy,
which are listed in Table 7. In general, one can observe that a complex compression task (i.e., higher
compression targets, more compact networks) tends require a larger τ to provide enough flexibility
or softness.

• For MobileNet-v1/v2, it requires about 10x larger τ values then for ResNet18/50, because
they are based on a more compact architecture and harder to compress.

• When the number of bits decreases, the compression gets harder because there are fewer
centroids to utilize, hence requiring a larger τ value.

• When the centroid dimension increases, the larger τ value is required, as the compression
complexity increases (i.e., need to utilize a longer sequence).

ResNet18 ResNet50 MobileNet-v1 MobileNet-v2

3 bit 8.0e-6 8.0e-6 5.0e-5 5.0e-5

2 bit 2.0e-5 2.0e-5 1.0e-4 1.0e-4

1 bit 5.0e-5 5.0e-5 3.0e-4 1.5e-4

4/4§ bit 5.0e-5 4.0e-5 1.0e-4 1.0e-4

4/8 bit 5.0e-5 5.0e-5 1.0e-4 1.0e-4

8/8 bit 8.0e-5 oom 1.0e-4 1.0e-4

8/16 bit 1.3e-4 6.0e-5 1.2e-4 1.4e-4

§ clustering with 4 bits and 4 dimensions

Table 7: τ for the DKM experiments in Table 3 in Section 4

It could be possible to cast τ as a learnable parameter for each layer or apply some scheduling to
improve the model accuracy further (as a future work), but still both approaches need a good initial
point which can be found using a binary search technique.
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B RELATION TO EXPECTATION-MAXIMIZATION (EM)

Special sub-case of DKM where gradients are not propagated can be related to a standard EM
formulation. Here is the formulation-level correspondence: Suppose

p(x) =

K
∑

i=1

1

K
N (x|ci, σ

2 = τ/2)

is the Gaussian mixture model over cluster centers. Referring to Fig. 2, Maximizing log likelihood of

weights lnP (W |C) =
∑N

i=1 ln
{
∑K

j=1
1
K
N (wi|cj , σ

2 = τ/2)
}

using the EM algorithm is equiva-

lent to DKM for the case of di,j = −(wi − cj)
2. Then, the attention matrix A is equivalent to the

responsibilities calculated in the E step, and updating C is equivalent to the M step. However, unlike

EM where finding C every M step is the objective, DKM focuses on generating a representative W̃

for the train-time compression for DNN.

Even though there is formulation-level similarity between DKM and EM, the way both are optimized
is significantly different. While EM iteratively optimizes a specific likelihood function for a set
of fixed observations, DKM needs to adjust (i.e., optimize) the observations (which are weights)
without leading to a trivial solution such as all observations collapsing to a certain point. Hence,
DKM can neither assume any statistical distribution nor optimize a specific likelihood function (i.e.,
the observations are dynamically changing). Therefore, DKM uses a simple softmax and rides
on the back-propagation to fine-tune the observations w.r.t. the task loss function after unrolling
multiple attention updates. When we propagate gradients, then this will turn into a stochastic non-
convex joint optimization where we simultaneously optimize observations and centroids for the task
loss function, which is shown to offer better accuracy vs. compression trade-offs according to our
experiments.
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