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Abstract

Stochastic optimization of the Area Under the Precision-Recall Curve (AUPRC) is1

a crucial problem for machine learning. Although various algorithms have been2

extensively studied for AUPRC optimization, the generalization is only guaranteed3

in the multi-query case. In this work, we present the first trial in the single-query4

generalization of stochastic AUPRC optimization. For sharper generalization5

bounds, we focus on algorithm-dependent generalization. There are both algorith-6

mic and theoretical obstacles to our destination. From an algorithmic perspective,7

we notice that the majority of existing stochastic estimators are unbiased only when8

the sampling strategy is unbiased, and is leave-one-out unstable due to the non-9

decomposability. To address these issues, we propose a sampling-rate-invariant10

unbiased stochastic estimator with superior stability. On top of this, the AUPRC11

optimization is formulated as a composition optimization problem, and a stochas-12

tic algorithm is proposed to solve this problem. From a theoretical perspective,13

standard techniques of the algorithm-dependent generalization analysis cannot14

be directly applied to such a listwise compositional optimization problem. To15

fill this gap, we extend the model stability from instancewise losses to listwise16

losses and bridge the corresponding generalization and stability. Additionally, we17

construct state transition matrices to describe the recurrence of the stability, and18

simplify calculations by matrix spectrum. Practically, experimental results on three19

real-world datasets speak to the effectiveness and soundness of our framework.20

1 Introduction21

Area Under the Precision-Recall Curve (AUPRC) is a widely used metric in the machine learning22

community, especially in learning to rank, which effectively measures the trade-off between precision23

and recall of a ranking model. Compared with threshold-specified metrics like accuracy and recall@k,24

AUPRC reflects a more comprehensive performance by capturing all possible thresholds. In addition,25

literature has shown that AUPRC is insensitive toward data distributions [20], making it adaptable26

to largely skewed data. Benefiting from these appealing properties, AUPRC has become one of the27

standard metrics in various applications, e.g., retrieval [54, 57, 22, 40], object detection [44, 48, 15],28

medical diagnosis [49, 35], and recommendation systems [16, 71, 1, 63, 2].29

Over the past decades, the importance of AUPRC has prompted extensive researches on direct30

AUPRC optimization. Early work focuses on full-batch optimization [44, 43, 26]. However, in the31

era of deep learning, the rapidly growing scale of models and data makes these full-batch algorithms32

infeasible. Therefore, in recent years, it has raised an increasing favor of the stochastic AUPRC33

optimization [9, 12, 31, 45, 53, 68]. See Appendix A for more on related work.34

Despite the promoting performance of these methods in various scenarios, the generalization of35

AUPRC optimization algorithms is still an open problem. Some studies [17, 62] provide provable36
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generalization for AUPRC optimization in information retrieval. In this scene, a dataset consists of37

multiple queries, where each query corresponds to a set of positive and negative samples. However,38

these results require sufficient queries to ensure small generalization errors, but leave the single-query39

case alone, i.e., whether the generalization error tends to zero with the length of a single-query40

increasing is still unclear. This limits the adaptation scope of these methods. To fill this gap,41

in this paper we aim to design a stochastic optimization framework for AUPRC with a provable42

algorithm-dependent generalization performance in the single-query case.43

The target is challenging in three aspects: (a) Most AUPRC stochastic estimators are biased with44

a biased sampling rate. Moreover, due to the non-decomposability, outputs of existing algorithms45

might change a lot with slight changes in the training data, which is called leave-one-out unstable46

in this paper. Such an unstability is harmful to the generalization. (b) The standard framework to47

analyze the algorithm-dependent generalization requires the objective function to be expressed as a48

sum of instancewise terms, while AUPRC involves a listwise loss. (c) The stochastic optimization of49

AUPRC is a two-level compositional optimization problem, which is typically solved by alternate50

updates. This brings more complicated stability calculations.51

In search of a solution to (a), we propose a sampling-rate-invariant asymptotically unbiased stochastic52

estimator based on a reformulation of AUPRC. Notably, to ensure the stability of the estimator, the53

objective is formulated as a two-level compositional problem. To solve this problem, we propose54

an algorithm that combines stochastic gradient descent (SGD), linear interpolation and exponential55

moving average. Error analysis further supports the feasibility of our method, and inspires us to add a56

semi-variance regularization term.57

Facing challenge (b), we extend instancewise model stability to listwise model stability, and corre-58

spondingly put forward the generalization via stability of listwise problems. On top of this, we bridge59

the generalization of AUPRC and the stability of the proposed optimization algorithm.60

As for challenge (c), the key is to find an upper bound on the variation of model parameters with61

slight jitter in the dataset. Since the variables to be optimized are typically updated alternately in62

the compositional optimization problem, we propose state transition matrices of these variables, and63

simplify the calculations of the stability with matrix spectrum. We also provide the convergence64

analysis of the proposed method.65

Last but not least, empirical studies on three real-world datasets further validate the effectiveness and66

the soundness of the proposed framework.67

In a nutshell, the main contributions of this paper are summarized as follows:68

• Algorithmically, a stochastic learning algorithm is proposed for AUPRC optimization. The69

core of the proposed algorithm is a stochastic estimator which is sampling-rate-invariant70

asymptotically unbiased.71

• Theoreticallly, we present the first trial on the algorithm-dependent generalization of stochas-72

tic AUPRC optimization. To the best of our knowledge, it is also the first work to analyze73

the stability of stochastic compositional optimization problems.74

• Technically, we extend the concept of the stability and generalization guarantee to listwise75

non-convex losses. Then we simplify the stability analysis of compositional objective by76

matrix spectrum. These techniques might be instructive for other complicated metrics.77

2 Problem Formulation78

2.1 Preliminaries on AUPRC79

Notations. Consider a set of N examples S = {(xi, yi)}Ni=1 independently drawn from a sample80

space D = X × Y , where X is the input space and Y = {−1, 1} is the label space. For sake of the81

presentation, denote the set of positive examples of S as S+ = {x+
i }N

+

i=1, and similarly the set of82

negative examples is denoted as S− = {x−i }N
−

i=1, where N+ = |S+|, N− = |S−|. With a slight83

abuse of notation, we also denote S = S+ ∪ S− if there is no ambiguity. Generally, we assume84

that the dataset is sufficiently large, such that N+/(N+ +N−) = P(y = 1) := π. Our target is to85

learn a score function hw : X 7→ R with parameters w ∈ Ω ⊆ Rd, such that the scores of positive86
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examples are higher than negative examples. Furthermore, when appling the score function to a87

dataset S ∈ XN , we denote hw : XN 7→ RN , where the k-th element of hw(S) has the top-k88

values of {hw(x)|x ∈ S}. Denote the asymptotic upper bound on complexity as O, and denote89

asymptotically equivalent as �.90

In this work, our main interest is to optimize a score function in the view of AUPRC:91

AUPRC(w;D) =

∫ 1

0

P(y = 1|hw(x) ≥ c) d P(hw(x) ≥ c|y = 1)

=

∫ 1

0

πTPR(c)

πTPR(c) + (1− π)FPR(c)
d P(hw(x) ≥ c|y = 1),

(1)

where (x, y) ∼ D, c refers to a threshold, and TPR(c) = P(hw(x) ≥ c|y = 1), FPR(c) =92

P(hw(x) ≥ c|y = 0). For a finite set S, AUPRC is typically approximated by replacing the93

distribution function P(hw(x) ≥ c|y = 1) with its empirical cumulative distribution function [8, 19]:94

95

ÂUPRC(w;S) = Ê
x+∼S+

[
πT̂PR(hw(x+))

πT̂PR(hw(x+)) + (1− π)F̂PR(hw(x+))

]
, (2)

where T̂PR(c) = Êx∼S+ [`0,1(c− hw(x))] , F̂PR(c) = Êx∼S− [`0,1(c− hw(x))], `0,1(x) = 1 if96

x ≤ 0 or `0,1(x) = 0 otherwise. It has been shown that ÂUPRC is an unbiased estimator when97

N+/(N+ + N−) → π and N → ∞ [8]. With the above estimation, we have the following98

optimization objective:99

min
w

ÂUPRC
↓
(w;S) = 1− ÂUPRC(w;S) = Ê

x+∼S+

[
σ

(
1− π
π
· F̂PR(hw(x+))

T̂PR(hw(x+))

)]
, (3)

where σ(x) = x/(1 + x) is concave and monotonically increasing. To make it smooth, surrogate100

losses `1, `2 are used to replace `0,1 in F̂PR and T̂PR respectively, yielding the following surrogate101

objective:102

min
w

f(w;S) = Ê
x+∼S+

[
σ

(
1− π
π
· F̂PR(hw(x+); `1)

T̂PR(hw(x+); `2)

)]
, (4)

where T̂PR(c; `2) = Êx∼S+ [`2(c− hw(x))] , F̂PR(c; `1) = Êx∼S− [`1(c− hw(x))]. Specifi-103

cally, when N+/(N+ +N−) = π, it is equivalent to another commonly used formulation Average104

Precision (AP) Loss:105

ÂP
↓
(w;S) = Ê

x+∼S+

[
σ

(∑
x∼S− [`1(hw(x+)− hw(x))]∑
x∼S+ [`2(hw(x+)− hw(x))]

)]
. (5)

2.2 Stochastic Learning of AUPRC106

Under the stochastic learning framework for instancewise losses, the empirical risk F (w;S) is107

expressed as a sum of instancewise losses: F (w;S) = 1
N

∑
x∼S f̂(w;x), where f̂(w;x) is the108

stochastic estimator of F (w;S). Different from instancewise losses, listwise losses like AUPRC109

require a batch of samples to calculate the stochastic estimator. Specifically, at each step, a subset of110

S: z = z+ ∪ z− is randomly drawn, where z+ consists of n+ positive examples and z− consists111

of n− negative examples. Then a stochastic estimator of the loss function, denoted as f̂(w; z), is112

computed with z. Similar to the instancewise case, we consider a variant of the empirical/population113

AUPRC risks as approximations, which is a sum of stochastic losses w.r.t. all posible z:114

F (w;S) =
1

M

∑
z

f̂(w; z), F (w) = ES∼D[F (w;S)], (6)

where M is the number of all posible z. Unfortunately, due to the non-decomposability of the115

empirical AUPRC risk f(w;S), it is tackle to determine the approximation errors between F (w;S)116

and f(w;S) in general. Nonetheless, in Sec. 3.3 we argue that by selecting proper f̂(w; z), F (w;S)117

can be asymptotically unbiased estimator of f(w;S), which naturally makes F (w) an asymptotically118

unbiased estimator of 1 − AUPRC. In this case, f̂ is said to be an asymptotically unbiased119

stochastic estimator. Moreover, if the unbiasedness holds under biased sampling rate, it is said120

to be sampling-rate-invariant asymptotically unbiased.121
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3 Asymptotically Unbiased Stochastic AUPRC Optimization122

In this section, we will present our SGD-style stochastic optimization algorithm of AUPRC. In123

Sec. 3.1, we propose surrogate losses to make the objective function differentiable. In Sec. 3.2, we124

present details of the proposed stochastic estimator and the corresponding optimization algorithm.125

Analyses on approximation errors are provided in Sec. 3.3.126

3.1 Differentiable Surrogate Losses127

Since `0,1 appears in both the numerator and denominator of Eq. (4), simply implementing `1, `2 with128

a single function [55, 9, 53] will bring difficulty to analyze the relationship between ÂUPRC
↓
(w;S)129

and f(w;S). This motivates us to choose `1 ≥ `0,1, `2 ≤ `0,1, such that ÂUPRC
↓
(w;S) ≤130

f(w;S), thus the original empirical risk could be optimized by minimizing its upper bound f(w;S).131

Concretely, `1 and `2 are defined as the one-side Huber loss and the one-side sigmoid loss:132

`1(x) =


− 2x/τ1, x < 0,

(1− x/τ1)2, 0 ≤ x < τ1,

0, x ≥ τ1.
`2(x) =


exp(−x/τ2)− 1

exp(−x/τ2) + 1
, x < 0,

0, x ≥ 0.

(7)

Here τ1, τ2 > 0 are hyperparameters. `1 is convex and decreasing, which ensures the gap between133

positive-negative pairs is effectively optimized. Additionally, compared with the square loss and the134

exponential loss, `1 is more robust to noises. `2 is Lipschitz continuous, and `2 → `0,1 with τ2 → 0.135

3.2 Stochastic Estimator of AUPRC136

The key to a stochastic learning framework is the design of the stochastic estimator (or the correspond-137

ing gradients), i.e., f̂(w; z). Existing methods [9, 72, 12] implement it with ÂP
↓
(w; z) (Eq. (5)),138

which might suffer from two problems:139

(P1) Comparing Eq. (4) and Eq. (5), it can be seen that only when n+/(n+ + n−) → π, ÂP
↓

140

is an asymptotically unbiased estimator. However, it is hardly satisfied since the sampling141

strategy is usually biased in practice.142

(P2) Each term in the summation of ÂP
↓

is related to all instances of a batch, leading to weak143

leave-one-out stability, i.e., changing one instance might result in a relatively large fluctuation144

in the stochastic gradient, especially when changing a positive example.145

To tackle the above problems, we first substitute F̂PR(hw(x+); `1) with Êx∼z− [`1(hw(x+) −146

hw(x))], and then introduce an auxiliary vector v ∈ RN+

to estimate T̂PR. Formally, we propose147

the following batch-based estimator:148

f̂(w; z) = f̂(w; z,v) = Ê
x+∼z+

[
σ

(
1− π
π
· Êx∼z− [`1(hw(x+)− hw(x))]

Êv∼v[`2(hw(x+)− v)]

)]
. (8)

Such an estimator enjoys two advantages: in terms of P1, it is asymptotically unbiased regardless of149

the sampling rate (see Sec. 3.3 for detailed discussions); as for P2, we use v to substitute hw(S+),150

such that each positive example in a mini-batch only appears in one term. Ideally, it can be considered151

as using all positive examples in the dataset to estimate T̂PR instead of that from a mini-batch. With152

the fact that n− � n+, this makes the corresponding algorithm more stable. Moreover, based on the153

model stability, generalization bounds are available (see Sec. 4).154

3.3 Analyses on Approximation Errors155

In this subsection, we analyze errors from two approximations in the above algorithm: 1) the gap156

between F (w;S) and the true AUPRC loss; 2) the gap between the interpolated scores φ(hw(z+))157

and the true scores hw(S+). Proofs are provided in Appendix B.1.158
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Figure 1: Empirical analysis of estimation errors on simulation data.

Denote π = N+/(N+ + N−) and π0 = n+/(n+ + n−). We would like to show that for all159

w ∈ Ω, Ez[f̂(w; z)] is an unbiased estimator when n→∞, no matter how π0 is chosen, while for160

Ez[ÂP
↓
(w; z)], it holds only when π0 = π. Since only one model w is considered, we let wt = w161

in the update rule of v (Eq. (10)), and we have the following proposition:162

Proposition 1. Consider updating v with Eq. (10) for T steps, then we have163

E[v] = E[φ(hw(z+))] + (1− β)T
(
v1 − E[φ

(
hw(z+)

)
]
)
, V ar[v] ≤ V ar[φ(hw(z+))] · β

2− β
.

Remark 1. Two conclusions could be drawn from the above proposition: first, if the linear in-164

terpolation is asymptotically unbiased (see next subsection), by choosing a large T or setting165

v1 = E[φ(hw(z+))], we have E[v] ≈ hw(S+); second, by choosing a smaller β, v is more likely166

to concentrate on hw(S+).167

Proposition 2. Assume the linear interpolation is asymptotically unbiased. Let κ2
1 =168

Êc∼hw(z+)[V arx∼S− [`1 (c− hw(x))]], κ2
2 = Êc∼hw(z+)[V arv∼v[`2 (c− v))]]. When κ2

1/n
− →169

0, κ2
2/n

+ → 0, then there exists a positive scale H , such that170

Êz⊆S [f̂(w; z)]
P→ ÂUPRC

↓
(w;S), Êz⊆S

[
ÂP
↓
(w; z)

]
P→ (1 + (π0 − π)H) · ÂUPRC

↓
(w;S),

where P→ refers to convergence in probability, and z ⊆ S refers to subsets described in Sec. 2.2.171

Remark 2. The above proposition suggests that the proposed batch-based estimator is sampling-172

rate-invariant asymptotically unbiased, while ÂP
↓

tends to be larger when the sampling rate of the173

positive class is greater than the prior, and vice versa.174

Simulation experiments are conducted as complementary to the theory. Following previous work175

[8], the scores are drawn from three types of distributions, including binormal, bibeta and offset176

uniform. The results of binormal distribution are visualized in Fig. 1, and detailed descriptions and177

more results are available in Appendix B.2. These results are consistent with the above remark.178

Next we further study the interpolation error. For the sake of presentation, denote p : [0, 1] 7→ R to be179

an increasing score function describing hw(S+), where p(x) is the score in the bottom x-quantile of180

hw(S+). Similarly, let p̂ to be the interpolation results of EA[hw(z+)]. Assume that EA[hw(z+)]181

are located in the (i/n+)-quantiles of p, where i ∈ [n+], such that p(i/n+) = p̂(i/n+) and all182

interpolation intervals are with length 1/n+. The following proposition provides an upper bound of183

the approximation error (see [60] for proof):184

Proposition 3 (Linear Interpolation Error). Let p, p̂ be defined as above. Then we have185

‖p− p̂‖∞ ≤ ‖p′′‖∞/
(
8(n+)2

)
.

Similar to the last subsection, simulation results are shown in Fig. 1(c), which shows the expected186

errors of linear interpolation are ignorable.187

3.4 Optimization Algorithm188

In the rest of this section, we focus on how to optimize F (w;S). The main challenge is to design189

update rules for v, such that it could efficiently and effectively approximate hw(S+) without full-190

batch scanning. To overcome the challenge, we propose an algorithm called Stochastic Optimization191
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of AUPRC (SOPRC), which jointly updates model parameters w and the auxiliary vector v. A192

summary of the detailed process is shown as Alg. 1. At step t, a batch of data is sampled from the193

training set, and then compute the corresponding scores. Afterward, scores of positive examples are194

mapped into a N+-dimension vector with linear interpolation φ as shown in Alg. 2. vt+1 are updated195

with the interpolated scores in a moving average manner.196

Practically, n+, n− are finite, causing inevitable estimation errors in f(w; zit ,vt+1). Notice that197

another factor influencing the stochastic estimation errors, i.e., κ2
1 and κ2

2. To reduce them, it is198

expected that the variance of positive (negative) scores are small, which motivates us to add a variance199

regularization term. However, it might force to reduce positive scores that higher than the mean value,200

which is contrary to our target. Therefore, we propose a semi-variance regularization term [4]:201

Lvar =
λ1

n+

∑
x∼z+

hw(x)<µ+

(hw(x)− µ+)2 +
λ2

n−

∑
x∼z−

hw(x)>µ−

(hw(x)− µ−)2, (9)

where µ+ = 1
n+

∑
x∼z+ hw(x), µ− = 1

n−

∑
x∼z− hw(x), λ1, λ2 are hyperparameters. Finally, we202

compute the gradients of f(w; zit ,vt+1) + Lvar, and update parameters w with gradient descent.203

Algorithm 1 SOPRC

Input: Training dataset S, maximum iterations
T , learning rate {ηt}Tt=1 and {βt}Tt=1.

Output: model parameters wT+1.
1: Initialize model parameters w1 and v1.
2: for t = 1 to T do
3: Sample a subset zit from S.
4: Compute hwt(z

+
it

) and map the results
into φ(hwt(z

+
it

)) with Alg. 2.
5: Update v with

vt+1 =(1− βt)vt
+ βtφ(hwt(z

+
it

)).
(10)

6: Compute Lvar with Eq. (9).
7: Update the model parameter:

wt+1 =wt − ηt · ∇Lvar
− ηt · ∇f(wt; zit ,vt+1).

(11)

8: end for

Algorithm 2 Score Interpolation φ(·)
Input: A real value vector u ∈ Rn where

n < N+, range of target values [b, B].
Output: Interpolated vector m = φ(u).
1: Sort u in descending order.
2: Initialize m as 0N+ , let u0 = max(2u1 −
u2, b), un+1 = min(2un − 2un−1, B).

3: for i = 1 to n do
4: for j = dN

+(i−1)
n e to

[
N+·i
n

]
do

5:
mj+ =

[
(i− jn/N+)ui−1

+(1 + jn/N+ − i)ui
]
/2

6: end for
7: for j =

[
N+·i
n

]
to bN

+·(i+1)
n c do

8:
mj+ =

[
(i+ 1− jn/N+)ui−1

+(jn/N+ − i)ui
]
/2

9: end for
10: end for

4 Generalization of SOPRC via Stability204

In this section, we turn to study the excess generalization error of the proposed algorithm. Formally,205

following standard settings [5], we consider the test error of the model A(S) trained on the training206

set S. Our target is to seek an upper bound of the excess error EA,S [F (A(S)) − F (w∗)], where207

w∗ ∈ arg minw∈Ω EA,S [F (w∗)]. It can be decomposed as:208

ES,A[F (A(S))− F (w∗)] = ES,A[F (A(S))− F (A(S);S)]︸ ︷︷ ︸
Estimation Error

+ES,A[F (A(S);S)− F (w∗)]︸ ︷︷ ︸
Optimization Error

.

The estimation error sources from the gap of minimizing the empirical risk instead of the expected209

risk. In Sec. 4.1, we provide detailed discussion on the estimation error. The optimization error210

measures the gap between the minimum empirical risk and the results obtained by the optimization211

algorithm, which will be studied in Sec. 4.2. Detailed proofs of this section are available in Appendix212

C. Before the formal presentation, we show the main assumptions:213

Assumption 1 (Bounded Scores & Gradient). |f̂(w; ·)| ≤ B, ‖∇f̂(w; ·)‖2 ≤ G for all w ∈ Ω.214

Assumption 2 (L-Smooth Loss). ‖∇f̂(w; ·)−∇f̂(w̃; ·)‖2 ≤ L‖w − w̃‖2 for all w, w̃ ∈ Ω.215

Assumption 3 (Lipschitz Continuous Functions). |`1(x)− `1(x̃)| ≤ L1|x− x̃|, |`2(x)− `2(x̃)| ≤216

L2|x− x̃| for all x, x̃ ∈ [−2B, 2B]. ‖φ(x)− φ(x̃)‖2 ≤ Cφ‖x− x̃‖2 for all x, x̃ ∈ RN+

.217
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4.1 Generalization of AUPRC via Model Stability218

The generalization of SGD-style algorithms for instancewise loss has been widely studied with219

stability measure [38, 21, 28]. However, these results could not be directly applied to listwise losses220

like AUPRC. The main reason is that the estimation of each stochastic gradient requires a list of221

examples, and the estimation is usually biased. Nonetheless, to bridge the optimization algorithm and222

the generalization of AUPRC, we propose a listwise variant of on-average model stability [38] as223

follows:224

Definition 1 (Listwise On-average Model Stability). Let S = {(xi, yi)}Ni=1 and S̃ =225

{(x̃i, yi)}Ni=1 be two sets of examples whose features are drawn independently from X . For any226

i = 1, · · · , N , denote S(i) = {(x1, y1), · · · , (xi−1, yi−1), (x̃i, yi), (xi+1, yi+1), · · · , (xn, yn)}. A227

stochastic algorithm A is listwise on-average model (ε+, ε−)-stable if the following condition holds:228

ES,S̃,A

[
1

N+

∑
yi=1

∥∥∥ A(S)−A(S(i))
∥∥∥

2

]
≤ ε+,ES,S̃,A

[
1

N−

∑
yi=−1

∥∥∥ A(S)−A(S(i))
∥∥∥

2

]
≤ ε−.

The following theorem shows that the estimation error is bounded by the above-defined stability:229

Theorem 1 (Generalization via Model Stability). Let a stochastic algorithm A be listwise on-230

average model (ε+, ε−)-stable and Asmp. 1 holds. Then we have231

ES,A [F (A(S))− F (A(S);S)] ≤ G(n+ε+ + n−ε−). (12)

With the above theorem, now we only need to focus on the model stability of the proposed algorithm.232

Notice that in Alg. 1, both wt and vt are updated at each step, thus we have to consider the stability233

of both simultaneously. The following lemma provides a recurrence for the stability wt and vt.234

Lemma 1. Let S, S̃,S(i) be constructed as Def. 1 and Asmp. 1, 2, 3 hold. Let {wt}t and {w(i)
t }t235

be produced by Alg. 1 with S and S(i), respectively. Denote L = max{Lw, Lv/n+, CφB,G/2, B
′
`},236

m
(i)
t =

[
‖wt −w

(i)
t ‖2 ‖vt − v

(i)
t ‖2 1

]>
, m+

t = 1
N+

∑
yi=1 ES,A

[
m

(i)
t

]
, m−t =237

1
N+

∑
yi=−1 ES,A

[
m

(i)
t

]
. Then for all t ∈ [T ], by setting βt ≤ 2CφB/n

+, we have238

m+
t+1 ≤

I3 + R+
t

N+
·m+

t , m−t+1 ≤
I3 + R−t
N−

·m−t , (13)

where I3 is the 3× 3 identity matrix and239

R+
t =

 2Lηt
L(1−βt)ηt

N+
Lηt
N+

Lβt 0 1
N+

0 0 0

 , R−t =

 2Lηt
Lv(1−βt)ηt

N+
Lηt·n+

N−

Lβt 0 0
0 0 0

 . (14)

Finally, we utilize the matrix spectrum of R+
t and R−t to show that the model stability w.r.t. Alg. 1240

decreases as the number of training examples increases (see Appendix C.2 for details):241

Theorem 2. Let λ = LCη(1 +
√

1− β2 + β), and assumptions in Lem. 1 hold. By setting ηt ≤ Cη
t ,242

βt = β � 1/n+ and T ≤ N+, Alg. 1 is list on-average model stable with243

ε+ = O

(
(Tn+)

λ
λ+1

N+

)
, ε− = O

(
(Tn−)

λ
λ+1

N−

)
. (15)

4.2 Convergence of AUPRC Stochastic Optimization244

Following previous work [24, 34], we study the optimization error of the proposed algorithm under245

the Polyak-Łojasiewicz (PL) condition. It has been shown that the PL condition holds for several246

widely used models including some classes of neural networks [13, 41].247

Assumption 4 (Polyak-Łojasiewicz Condition [34, 37]). Denote w∗ = arg minw∈Ω F (w). As-248

sume F satisfy the expectation version of PL condition with parameter µ > 0, i.e.,249

ES [F (w;S)− F (w∗)] ≤ 1

µ
ES [‖∇F (w;S)‖22]. (16)
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Table 1: Quantitative results on SOP, iNaturalist, and VehicleID. All methods are trained with training
sets. The best and the second best results are highlighted in soft red and soft blue, respectively.

Methods
Stanford Online Products iNaturalist PKU VehicleID
mAUPRC R@1 R@10 mAUPRC R@1 R@4 mAUPRC R@1 R@5

Contrastive loss [27] 57.73 77.60 89.31 27.99 54.19 71.12 67.26 87.46 94.60
Triplet loss [32] 58.07 78.34 90.50 30.59 60.53 77.62 70.99 90.09 95.54
MS loss [69] 60.10 79.64 90.38 30.28 63.39 78.50 69.15 88.82 95.06
XBM [70] 61.29 80.66 91.08 27.46 59.12 75.18 71.24 92.78 95.83
SmoothAP [9] 61.65 81.13 92.02 33.92 66.13 80.93 72.28 91.31 96.05
DIR [57] 60.74 80.52 91.35 33.51 64.86 79.79 72.72 91.38 96.10
FastAP [12] 57.10 77.30 89.61 31.02 56.64 73.57 70.82 89.42 95.38
AUROC [25] 55.80 77.32 89.64 27.24 60.88 77.76 58.12 81.73 91.92
BlackBox [51] 59.74 79.48 90.74 29.28 56.88 74.10 70.92 90.14 95.52

Ours 62.75 81.91 92.50 36.16 68.22 82.86 74.92 92.56 96.43

The main difference to the existing convergence analysis on non-convex optimization is that the250

gradient estimation is biased. Nonetheless, we show that the bias terms from Alg. 1 tend to 0 with251

sufficient training data and training time (see Appendix C.3), leading to the following convergence:252

Theorem 3. Let Asmp. 1, 3, 4 hold. By setting ηt = 2t+1
µ(t+1)2 and βt = β � 1/n+, we have253

EA[F (wT+1)− F (w∗)] = O
(
n+/T + 1/N+

)
. (17)

Theorem 4. Let assumptions in Thm. 2 and 3 hold. By setting T � (N+)
λ+1
2λ+1 (n+)−

1
2λ+1 , we have254

ES,A[F (A(S))− F (w∗)] = O
(

(N+)−
λ+1
2λ+1 · (n+)

3λ+1
2λ+1

)
+O

(
(N−)−

λ+1
2λ+1 · (n−)

3λ+1
2λ+1

)
. (18)

Remark 3. Recall that λ = LCη(1 +
√

1− β2 + β) and Cη = 4/µ, when β is small,255

we have λ ≈ 4L/µ. Here L/µ is a condition number determined by the model and256

surrogate losses. Notice that n+ � N+, n− � N−, if λ = 1, the generalization257

bound is O
(
(N+)−2/3 · (n+)4/3 + (N−)−2/3 · (n−)4/3

)
. As λ increases, it increases to258

O
(
(N+)−1/2 · (n+)3/2 + (N−)−1/2 · (n−)3/2

)
.259

5 Experiments260

To validate the effectiveness of the proposed method, we conduct empirical studies on the image261

retrieval task, in which data distributions are largely skewed and AUPRC is commonly used as an262

evaluation metric. Detailed experimental settings are available in Appendix D.1.263

5.1 Datasets264

We evaluate the proposed method on three image retrieval benchmarks with various domains and265

scales, including Stanford Online Products (SOP)1 [47], PKU VehicleID2 [42] and iNaturalist3266

[67]. We follow the official setting to split a test set from each dataset, and then further split the rest267

into a training set and a validation set by a ratio of 9 : 1.268

5.2 Main Results269

We evaluate all methods with mean AUPRC (mAUPRC) and Recall@k. mAUPRC measures the270

mean value of the AUPRC over all queries, a.k.a. mean average precision (mAP). The performance271

comparisons on test sets are shown in Tab. 1. Consequently, we have the following observations: 1)272

In all datasets, the proposed method surpasses all competitors in the view of mAUPRC, especially in273

the large-scale long-tailed dataset iNaturalist. This validates the advantages of our method in boosting274

1https://github.com/rksltnl/Deep-Metric-Learning-CVPR16. Licensed MIT.
2https://www.pkuml.org/resources/pku-vehicleid.html. Data files c© Original Authors.
3https://github.com/visipedia/inatcomp/tree/master/2018. Licensed MIT.
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Figure 2: Qualitative results on iNaturalist. Left most: mean PR curves of different methods. Right
two: convergence of different methods and batch sizes in terms of mAUPRC in the validation set.

Table 2: Ablation study over different components of our method on iNaturalist.
No. Unb. Est. with vt with Lvar Opt. mAUPRC R@1 R@4 R@16 R@32

1 7 7 7 SGD 34.58 66.35 81.04 89.80 92.72
2 X 7 7 SGD 35.84 67.08 81.68 90.17 92.98
3 X X 7 SGD 35.99 67.50 82.03 90.44 93.26
4 X X X SGD 36.16 68.22 82.86 91.02 93.71
5 X X X Adam 36.20 68.48 82.70 90.96 93.63

the AUPRC of models. 2) Compared to pairwise losses, the AUPRC/AP optimization methods enjoy275

better performance generally. The main reason is that pairwise losses could only optimize models276

indirectly by constraining relative scores between positive and negative example pairs, while ignoring277

the overall ranking. 3) Although some pairwise methods like XBM have a satisfying performance on278

Recall@1, their mAUPRC is relatively low. It is caused by the limitation of Recall@1, i.e., it focuses279

on the top-1 score while ignoring the ranking of other examples. What’s more, this phenomenon280

shows the inconsistency of Recall@k and AUPRC, revealing the necessity of studying AUPRC281

optimization. More results are available in Appendix D.2. To qualitatively demonstrate the effect of282

the proposed method, we also show the mean PR curves and convergence curves in Fig. 2.283

5.3 Ablation Studies284

We further investigate the effect of different components of the proposed method. Results are shown285

in Tab. 2, and more detailed statements and analyses are as follows.286

Effect of Unbiased Estimator. To show the performance drop caused by the biased estimator, we287

replace the prior π in Eq. (8) with n+/(n+ + n−). Comparing line 1 and line 2, using the unbiased288

estimator increases the mAUPRC by 1.3%, which is consistent with our theoretical results in Sec. 3.3.289

Notably, the unbiased estimator is the main source of improvements in terms of mAUPRC.290

Effect of vt. To show the effect of introducing vt to estimate φ(S+), we directly use φ(z+) instead291

in the first two lines. Comparing line 2 and line 3, using vt could bring consistent improvements due292

to the better generalization ability.293

Effect of Lvar. We show that shrinking variances could reduce the batch-based estimation errors.294

Comparing line 3 and line 4, it can be seen that Lvar further boosts the proposed method.295

Effect of Optimizer. Comparing line 4 and line 5, it can be seen that the choice of optimizer only296

has a slight influence.297

6 Conclusion & Future Work298

In this paper, we present a stochastic learning framework for AUPRC optimization. To begin with, we299

propose a stochastic AUPRC optimization algorithm based on an asymptotically unbiased stochastic300

estimator. By introducing an auxiliary vector to approximate the scores of positive examples, the301

proposed algorithm is more stable. On top of this, we study algorithm-dependent generalization. First,302

we propose list model stability to handle listwise losses like AUPRC, and bridge the generalization303

and the stability. Afterward, we show that the proposed algorithm is stable, leading to an upper bound304

of the generalization error. Experiments on three benchmarks validate the advantages of the proposed305

framework. One limitation is the convergence rate is controlled by the scale of the dataset. In the306

further, we will consider techniques like variance reduction to improve the convergence rate, and307

jointly consider the corresponding algorithm-dependent generalization.308
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...502

(a) If your work uses existing assets, did you cite the creators? [Yes]503

(b) Did you mention the license of the assets? [Yes]504

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]505

(d) Did you discuss whether and how consent was obtained from people whose data you’re506

using/curating? [No] Assets we used are open source.507

(e) Did you discuss whether the data you are using/curating contains personally identifiable508

information or offensive content? [N/A]509

5. If you used crowdsourcing or conducted research with human subjects...510

(a) Did you include the full text of instructions given to participants and screenshots, if511

applicable? [N/A]512

(b) Did you describe any potential participant risks, with links to Institutional Review513

Board (IRB) approvals, if applicable? [N/A]514

(c) Did you include the estimated hourly wage paid to participants and the total amount515

spent on participant compensation? [N/A]516
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