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ABSTRACT

Quantification of uncertainty is one of the most promising approaches to estab-
lish safe machine learning. Despite its importance, it is far from being gener-
ally solved, especially for neural networks. One of the most commonly used ap-
proaches so far is Monte Carlo dropout, which is computationally cheap and easy
to apply in practice. However, it can underestimate the uncertainty. We propose
a new objective, referred to as second-moment loss (SML), to address this issue.
While the full network is encouraged to model the mean, the dropout networks
are explicitly used to optimize the model variance. We analyze the performance
of the new objective on various toy and UCI regression datasets. Comparing to
the state-of-the-art of deep ensembles, SML leads to comparable prediction ac-
curacies and uncertainty estimates while only requiring a single model. Under
distribution shift, we observe moderate improvements. From a safety perspective
also the study of worst-case uncertainties is crucial. In this regard we improve con-
siderably. Finally, we show that SML can be successfully applied to SqueezeDet,
a modern object detection network. We improve on its uncertainty-related scores
while not deteriorating regression quality. As a side result, we introduce an in-
tuitive Wasserstein distance-based uncertainty measure that is non-saturating and
thus allows to resolve quality differences between any two uncertainty estimates.

1 INTRODUCTION

Having attracted great attention in both academia and digital economy, deep neural networks (DNNss,
Goodfellow et al.|(2016)) are about to become vital components of safety-critical applications. Ex-
amples are autonomous driving (Pomerleaul |1989; Bojarski et al.,|2016) or medical diagnostics (Liu
et al.|[2014), where prediction errors potentially put humans at risk. These systems require methods
that are robust not only under lab conditions (i.i.d. data sampling), but also under continuous domain
shifts, think e.g. of adults on e-scooters or growing numbers of mobile health sensors. Besides shifts
in the data, the data distribution itself poses further challenges. Critical situations are (fortunately)
rare and thus strongly under-represented in datasets. Despite their rareness, these critical situations
have a significant impact on the safety of operations. This calls for comprehensive self-assessment
capabilities of DNNs and recent uncertainty mechanisms can be seen as a step in that direction.

While a variety of uncertainty approaches has been established, stable quantification of uncertainty
is still an open problem. Many recent machine learning applications are e.g. equipped with Monte
Carlo (MC) dropout (Gal & Ghahramanil 2016) that offers conceptual simplicity and scalability.
However, is tends to underestimate uncertainties thus bearing disadvantages compared to more re-
cent approaches such as deep ensembles (Lakshminarayanan et al.,2017)). We propose an alternative
uncertainty mechanism. It builds on dropout sub-networks and explicitly optimizes variances (see
Fig. |l| for an illustrative example). Technically, this is realized by a simple additive loss term, the
second-moment loss. To address the above outlined requirements for safety-critical systems, we
evaluate our approach systematically w.r.t. continuous data shifts and worst-case performances.
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Figure 1: Sampling-based uncertainty mechanisms on toy datasets. The second-moment loss (right)
induces uncertainties that capture (de facto) data-inherent uncertainty. This is in contrast to MC
dropout (left). 200 sub-networks (grey) and ground truth data (red) are shown.

In detail, our contribution is as follows:

e we introduce a novel regression loss for better calibrated uncertainties applicable to dropout
networks,

e we reach state-of-the-art performance in an empirical study and improve on it when con-
sidering data shift and worst-case performances, and

e we demonstrate its applicability to real-world applications by example of 2D bounding box
regression.

2 RELATED WORK

Approaches to estimate predictive uncertainties can be broadly categorized into three groups:
Bayesian approximations, ensemble approaches and parametric models.

Monte Carlo dropout (Gal & Ghahramani, 2016) is a prominent representative of the first group.
It offers a Bayesian motivation, conceptual simplicity and scalability to application-size neural net-
works (NNs). This combination distinguishes MC dropout from other Bayesian neural network
(BNN) approximations like Blundell et al.| (2015) and Ritter et al.| (2018)). A computationally more
efficient version of MC dropout is one-layer or last-layer dropout (see e.g. [Kendall & Gal| (2017)).
Alternatively, analytical moment propagation allows sampling-free MC-dropout inference at the
price of additional approximations (e.g. [Postels et al. (2019)). Further extensions of MC dropout tar-
get tuned performance by learning layer-specific drop rates using Concrete distributions
and the integration of data-inherent (aleatoric) uncertainty (Kendall & Gal, [2017). Note that
dropout training is used—independent from an uncertainty context—for better model generalization

(Srivastava et al [2014).

Ensembles of neural networks, so-called deep ensembles (Lakshminarayanan et all) [2017), pose
another popular approach to uncertainty modelling. Comparative studies of uncertainty mechanisms
(Snoek et al,[2019; Gustafsson et al.}[2020) highlight their advantageous uncertainty quality, making
deep ensembles a state-of-the-art method. argue that deep ensembles capture multi-
modality of loss landscapes thus yielding potentially more diverse sets of solutions.

The third group are parametric modelling approaches that extend point estimations by adding a

model output that is interpreted as variance or covariance (Nix & Weigend, [1994}; [Heskes| [1997).
Typically, these approaches optimize a (Gaussian) negative log-likelihood (NLL, |[Nix & Weigend

(1994)). A more recent representative of this group is, e.g., Kendall & Gal| (2017), for a review
see [Khosravi et al.| (2011). A closely related model class is deep kernel learning. It approaches
uncertainty modelling by combining NNs and Gaussian processes (GPs) in various ways, e.g. via
an additional layer (Wilson et al} 2016} [Twata & Ghahramani, 2017), by using networks as GP
kernels (Garnelo et al., 2018) or by matching NN residuals with a GP (Qiu et al., 2019).
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In the context of object detection, various uncertainty approaches can be encountered, e.g. MC
dropout in|Bhattacharyya et al.|(2018]) and |[Miller et al.| (2018), or parametric approaches in|He et al.
(2019). |Hall et al.| (2020) advocate to account for uncertainty in bounding box detection.

The quality of uncertainties is typically evaluated using negative log-likelihood (Blei et al., 2006}
Walker et al. 2016} |Gal & Ghahramani, [2016), expected calibration error (ECE) (Naeini et al.,
2015} Snoek et al.l 2019) and its variants and by considering correlations between uncertainty esti-
mates and model errors, e.g. area under the sparsification error curve (AUSE, [Ilg et al.|(2018)) for
image tasks. Moreover, it is common to study how useful uncertainty estimates are for solving aux-
iliary tasks like out-of-distribution classification (Lakshminarayanan et al., 2017) or robustness w.r.t.
adversarial attacks. An alternative approach is the investigation of qualitative uncertainty behaviors:
Kendall & Gal|(2017) check if the epistemic uncertainty decreases when increasing the training set
or Wirges et al.|(2019) studies how the level of uncertainty depends on the distance of the object to
a car for some 3D environment regression task.

3 SECOND-MOMENT LOSS

Monte Carlo (MC) dropout was proposed as a computationally cheap approximation of perform-
ing Bayesian inference in neural networks (Gal & Ghahramanil 2016)). Given a neural network
fo : R — R™ with parameters §, MC dropout samples sub-networks f5 by randomly dropping
nodes from the main model fy. During MC dropout inference the prediction is given by the mean
estimate over the predictions of a given sample of sub-networks, while the uncertainty associated
with this prediction can be estimated, e.g. , in terms of the sample variance. During MC dropout
training the objective function, e.g. , (in our case) the mean squared error (MSE), is applied to the
sub-networks separately. Due to this training procedure, all sub-network predictions are shifted
towards the same training targets, which can result in overconfident predictions, i.e. in an underesti-
mation of prediction uncertainty.

Based on this observation, we propose to use the sub-networks fj in a different way: they are
explicitly not encouraged to fit the data mean directly. This is the task of the full network fy. The
sub-networks f; instead model aleatoric uncertainty and prediction residuals if the prediction of the
full network fy is incorrect. Thus, we deliberately assign different ‘jobs’ to the main network fy
on the one hand and its sub-networks on the other hand. Formalizing this idea into an optimization
objective yields
M
L= Liege + Lom1 = 77 Z {(fH(fEi) —i)° + B (If5(wi) = folw)| = |folz:) —wil)* | , (1)

=1

regression loss second—moment loss

where the sum runs over a mini-batch of size M < N taken from the set of observed samples
D = {(z;,y:)} Y. z; € R?denotes the input, y; € R™ the ground-truth label, and 3 > 0 is a hyper-
parameter that weights both terms. The first term, Lycg,, is the MSE w.r.t. the full network fy. The
second term, L1, seeks to optimiz the sub-networks f7. It aims at finding sub-networks such that
the distance | f; — fp| matches the aleatoric uncertainty or the prediction residual which is quantified
by |fo(x;) — yi|. As our choice of Ly, removes all directional information of the residual, possible
(optimal) solutions for the f; are not uniquely determined This leads to a significant increase in
the variance of the sub-networks, i.e. the second moment of f;, compared to standard MC dropout,
which is why we name L, the second-moment loss (SML)J*| The standard deviations oota1 Of the
predictions of the sub-networks w.r.t. the prediction of the mean network induced by the SML have
two components: the spread 04,0, Of the sub-networks and an offset | fo—«( fé>| between the full
network and the sub-network mean that our loss might cause, concretely, oo = Tarop + | fo — (f5) |-
While |fo — (f;)| is reminiscent of residual matching, o4.p Seems to be more closely related to

! An intuitive explanation is as follows: Let fo be a NN with one-dimensional output. For MC dropout with
the MSE loss we get {(f5(z) — y)*) = ({f3(2)) — y)* + 0°(f3(x)). Therefore, it simultaneously minimizes
the squared error between sub-network mean and target and the variance o2 (f3(x)) = ( fg (z)) — (f5(z))>
over the sub-networks.

2To avoid unintended optimization of full fp in direction of f5, we only back-propagate through f; in Lsm1.

3For a one dimensional example based on aleatoric uncertainty see appendix A.1.

*For brevity, we also refer to the entire loss objective L as second-moment loss during evaluation.
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modelling uncertainties. We show in appendix A.2 that ogyp accounts on average for more than
80% of Tyota1 in Our experiments.

Note that while we investigate the proposed objective in terms of dropout sub-networks in this paper,
our arguments as well as the actual approach are generally applicable to other models that allow to
formulate sub-networks given some kind of mean model. Besides the regression tasks considered
here our approach could be useful for other objectives which use or benefit from an underlying
distribution, e.g. uncertainty quantification in classification.

4 EXPERIMENTS

We begin this section with an illustrative and visualizable toy dataset and continue with benchmarks
on various UCI datasets (Dua & Graff,[2017) in section[d.2] To conclude in[4-3] the second-moment
loss is applied to a more complex task: object detection in the form of a 2D bounding box regression
using the compact SqueezeDet architecture (Wu et al., 2017).

For the first two parts we use an identical set-up of 2 hidden layers with 50 neurons each and ReLu
activations. As benchmark methods we consider: MC dropout (abbreviated as MC), last-layer MC
dropout (MC-LL), parametric uncertainty (PU), deep ensembles with (DE-PU) and without (DE)
explicit PU. While the toy model has a stronger focus on visual inspection, the UCI evaluation relies
on a variety of measures: root-mean-square error (RMSE), negative log-likelihood (NLL), expected
calibration error (ECE), and a novel usage of the Wasserstein distance (WS). Further details on the
network, training procedure, the implementation of methods and measures can be found in appendix
B.1. The same holds for the more elaborate SqueezeDet architecture and modifications to it, see B.5.

4.1 TOY DATASETS

To illustrate qualitative behaviors of the different uncertainty techniques, we consider two R — R
toy datasets. This benchmark puts a special focus on the handling of data-inherent uncertainty. The
first dataset is Gaussian white noise with an z-dependent (non-linear) amplitude, see first row of
Fig.[2l The second dataset is a polynomial overlayed with a high-frequency, amplitude-modulated
sine, see fourth row of Fig. 2] The explicit equations for the toy datasets used here can be found in
appendix B.2. While the uncertainty in the first dataset (‘toy-noise’) is clearly visible, it is less obvi-
ous for the fully deterministic second dataset (‘toy-hf’). There is an effective uncertainty though, as
the shallow networks employed are empirically not able to fit (all) fluctuations of ‘toy-hf’ (see fifth
row of Fig. [2). One might (rightfully) argue that this is a sign of insufficient model capacity. But,
in more realistic, e.g., higher dimensional and sparser datasets the distinction between true noise
and complex information becomes exceedingly difficult to make. As the Nyquist-Shannon sampling
theorem states, with limited data deterministic fluctuations above a cut-off frequency can no longer
be resolved (Landau|, 1967). They therefore become virtually indistinguishable from random noise.

The mean estimates of all uncertainty methods (second and fifth row in Fig. [J)) look alike on both
datasets. They approximate the noise mean and the polynomial, respectively. In the latter case, all
methods rudimentarily fit some individual fluctuations. The variance estimation (third and sixth row
in Fig. @]) in contrast reveals significant differences between the methods: While PU, PU-DE, and the
network trained with SML are capable of capturing aleatoric uncertainty, MC dropout variants and
non-parametric ensembles are not. This behavior of MC dropout is expectable as it was introduced
to account for model uncertainty not data-inherent uncertainty. The non-parametric ensemble is
effectively optimized in a similar fashion. In contrast, NLL-optimized PU networks have a home-
turf advantage on these datasets since the parametric variance is explicitly optimized to account for
the present aleatoric uncertainty. The SML provides comparably good uncertainty estimates. They
are evoked by the L, -term that incentivizes sub-networks f; to keep an adequate distance from fy.
While the outcomes of both PU (PU-DE) and SML-trained network look similar, the mechanics of
the two approaches are fundamentally different. We investigate the drivers behind the adjustments
of the sub-networks in appendices A and A.3. Accompanying quantitative evaluations can be found
in appendix B.2.

In the following, we substantiate the corroborative results of the SML on toy data by an empirical
study on UCI datasets and an application to a modern object detection network.
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Figure 2: Comparison of uncertainty approaches (columns) on two 1D toy functions: a noisy one
(top) and a high-frequency one (bottom). Test data ground truth (respective first row) is shown with
mean estimates (resp. second row) and standard deviations (resp. third row).

4.2 UCI REGRESSION DATASETS

Next, we study UCI regression datasets, extending the dataset selection in|Gal & Ghahramani|(2016))
by adding three further datasets: ‘diabetes’, ‘california’, and ‘superconduct’. Apart from train- and
test-data results, we study regression performance and uncertainty quality under data shift. Such
distributional changes and uncertainty quantification are closely linked since the latter ones are rudi-
mentary “self-assessment”” mechanisms that help to judge model reliability. These judgements gain
importance for model inputs that are structurally different from train data. Appendix B.3 elaborates
on different ways of splitting the data, namely pca-based splits in input space (using the first princi-
pal component) and label-based splits. More general information on training and dataset-dependent
modifications to the experimental setup are relegated to the technical appendix B.1. For brevity of
exposition, we limit our discussion here largely to the ECE and the worst-case uncertainty perfor-
mance. An evaluation of the remaining measures, including the Wasserstein measure, is given in
appendix B.3. All presented results are 5- or 10-fold cross validated.

Fig. 3] provides ECEs for 13 UCI datasets that are sorted by dataset size on the x-axis. The top
panel shows train (green) and test set (blue) ECEs, the bottom panel test set ECEs under two pca-
based data shifts (yellow-green, orange) and two label-based data splits (red, light red), respectively.
Uncertainty methods are encoded via plot marker, e.g. PU-DE as ‘star’ and SML-trained networks
(‘ours’) as ‘square’. We summarize these dataset-specific results on the right hand side of Fig. [3]
(light grey background). The columns ‘mean’ and ‘median’ of this summary show that on training
sets, ECEs are smallest for PU, followed by PU-DE and the SML network. On test data, however,
PU, PU-DE and the SML network share the first place. Looking at the stability w.r.t. data shift, i.e.
extra- and interpolation based on label-split or pca-split, PU loses in performance while PU-DE and
SML reach the smallest calibration errors in three out of four cases.

For NLL and Wasserstein measure, PU-DE and the SML-trained network reach comparably small
average values with advantages for SML-trained network under data shift, see Fig. 9 and Fig. 10
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in appendix B.3 for detailed evaluations. In contrast to uncertainty quality, regression performances
are almost identical for all uncertainty methods (see Fig. 8 and Table 5 in appendix B.3).

Summarizing these evaluations on UCI datasets, we find SML to be as strong as the state-of-the-art
method of PU-DEs while using only a single network compared to an ensemble of 5 networks. We
moreover observe advantages for SML under PCA- and label-based data shifts. Three datasets lead
to overestimated uncertainties for the SML, see discussion in appendix B.3. A visual tool to further
inspect uncertainty quality are residual-uncertainty scatter plots as shown in appendix B.4. For a
reflection on NLL and comparisons of the different uncertainty measures on UCI data see again
appendix B.3.

From a safety perspective the study of worst-case uncertainties is crucial. A better understanding
of these least appropriate uncertainties might allow to determine lower bounds on operation quality
of safety-critical systems. We restrict our analysis to uncertainty estimates that under-estimate pre-
diction residuals, i.e. |r;| > 1. These cases might be more harmful than overly large uncertainties,
|r;| < 1, that likely trigger a conservative system behavior. We quantify worst-case uncertainty
performance as follows: for a given (test) dataset, the absolute normalized residuals {|r;|}; are
calculated. We determine the 99% quantile qg g9 of this set and calculate the mean value over all
|r:| > qo.99, the so-called expected tail loss at quantile 99% (ETLg.99) (Rockafellar & Uryasev,
2002). The ETLg 99 measures the average performance of the worst performing 1%.

For both toy datasets and 12 UCI datasets, the test data ETL g9’s of all trained network are calcu-
lated, yielding a total of 105 ETL g9 values per uncertainty method. Table[I|reports the mean value
and the maximal value of these ETL g9’s for PU-DE and SML-trained networks as these two meth-
ods show the strongest performances throughout this work. While none of these methods gets close
to the ideal ETLg g9’s of a A(0,1), SML-trained networks exhibit significantly less pronounced
tails and therefore higher stability compared to PU-DE. This holds true over all considered test sets.
Deviations from standard normal grow from i.i.d. test over PCA-based train-test split to label-based
train-test split. We attribute the lower stability of PU-DE to the nature of the PU networks com-
posing the ensemble. The inherent instability of parametric uncertainty estimation (see Table 5 in
appendix B.3) is largely suppressed by ensembling. Considering the tail of the |r;|-distribution how-
ever reveals that regularization of PU by ensembling works not in every single case. It is unlikely
that larger ensemble are able to fully cure this instability issue. SML-trained networks in contrast en-
code uncertainty into the structure of the entire network thus yielding preferable stability compared
to parametric approaches.

Table 1: Worst-case uncertainty quality for different uncertainty methods: SML-induced uncertain-
ties (ours) and PU-DE are compared to the ideal Gaussian case for i.i.d. and non-i.i.d. data splits.
Worst-case uncertainty quality is quantified by the expected tail loss at the 99% quantile (ETLg.g9).
Each mean and max value is taken over the ETLs of 105 models trained on 14 different datasets.

measure datasplit AN(0,1) Ours PU-DE

mean ETLg g9 i.i.d. 2.89  3.80 5.03
max ETLg g9 i..d. 3.01 9.71 19.69
mean ETLy g9 pca 2.89 4.62 6.71
max ETLg 99 pca 3.01 13.0 39.34
mean ETLg g9 label 2.89 5.18 38.65
max ETLg 99 label 3.01 3596 799.78
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Figure 3: Expected calibration errors (ECEs) for 13 UCI regression datasets under i.i.d. conditions
(top) and under data shift (bottom). Uncertainty methods are encoded via plot marker, data splits
via color. Each plot point corresponds to a cross-validated trained network. Summarizing statistics
(rhs) are indicated by a light grey background.

4.3  APPLICATION TO OBJECT REGRESSION

After studying toy and UCI datasets, we turn towards the challenging real-world task of object
detection, namely the SqueezeDet model (Wu et al.l[2017)), a fully convolutional neural network. It
is trained and evaluated on KITTI (Geiger et al., 2012)). For details on the SqueezeDet architecture
and the KITTI data split, see B.5. We compare standard SqueezeDet with SML-SqueezeDet that
uses the second-moment loss instead of the original MSE regression loss (see appendix B.5 for
more details). In both settings the model is trained for 150,000 mini-batches of size 20, i.e. for 815
epochs. After training, we keep dropout active and compute 50 forward passes for each test image.
For standard SqueezeDet, all forward passes are individually matched with ground truth. We exclude
predictions from the evaluation if their IoU with ground truth is < 0.1. While standard SqueezeDet
(with activated dropout at inference) uses the mean of the dropout samples for prediction, SML-
SqueezeDet uses the full network instead (see section [3). These predictions and their corresponding
dropout samples are matched based on the respective anchor. The dropout samples are summarized
by their means and variances.

To assess model performance, we report the mean intersection over union (mloU) and RMSE (in
pixel space) between predicted bounding boxes and matched ground truths. The quality of the un-
certainty estimates is measured by (coordinate-wise) NLL, ECE and Wasserstein distance. Table
shows a summary of our results on train and test data. The results for NLL, ECE and WS have been
averaged across the 4 regression coordinates. SqueezeDet and SML-SqueezeDet show comparable
regression results, with slight advantages for SML-SqueezeDet on test data. Considering uncer-
tainties quality, we find substantial advantages for SML-SqueezeDet across all evaluation measures.
These findings resemble those on the UCI regression datasets and indicate that the second-moment
loss works well on a modern application-scale network.

5 CONCLUSION

We approach dropout-based uncertainty quantification from a new direction: sub-networks are ex-
plicitly not encouraged to model the data mean, they capture data-inherent uncertainties and po-
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Table 2: Regression performance and uncertainty quality of SqueezeDet-type networks on KITTI
test data. SML-trained SqueezeDet (ours) is compared with the default SqueezeDet that uses one-
layer dropout to estimate uncertainties. The measures of NLL, ECE and WS are aggregated along
their respective four dimensions, for details see appendix B.5 and table 6 therein.

measure SqueezeDet SML-SqueezeDet SqueezeDet SML-SqueezeDet

train test
mloU (1) 0.816 0.812 0.738 0.744
RMSE (/) 6.418 6.862 18.225 17.492
NLL ({) 20.746 3.916 98.807 17.875
ECE (1) 0.996 0.554 1.198 0.834
WS () 2.487 0.874 4.587 1.734

tential fitting residuals of the full network instead. Technically, this is realized by an additional
loss term that accompanies the standard regression objective: the second-moment loss. Our loss
enables stable training. Training complexity and runtime behavior at inference are comparable to
MC dropout. Task performances and uncertainty qualities of these models are on par with (para-
metric) deep ensembles, the widely used state-of-the-art for uncertainty quantification. However,
unlike deep ensembles, we use single networks. In practice, this might allow to reduce training ef-
fort significantly compared to deep ensembles, especially for application-scale networks. Moreover,
a single network requires only a fraction of the storage of a deep ensemble, making models with
competitive uncertainties more accessible for mobile or embedded applications.

An extensive study of uncertainties under data shift revealed advantages of SML-trained models
compared to deep ensembles: while both methods on average provide comparable results, we find a
higher stability across a variety of datasets and data shifts. With respect to worst-case uncertainties
SML-trained networks are by a large margin better than deep ensembles. A quite relevant finding
for safety-critical applications like automated driving or medical diagnosis where (even rarely occur-
ring) inadequate uncertainty estimates might lead to injuries and damage. Technically, we attribute
this gain in stability to our sub-network-based approach: like MC dropout, we integrate uncertainty
estimates into the very structure of the network, rendering it more robust towards unseen inputs than
a parameter estimate.

Moreover, the second-moment loss can serve as a general drop-in replacement for MC dropout on
regression tasks. For already trained MC dropout models, post-training with the second-moment
loss might suffice to improve on uncertainty quality. As an outlook, our first such post-training
experiments on UCI datasets are encouraging. Another interesting variant is the combination of
SML with last-layer dropout as it enables sampling-free inference (Postels et al., 2019). Preliminary
experiments on UCI datasets show clearly improved uncertainties qualities compared to standard
MC-LL. A potentially interesting avenue for near-real time applications.

The simple additive structure of the second-moment loss makes it applicable to a variety of opti-
mization objectives. For classification, we might be able to construct a non-parametric counterpart
to prior networks (Malinin & Gales| |2018). Taking a step back, we demonstrated an easily feasible
approach to influence and train sub-network distributions. This could be a promising avenue, for
distribution matching but also for theoretical investigations.
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