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ABSTRACT

Remotely sensed geospatial data are critical for earth observation applications including
precision agriculture, urban planning, disaster monitoring and response, and climate
change research, among others. Deep learning methods are particularly promising for
modeling many earth observation tasks given the success of deep neural networks in sim-
ilar computer vision tasks and the sheer volume of remotely sensed imagery available.
However, the variance in data collection methods and handling of geospatial metadata
make the application of deep learning methodology to remotely sensed data nontrivial.
For example, satellite imagery often includes additional spectral bands beyond red, green,
and blue and must be joined to other geospatial data sources that can have differing co-
ordinate systems, bounds, and resolutions. To help realize the potential of deep learning
for remote sensing applications, we introduce TorchGeo, a Python library for integrating
geospatial data into the PyTorch deep learning ecosystem. TorchGeo provides data
loaders for a variety of benchmark datasets, composable datasets for generic geospatial
data sources, samplers for geospatial data, and transforms that work with multispectral
imagery. TorchGeo is also the first library to provide pre-trained models for multispec-
tral satellite imagery, allowing for advances in transfer learning on downstream earth
observation tasks with limited labeled data. We use TorchGeo to create reproducible
benchmark results on existing datasets, benchmark our proposed method for preprocess-
ing geospatial imagery on-the-fly, and investigate the differences between ImageNet pre-
training and in-domain self-supervised pre-training on model performance across several
datasets. We aim for TorchGeo to become a new standard for reproducibility and for
driving progress at the intersection of deep learning and remotely sensed geospatial data.

1 INTRODUCTION

With the explosion in availability of satellite and aerial imagery over the past decades, there has been
increasing interest in the use of remotely sensed imagery in earth observation (EO) applications. These
applications range from precision agriculture [31] and forestry [26], to natural and man-made disaster
monitoring [53], to weather and climate change [44]. At the same time, advancements in machine learning
(ML), larger curated benchmark datasets, and increased compute power, have led to great successes in do-
mains like computer vision (CV), natural language processing (NLP), and audio processing. However, the
wide-spread success and popularity of machine learning—particularly of deep learning methods—in these
domains has not fully transferred to the EO domain, despite the existence of petabytes of freely available
satellite imagery and a variety of benchmark datasets for different EO tasks. This is not to say that there are
not successful applications of ML in EO, but that the full potential of the intersection of these fields has not
been reached. Indeed, a recent book by Camps-Valls et al. [5] thoroughly details work at the intersection
of deep learning, geospatial data, and the earth sciences. Increasing amounts of research on self-supervised
and unsupervised learning methods specific to remotely sensed geospatial imagery [1; 22; 27] bring the
promise of developing generic models that can be tuned to various downstream EO tasks. Recent large
scale efforts, such as the creation of a global 10 m resolution land cover map [24] or the creation of global
30 m forest maps [43], pair the huge amount of available remotely sensed imagery with modern GPU
accelerated models. To reach the full joint potential of these fields, we believe that we need tools for
facilitating research and managing the complexities of both geospatial data and modern machine learning
pipelines. We describe the challenges of this below, and detail our proposed solution, TorchGeo.

One major challenge in many EO tasks is the large amount of diversity in the content of geospatial
imagery datasets compared to datasets collected for traditional vision applications. For example, most
conventional cameras capture 3-channel RGB imagery, however most satellite platforms capture different
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Figure 1: An illustration of the challenges in sampling from heterogeneous geospatial data layers. (A and
B) show example geospatial data layers that a user may want to sample pixel-aligned data from. As these
layers have differing coordinate reference systems, patches of imagery (C and D) sampled from these
layers that cover the same area will not be pixel-aligned. TorchGeo transparently performs the appropriate
alignment steps (reprojecting and resampling) during data loading such that users can train deep learning
models without having to manually align the data layers.

sets of spectral bands. The Landsat 8 satellite [45] collects 11 bands, the Sentinel-2 satellites [12] collect
12 bands, and the Hyperion satellite [35] collects 242 (hyperspectral) bands all measuring different regions
of the electromagnetic spectrum. The exact wavelengths of the electromagnetic spectrum captured by each
band can range from 400 nm to 15 µm. In addition, different sensors capture imagery at different spatial
resolutions: satellite imagery can range from 4 km/px (GOES) to 30 cm/px (Maxar WorldView satellites),
while imagery captured from drones can go as low as 7 mm/px. Depending on the type of orbit a satellite
is in, imagery can be continuous (for geostationary orbits) or daily to biweekly (for polar, sun-synchronous
orbits). Machine learning models or algorithms developed for one of these platforms will not generalize
across inputs collected by the others, and, as a consequence of this, it is not possible to publish a single
set of pre-trained model weights that span imaging platforms. In contrast, ImageNet [11] pretrained
models have been proven to be useful in a large number of transfer learning tasks [57]. Researchers and
practitioners can often start with ImageNet pre-trained models in a transfer learning setup when presented
with vision problems to reduce the overall amount of effort needed to solve the problem. Further, it
isn’t clear whether the inductive biases built into common modeling approaches for vision problems are
immediately applicable to remotely sensed imagery. Large neural architecture search efforts [25; 64]
produce models that are optimized for, and indeed, outperform hand designed architectures on vision tasks,
but it is an open question whether these transfer to remotely sensed imagery.

Most machine learning libraries have not been designed to work with geospatial data. For example, the
Python Imaging Library (PIL) [8], used by many libraries to load images and perform data augmentation,
does not support multispectral imagery. Similarly, deep learning models implemented by the torchvision
library only support 3 channel (RGB) inputs, and must be adapted, or re-implemented to support
multispectral data. Datasets of geospatial data can be made up of a heterogenous mix of files with differing
file formats, spatial resolutions, projections, and coordinate reference systems (CRS). Libraries such as
rasterio [17] and fiona [49] can interface with most types of geospatial data, however further abstractions
for using such data in arbitrary deep learning pipelines are limited. Indeed, the gap between loading
geospatial data from disk, and using it in a modeling pipeline, is large for all of the reasons mentioned
above. For example, users will often need pixel-aligned crops from multiple layers of data: imagery from
different points in time over the same space, imagery and corresponding label masks, high-resolution and
low resolution imagery from the same space, etc. In contrast, there are a wide variety of software libraries at
the intersection of machine learning and other domains. The PyTorch ecosystem alone has torchvision [37],
torchtext [38], torchaudio [39], Hugging Face’s Transformers [55], PyTorch Geometric [15], PyTorch
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Figure 2: Different layers of geospatial data often have differing coordinate reference systems and spatial
resolutions. (Top row) The same physical area cropped from four raster layers with different coordinate
reference systems and spatial resolutions – this data is not pixel-aligned and cannot yet be used in
modelling pipelines. (Bottom row) The same data as after reprojecting into the same coordinate system
and resampling to the highest spatial resolution – this data is pixel aligned and can serve as inputs or masks
to deep neural networks.

Meta [10], and PyTorch Video [14], that provide the tools necessary for abstracting the peculiarities of
domain-specific data away from the details of deep learning training pipelines.

To address these challenges we propose TorchGeo, a Python package that allows users to transparently use
heterogenous geospatial data in PyTorch-based deep learning pipelines. Specifically, TorchGeo provides:

1. data loaders for common geospatial datasets from the literature
2. composable data loaders for arbitrary geospatial raster and vector data with the ability to create

pixel-aligned patches of data on-the-fly
3. augmentations that are appropriate for multispectral imagery
4. data samplers appropriate for geospatial data

We formally describe TorchGeo, propose and test methods for sampling from large geospatial datasets,
and test the effect of ImageNet pretraining versus random weight initialization on several benchmark
datasets. We achieve state of the art results on the the RESISC45 dataset, despite focusing only on creating
simple and reproducible results to serve as baselines for future work to build on. We further find that
ImageNet pre-training significantly improves spatial generalization performance in a land cover mapping
task. We believe that these results are interesting in their own right, and that they highlight the importance
of TorchGeo to the larger machine learning community.

2 DESIGN

Remotely sensed imagery datasets are usually formatted as scenes, i.e. tensorsX∈RH×W×C , whereH
is height,W is width, and C is the number of spectral channels, with corresponding spatial and temporal
metadata. This metadata includes a coordinate reference system (CRS) that maps pixel coordinates to
the surface of the Earth, a spatial resolution (the size of each pixel when mapped onto the surface of
the earth), spatial bounds (a bounding box representing the area on Earth that the data covers), and a
timestamp or time range to indicate when the data was collected. We say that two datasets,X1 andX2 are
pixel-aligned ifX1

i,j andX2
i,j represent data from the same positions on Earth for all i,j. Most pairs of

datasets are not aligned by default. For example,X1 andX2 can be captured by two satellites in different
orbits and will only have partially overlapping spatial bounds, orX1 will be satellite imagery whileX2

will be from a dataset of labels with a different CRS (see Figure 2). However, deep learning model training
requires pixel-aligned patches of imagery—i.e. smaller crops from large scenes. Most models are trained
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with mini-batch gradient descent and require input tensors in the formatB×H×W×C whereB is the
number of samples in a mini-batch whereW andH are constant over all samples in the batch. At a higher
level, training semantic segmentation models will require pairs of pixel-aligned imagery and masks.

Aligning two datasets requires reprojecting the data from one in order to match the CRS of the other,
cropping the data to the same spatial bounds, and resampling the data to correct for differences in resolution
or to establish the same underlying pixel grid. Typically, these are performed as pre-processing steps using
GIS software such as QGIS, ArcGIS, or tools provided by GDAL—see Section A.3 for an example of
a GDAL command to align two data layers. This requires some level of domain knowledge to perform
correctly and does not scale to large datasets as it requires creating duplicates of the layer to be aligned.
Further, this approach still requires an implementation of a dataset or dataloader that can sample patches
from the pre-processed imagery.

In TorchGeo, we facilitate this process by performing the alignment logic on-the-fly to create pixel-aligned
patches of data sampled from larger scenes. Specifically, we implement the alignment logic in custom
PyTorch dataset classes that are indexed in terms of spatial coordinates. Given a query patch in spatial
coordinates, a desired destination CRS, and a desired spatial resolution, the custom dataset is responsible
for returning the corresponding reprojected and resampled data for the query. We further implement
geospatial data samplers that generate queries according to different criteria (e.g. randomly or in a regular
grid pattern). See Section 3 for a discussion on the implementation of these.

As our datasets are indexed by spatial coordinates we can easily compose datasets that represent different
data layers by specifying a valid area to sample from. For example, if we have two datasets, D1 and
D2, we may want to sample data from the union of the layers, D1∪D2, if both layers are imagery, or
the intersection of the layers,D1∩D2, if one layer is imagery and the other layer is labels. As we describe
in the following section, we implement generic dataset classes for a variety of common remotely sensed
datasets (e.g. Landsat imagery) that can be composed in this way. This allows users of the library to create
their own multi-modal datasets without having to write custom code.

Most importantly, these abstractions that TorchGeo creates—geospatial datasets and samplers—can
be combined with a standard PyTorch data loader class to produce fixed size batches of data to be
transferred to the GPU and used in training or inference. See Listing 1 for a working example of TorchGeo
code for setting up a functional data loader that uses Landsat and Cropland Data Layer (CDL) dataset
implementations. Our approach trades off space for time compared to pre-processing all data layers and
using a custom dataset described in the previous paragraph, but, crucially, does not require knowledge
of GIS tooling. We benchmark our implementations in Section 4.3.

3 IMPLEMENTATION

The implementation of TorchGeo follows the design of other PyTorch domain libraries to reduce the
amount of new concepts that a user must learn to integrate it with their existing workflow. We split
TorchGeo up into the following parts:

Datasets Our dataset implementations consist of both benchmark datasets that allow users to interface
with common datasets used in EO literature and generic datasets that allow users to interface
with common geospatial data layers such as Landsat or Sentinel 2 imagery. Either of these types
of datasets can also be geospatial datasets, i.e. datasets that contain geospatial metadata and
can be sampled as such. These are part of the core contribution of TorchGeo and we describe
them further in the following section.

Samplers We implement samplers for indexing into any of our geospatial datasets. Our geospatial
datasets are indexed by bounding boxes in geospatial coordinates (as opposed to standard fixed
length datasets of images which are usually indexed by an integer). The samplers generate
bounding boxes according to specific patterns: randomly across all scenes in a dataset, random
batches from single scenes at a time, or in grid patterns over scenes. Different sampling patterns
can be useful for different model training strategies, or for running model inference over datasets.

Models Most existing model implementations (e.g. in torchvision) are fixed to accept 3 channel inputs
which are not compatible with multispectral imagery. We provide implementations (or wrappers
around well established implementations) of common deep learning model architectures with
variable sized inputs and pre-trained weights. We also implement architectures from recent
geospatial ML work such as the Fully Convolutional Siamese Network [9].
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Transforms Similar to existing model implementations, some existing deep learning packages do
not support data augmentation methods for multi-spectral imagery. We provide wrappers for
augmentations in the Kornia [40] library (which does support augmentations over arbitrary
channels). We also provide data transforms that generate spectral indices [20] from combinations
of multispectral bands, for example: Normalized Difference Built-up Index (NDBI) [58],
Normalized Difference Snow (NDSI) [41], Normalized Difference Vegetation (NDVI) [51],
and Normalized Difference Water Index (NDWI) [30].

Trainers Finally, we implement model training recipes using the PyTorch Lightning library [54]. These
include both dataset specific training code, and general training routines—for example, an
implementation of the BYOL self-supervision method [18].

3.1 DATASETS

We organize datasets based on whether they are a generic dataset or a benchmark dataset and based on
whether or not they contain geospatial metadata—i.e. are a geospatial dataset.

Benchmark datasets are datasets released by the community that consist of both inputs and target labels
for a specific type of task (scene classification, semantic segmentation, instance segmentation, etc.). These
may or may not also contain geospatial metadata that allows them to be joined with other sources of
data. In our opinion, one of the strongest components of existing deep learning domain libraries is the
way that they make the use of existing datasets trivial. We aim to replicate this and, for example, include
options that let users automatically download the data for a corresponding dataset. Table 1 lists the set
of benchmark datasets that TorchGeo currently supports.

Dataset Task Source # Samples # Categories Size (px) Resolution (m) Bands

ADVANCE [21] C Google Earth, Freesound 5,075 13 512x512 - RGB

EuroSAT [19] C Sentinel-2 27,000 10 64x64 10 MSI

PatternNet [61] C Google Earth 30,400 38 256x256 0.06-5 RGB

RESISC45 [7] C Google Earth 31,500 45 256x256 0.2-30 RGB

So2Sat [63] C Sentinel-1, Sentinel-2 400,673 17 32x32 10 SAR & MSI

UC Merced [56] C USGS National Map 21,000 21 256x256 0.3 RGB

SEN12MS [46] C Sentinel-1, Sentinel-2,
MODIS 180,662 33 256x256 10 SAR & MSI

CV4A Kenya Crop Type
Competition [16] SS Sentinel-2 4,688 7 3,035x2,016 10 MSI

ETCI 2021 Competition
on Flood Detection [33] SS Sentinel-1 66,810 2 256x256 5-20 SAR

GID-15 [50] SS Gaofen-2 150 15 6,800x7,200 3 RGB

LandCover.ai [2] SS Aerial 10,674 5 512x512 0.25-0.5 RGB

Smallholder Cashew
Plantations in Benin [23] SS Airbus Pléiades 70 6 1186x1122 0.5 MSI

NWPU VHR-10 [6] I Google Earth, Vaihingen 800 10 358-1,728 0.08-2 RGB

SpaceNet 1 [13] I WorldView-2 6,940 2 102-439 0.5-1 MSI

SpaceNet 2 [13] I WorldView-3 10,592 2 162-650 0.3-1.24 MSI

ZueriCrop [52] T, I Sentinel-2 116,000 48 24x24 10 MSI

LEVIR-CD+ [47] CD Google Earth 985 2 1024x1024 0.5 RGB

COWC [32] C, R CSUAV AFRL, ISPRS,
LINZ, AGRC 388,435 2 256x256 0.15 RGB

Tropical Cyclone Wind
Estimation Competition [29] R GOES 8-16 108,110 - 256x256 4k-8k MSI

C = classification, SS = semantic segmentation, I = instance segmentation, T = time series, CD = change detection, R = regression

Table 1: Benchmark datasets implemented in TorchGeo.
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Type Dataset
Landsat

Image Source Sentinel
National Agriculture

Imagery Program (NAIP)

Cropland Data Layer (CDL)
Labels Chesapeake Land Cover

Canadian Buildings Footprints

Table 2: Generic datasets implemented in TorchGeo.

Generic datasets are not created with a specific
task in mind, but instead represent layers of
geospatial data that can be used for any pur-
pose. For example, we implement datasets for
representing collections of scenes of Landsat
imagery that lets users index into the imagery
and (combined with TorchGeo samplers) use
it in arbitrary PyTorch based pipelines. These
are not limited to imagery, for example we also
implement a dataset representing the Cropland
Data Layer labels, an annual US wide raster
layer that gives the estimated crop type or land
cover at a 30 m/px resolution.

3.2 SAMPLERS

As our geospatial datasets are indexed with bounding boxes using geospatial coordinates and do not have a
concept of a dataset “length”, they cannot be sampled from by choosing a random integer. We provide three
types of samplers for different situations: a “RandomGeoSampler” that returns a fixed-sized bounding
box from the valid spatial extent of a dataset uniformly at random, a “RandomBatchedGeoSampler” that
returns a set of randomly positioned fixed-sized bounding boxes from a random scene within a dataset,
and a “GridGeoSampler” that returns bounding-boxes in a grid pattern over subsequent scenes within a
dataset. This abstraction also allows for methods that rely on specific data sampling patterns. For example,
Tile2Vec [22] relies on sampling triplets of imagery where two of the images are close to each other in
space while the third is distant. This logic can be implemented in several lines of code as a custom sampler
class, that would then operate over any of the generic imagery datasets. Finally, all TorchGeo samplers
are compatible with PyTorch dataloader objects so can be fit into any PyTorch based pipeline.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS

We use the following datasets in our experiments:

Landsat and Cropland Data Layer (CDL) The Landsat and CDL dataset consists of multispectral
imagery from 114 Landsat 8 [45] collection 2 level 2 scenes taken in 2019 that intersect with
the continental United States and the 2019 Cropland Data Layer (CDL) dataset [4]. This data
is 151 GB on disk and is stored in cloud optimized GeoTIFF (COG) format. We use this dataset
to benchmark our proposed GeoDataset and sampler implementations.

So2Sat The So2Sat-LCZ42 dataset [62] is a classification dataset that consists of 400,673 image patches
classified with one of 42 different local climate zone labels. The patches are 30×30 pixels in
size with 18 channels consisting of Sentinel 1 and Sentinel 2 bands. They are sampled from
different urban areas around the globe. We use the second version of the dataset as described
on the project’s GitHub page1 in which the training split consists of data from 42 cities around
the world, the validation split consists of the western half of 10 other cities, and the testing split
covers the eastern half of the 10 remaining cities.

LandCover.AI The LandCover.AI dataset is a semantic segmentation dataset [3] that consists of
high-resolution (0.5 m/px and 0.25 m/px) RGB aerial imagery from 41 tiles over Poland where
each pixel has been classified as one of five classes (four land cover classes and a “background”
class). The scenes are divided into 10,674 512 × 512 pixel patches and partitioned into
pre-defined training, validation, and test splits according to the script on the dataset webpage2.

Chesapeake Land Cover The Chesapeake Land Cover dataset [42] is a semantic segmentation dataset
that consists of high-resolution (1 m/px) imagery from the US Department of Agriculture’s
National Agriculture Imagery Program (NAIP) and high-resolution (1 m/px) 6-class land cover
labels from the Chesapeake Conservancy. Specifically, the dataset contains imagery and land

1https://github.com/zhu-xlab/So2Sat-LCZ42
2https://landcover.ai
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cover masks for parts of six states in the Northeastern US: Maryland, Delaware, Virginia, West
Virginia, Pensylvania, and New York. The data for each state is split into∼7×6 km tiles and
then divided into pre-defined training, validation, and test splits3.

RESISC45 The RESISC45 dataset is a classification dataset [60] that consists of 31,500 256×256 pixel
RGB image patches of varying spatial resolutions where each patch is classified into one of 45
classes. The dataset does not specify splits for training, validation or testing. In our experiments
we generate 60/20/20 train/validation/test splits randomly.

4.2 DATA LOADER BENCHMARKS

We first benchmark the speed at which TorchGeo can sample patches of imagery and masks from the
Landsat and CDL dataset. We believe this dataset is typical of a large class of geospatial machine learning
problems—where users have access to a large amount of satellite imagery scenes covering a broad spatial
extent and, separately, per pixel label masks where each scene is not necessarily projected in the same
coordinate reference system. The end goal of such a problem is to train a model with pixel-aligned patches
of imagery and label masks as described in Section 2. As such, we measure the rate that our dataset and
sampler implementations can provide patches to a GPU for training and inference.

In Figure 3a, we calculate the rate at which samples of varying batch size can be drawn from a “GeoDataset”
using various “GeoSampler” implementations. Compared to the other samplers, “GridGeoSampler” is
significantly faster due to the repeated access of samples that are already in GDAL’s cache. For small
batch sizes, “RandomGeoSampler” and “RandomBatchGeoSampler” are almost identical, since overlap
between patches is uncommon. However, for larger batch sizes, “RandomBatchGeoSampler” starts to
outperform “RandomGeoSampler” as the cache is used more effectively.

In Figure 3b, we demonstrate the difference that preprocessing and caching data makes. This is most
easily demonstrated by “GridGeoSampler” and to a lesser extent the other samplers. GDAL’s cache only
saves raw data loading times, so warping must always be done on-the-fly if the dataset CRSs or resolutions
don’t match. When the necessary storage is available, preprocessing the data ahead of time can lead to
significantly faster sampling rates. Although “RandomGeoSampler” and “RandomBatchGeoSampler” are
much slower than “GridGeoSampler”, most users will only need to use “GridGeoSampler” for inference
due to our pre-trained model weights.

(a) Sampler performance vs. batch size
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Figure 3: Sampling performance of various “GeoSampler” implementations. (a) Solid lines represent
average sampling rate, while shaded region represents minimum and maximum performance across random
seeds. (b) Average sampling rate under different data loading conditions.

4.3 DATASET BENCHMARKS

We also use TorchGeo to create reproducible benchmark results on 4 of the datasets described in Section
4.1. There are many potential sources of variance in the results generated by a deep learning modeling

3https://lila.science/datasets/chesapeakelandcover
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Dataset Method Pre-training Bands Performance

RESISC45 [7]

ResNet50 ImageNet RGB 98.20 +/- 0.16%
ResNet18 None RGB 94.38 +/- 0.50%

ResNet50 v2 [34] In domain RGB 96.86%
ViT B/16 [48] ImageNet-21k RGB 96.80%
ResNet50 [59] Sup-Rotation-100% RGB 96.30%

So2Sat [63]

ResNet50 ImageNet (+ random) S2 63.99 +/- 1.38%
ResNet50 None S2 56.82 +/- 4.32%
ResNet50 ImageNet RGB 59.82 +/- 0.94%
ResNet50 None RGB 49.46 +/- 2.67%

ResNeXt + CBAM [62] None S2 61%
ResNet50 v2 [34] In domain RGB 63.25%

LandCover.AI [2]
U-Net, ResNet50 encoder ImageNet RGB 84.81 +/- 00.21%
U-Net, ResNet50 encoder None RGB 79.73 +/- 00.67%

DeepLabv3+, Xception71 with
DPC encoder [2] Cityscapes RGB 85.56%

Chesapeake Land Cover [42]
Delaware split

U-Net, ResNet50 encoder ImageNet (+ random) RGBN 69.40 +/- 1.39%
U-Net, ResNet18 encoder None RGBN 68.99 +/- 0.84%

Table 3: Benchmark results comparing TorchGeo trained models to previously reported results over four
datasets. RESISC and So2Sat results are reported as overall top-1 accuracy while LandCover.AI and
Chesapeake Land Cover results are reported as mean class IoU. Results from TorchGeo models are reported
as the mean with one standard deviation over 10 training runs from different random seeds. Results from
related work are reported as is.

process, for example: the model architecture used, the type of optimizer used, the initial learning
rate, training schedule, preprocessing methods, data augmentation methods, weight initialization, the
pseudorandom number generator seed [36], and, importantly, implementation details of any of the previous
points. If these sources of variance aren’t controlled for then it can be impossible to know whether a
proposed methodological innovation is the source of a difference (improvement) in performance on a
particular benchmark dataset, or whether the difference is due to other factors in the model training pipeline.
Our focus in these experiments is thus benchmarking simple models in a reproducible way and reporting
the uncertainty in the results for future work to build on. To ensure reproducibility, we include a model
training and evaluation framework in TorchGeo based around the PyTorch Lightning library and release
all of our results. To quantify uncertainty we report the mean and standard deviation metrics calculated
over 10 training runs with different random seeds.

For experiments, we use the pre-defined training, validation, and testing splits in the So2Sat, LandCover.AI,
and Chesapeake Land Cover datasets, and use a random 60/20/20 split in the RESISC45 dataset. We
perform a small hyperparameter search with a single fixed random seed on each dataset. Specifically
we search over the best validation performance over the grid: learning rate ∈{0.01,0.001,0.0001}, loss
function ∈{cross entropy, jaccard}, weight initialization ∈{random, ImageNet} and model architecture
∈ {ResNet18, ResNet50}4. With the So2Sat dataset we also run experiments that use all the Sentinel
2 bands vs. only the RGB bands. In the cases where we use ImageNet weights with imagery that has
more than RGB bands we randomly initialize the non-RGB kernels in the first convolutional layer of the
network and denote this setting as ImageNet (+ random). In all cases we use the AdamW optimizer,
reduce learning rate on validation loss plateaus, and early stop based on validation loss. We repeat the
training process with 10 different seeds using the best performing hyperparameter configuration and report
the test set performance over these models.

Our main results are shown in Table 3. We find that our simple training setup achieves state of the art results
on RESISC45, although we note again that there is not a pre-defined train/val/test split for this dataset. Our
splits were randomly drawn for each training seed and we report the average top-1 accuracy over 10 such
seeds. The in-domain pre-training method in [34] trains models, starting with ImageNet weights, further on
remote sensing (in domain) datasets before actually training on the target dataset and finds that this performs
better than simply starting from ImageNet weights. In contrast, our best result comes from simply using Im-

4For the classification problems we use the ResNets as is and for the semantic segmentation datasets we use the
ResNets as the encoder model in a U-Net.
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ageNet pre-trained models and training on the target dataset with low learning rate. The difference between
these two approaches is likely entirely due to different learning rate selection in the hyperparameter search
and early stopping. On the So2Sat dataset we find the ImageNet pre-trained models are able to achieve
similar results with in-domain pretraining, but only when using all S2 bands vs. RGB only. The previously
reported baseline methods on the LandCover.AI dataset all use a DeepLabV3+ segmentation model with a
Xception71 + Dense Prediction Cell (DPC) encoder that has been pre-trained on Cityscapes. We are able to
achieve a result within 0.75 mIoU of this setup using a simple U-Net and ResNet50 encoder pre-trained on
ImageNet. Finally, we report the first set of basic benchmark results on the Chesapeake Land Cover dataset.

4.4 EFFECT OF IMAGENET PRE-TRAINING ON GENERALIZATION PERFORMANCE

Two of the datasets we test with, So2Sat and Chesapeake Land Cover, contain splits that are designed
to measure the generalization performance of a model. The validation and test splits from So2Sat include
data from urban areas that are not included in the training split while the Chesapeake Land Cover dataset
contains separate splits for six different states. In these setting we observe a large performance boost when
training models from ImageNet weights versus from a random initialization, however we do not observe
the boost on in-domain data. Table 4 shows the performance of models that are trained on the Delaware
split and evaluated on the test splits from every state. The in-domain performance (i.e. in Delaware) of
the ImageNet pre-trained model and model trained from scratch are the same, however in every other
setting the ImageNet pre-trained model performs better. In all cases but Maryland, this difference is greater
than 6 points of mIoU with the most extreme difference being 12 points in Virginia. In the So2Sat case
we find that most models are not able to significantly reduce validation loss (where in this case validation
data is out-of-domain), while, unsurprisingly, achieving near perfect results on the training data. Despite
this overfitting, there remains a large gap between the best and worst models, with ImageNet pre-trained
models achieving +7% and +10% accuracy over randomly initialized models.

Weight init Delaware Maryland New York Pennsylvania Virginia West Virginia
ImageNet (+ random) 69.40 +/- 1.39% 59.57 +/- 0.70% 57.95 +/- 1.10% 55.13 +/- 1.25% 45.56 +/- 1.54% 20.76 +/- 1.95%

None 68.99 +/- 0.84% 57.30 +/- 0.78% 49.26 +/- 2.40% 47.67 +/- 2.40% 33.14 +/- 3.73% 14.95 +/- 2.72%

Table 4: Mean IoU performance of models trained in Delaware, with and without ImageNet weight
initialization, on the test splits from Chesapeake Land Cover dataset.

5 DISCUSSION

We introduce TorchGeo, a Python package for enabling deep learning with geospatial data. TorchGeo
provides data loaders for common geospatial datasets, composable data loaders for arbitrary geospatial
raster and vector data, samplers appropriate for geospatial data, models, transforms, and model trainers.
Importantly, TorchGeo allows users to bypass the common pre-processing steps necessary to align
geospatial data with imagery and performs this processing on-the-fly. We benchmark TorchGeo dataloader
speed, and demonstrate how TorchGeo can be used to create reproducible benchmark results in several
geospatial datasets.

Finally, TorchGeo serves as a platform for performing geospatial machine learning research. Existing
work in self-supervised learning with geospatial data rely on spatiotemporal metadata and can be naturally
implemented in TorchGeo and scaled over large amounts of geospatial imagery without the need for
pre-processing steps. Similarly, augmentation methods appropriate for training with geospatial imagery
are under-explored, however can be integrated easily with TorchGeo. Other interesting directions include
building inductive biases appropriate for geospatial imagery into deep learning models (similar to the
work done on rotation equivariant networks [28]), data fusion techniques (e.g. how to incorporate spatial
information into models, or appropriately use multi-modal layers), and learning shape based models. Finally,
TorchGeo exposes a catalog of benchmark geospatial datasets (Table 1) through a common interface, and,
with the results in this paper, has begun to include corresponding benchmark results. This makes it easy
for researchers to compare new ideas to existing work without having to repeat expensive computations.
We hope TorchGeo can help drive advances at the intersection of machine learning and remote sensing.
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A APPENDIX

A.1 DATA LOADER BENCHMARKING

In order to benchmark the performance of our data loaders, we download 114 Landsat 8 scenes and 1
Cropland Data Layer (CDL) file for the year of 2019. All files are stored as Cloud Optimized GeoTIFFs
(COGs) and kept in their original CRS (Albers Equal Area for CDL and UTM for Landsat). Experiments
are run on Microsoft Azure with a 6-core Intel Xeon E5-2690 CPU. All data is stored on a local SSD
attached to the compute node. Batch size and random seed are varied while the remaining hyperparameters
are kept fixed. Total epoch size is 4096, patch size is 224, stride is 112, and number of workers for parallel
data loading is set to 6.

A.2 TORCHGEO CODE EXAMPLE

from torch.utils.data import DataLoader

from torchgeo.datasets import Landsat8, CDL

from torchgeo.samplers import RandomGeoSampler

# Instantiate CDL and Landsat 8 Datasets

cdl = CDL(root="...")

landsat = Landsat8(root="...", crs=cdl.crs, res=cdl.res)

merged = cdl + landsat # spatial merge

# Sample 1 kmˆ2 image chips from the intersection of the datasets

sampler = RandomGeoSampler(merged, size=1000, length=512)

# Use the dataset and sampler as normal in a PyTorch DataLoader

dataloader = DataLoader(merged, sampler=sampler, batch_size=32)

Listing 1: Example TorchGeo code for creating a joint Landsat 8 and Cropland Data Layer (CDL) dataset,
and using such a dataset with a standard PyTorch DataLoader class.

A.3 PRE-PROCESSING ALIGNMENT WITH GDAL

As an example of an alignment pre-processing workflow, we assume that we have a Landsat 8 scene
and a Cropland Data Layer (CDL) raster (“cdl.tif”) which completely covers the extent of the Landsat
scene. We would like to create a pixel-aligned version of these two layers. Given that the Landsat 8
scene has a CRS of “EPSG:32619”, a height of 8011 pixels, a width of 7891 pixels, and spatial bounds of
(186585,4505085,423315,4745415), the corresponding GDAL command would create a cropped version
of the CDL layer that is aligned to the Landsat layer:

gdalwarp \
-t_srs EPSG:32619 \
-of COG \
-te 186585 4505085 423315 4745415 \
-ts 7891 8011 \
cdl.tif aligned_cdl.tif

The spatial metadata of the Landsat scene can be determined through other GDAL command line tools
(gdalinfo command), geospatial data packages such as the “rasterio” package in Python, or through GIS
software such as QGIS or ArcGIS.
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