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Abstract: Autonomous robotic assembly requires a well-orchestrated sequence1

of high-level actions and smooth manipulation executions. Learning to assemble2

complex 3D structures remains a challenging problem that requires drawing con-3

nections between target designs and building blocks, and creating valid assembly4

sequences considering structural stability and feasibility. To address the combina-5

torial complexity of the assembly tasks, we propose a multi-head attention graph6

representation that can be trained with reinforcement learning (RL) to encode the7

spatial relations and provide meaningful assembly actions. Combining structured8

representations with model-free RL and Monte-Carlo planning allows agents to9

operate with various target shapes and building block types. We design a hierar-10

chical control framework that learns to sequence the building blocks to construct11

arbitrary 3D designs and ensures their feasibility, as we plan the geometric exe-12

cution with the robot-in-the-loop. We demonstrate the flexibility of the proposed13

structured representation and our algorithmic solution in a series of simulated 3D14

assembly tasks with robotic evaluation, which showcases our method’s ability to15

learn to construct stable structures with a large number of building blocks. Videos16

are available at: https://sites.google.com/view/learn2assemble17

Keywords: Structured representations, Autonomous assembly, Manipulation18

1 Introduction19

Construction and manufacturing are becoming increasingly automated in the last decades. However,20

there is an essential need for sustainable autonomous architectural assembly [1], where a game-21

changer would come with intelligent robot assembly abilities that optimally decide over plans, ac-22

tions, execution, and efficiency [2]. In this work, our main focus is the combinatorial optimization23

problem of autonomously assembling complex structures with robotic manipulators without an a24

priori defined task plan and goal poses for the sequential picking-placing actions. For constructing25

abstract target designs, we must consider the combinatorics of the growing action space w.r.t. the26

number of available modules and the size of the structure. Therefore, an effective representation of27

the assembly problem is essential. Moreover, the geometric execution of the picking and placing28

actions by the robot imposes constraints to the assembly sequence, as those actions are subject to29

the kinematic feasibility in the robot’s workspace. Eventually, the problem of assembling structures30

lies in the area of long-horizon manipulation tasks, where most methods in the literature consider a31

known task plan, and focus on fine manipulability and structural stability, or learn action sequences32

from demonstrations [3, 4, 5, 6, 7, 8].33

In this paper, we propose a novel algorithmic solution for robotic assembly that combines high-34

level decision-making on the construction sequence with the geometric execution by the robot that35

should ensure feasibility and stability. We propose a graph-based representation that captures the36

relations between target shapes and available building blocks. Notably, we design a multi-head atten-37

tion-based graph neural network (GNN) architecture with a purposefully induced inductive bias for38

encoding the structural representation of the assembly task. The GNN is trained through reinforce-39

ment learning (RL) to explore feasible actions, resulting in an expressive and flexible representation.40

When combined as prior to Monte Carlo Tree Search (MCTS), it extrapolates to out-of-distribution41

(OOD) assembly tasks, i.e., tasks with a higher number and different types of blocks and vari-42
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able target shapes. Ultimately, we provide a solution for the motion generation of the sequential43

picking-placing actions when having the robot-in-the-loop to ensure reachable and feasible actions,44

which do not disrupt the assembly process. The proposed learn2assemble algorithm provides a45

flexible, autonomous robotic assembly agent for constructing 3D shapes using more than ten blocks.46

Figure 1: Simulated assem-
bly environment with a 7-
DoF manipulator and two
sets of blocks: the unplaced
white ones on the left and
the “base” red block with
some already placed blocks
by the robot in the centre.
The yellow silhouette de-
notes the target shape. The
goal is to place the available
blocks to fill the overall 3-
dimensional target shape.

Our main contributions are threefold. (1) We propose a multi-head47

attention-based graph representation for the 3D assembly problem48

that is flexible enough for representing arbitrary, stable structures and49

their relations to different building blocks. (2) We design an integrated50

long-horizon manipulation algorithm that learns through exploration,51

which combined with model-based search leads to generalizable skills.52

Our method considers the robot-in-the-loop, integrating high-level ac-53

tion planning with low-level motion generation for learning policies that54

ensure the kinematic feasibility and stability of the constructed structure.55

Finally, (3) we developed a novel benchmarking environment for 3D56

robot assembly, which is modular for testing with and without the robot,57

for arbitrary target designs, and with adjustable types and number of ob-58

jects. Our empirical results on a series of representative experiments59

showcase the generalization power of the proposed algorithmic solution,60

drawing interesting insights on the combination of integrated learning61

and planning for long-horizon manipulation that can apply to a range of62

robotic applications.63

Related works. Autonomous robotic assembly is essential for manu-64

facturing and construction, and therefore, many works tried to tackle65

the problem of automatizing task execution and fine manipulation. Au-66

tonomous assembly is a long-horizon manipulation task with multiple67

stages of decisions and subtask executions to be made alongside control-68

ling the dynamic execution of the assembly process. Thus, researchers69

proposed methods for Task and Motion Planning (TAMP) [9], and RL70

[10] to address the challenges of combinatorial optimization over high-71

level action sequencing and low-level motion generation.72

In [11, 12] a TAMP method is proposed for robotic architectural construction and extrusion, requir-73

ing though exact domain specifications to find an assembly sequence; TAMP with logic-geometric74

programming is proposed by [13] where the focus lies in optimizing the structure’s stability. In [14],75

the authors propose a hierarchical planner using hybrid dynamics models for the “toy-airplane”76

assembly task. A method based on neuro-symbolic planning is proposed by [15] for learning to77

predict sequences of actions for stacking. The authors of [16] propose an end-to-end approach for78

sequential pick-and-place tasks using shape correspondences and learning to assemble by collecting79

demonstrations from a human operator disassembling. Conversely, we learn2assemble arbitrary de-80

signs from scratch, learning both the sequence of actions and discovering goal positions per building81

block.82

Autonomous assembly appeals to the machine learning community due to its combinatorial com-83

plexity, which, depending on the structure’s size and availability of building blocks and their possible84

combinations [17], can by far surpass the state-action combinatorics of problems like chess and Go85

[18, 19]. The relational representation [20, 21] and generalization power of GNNs was thoroughly86

explored in solving combinatorial optimization tasks [22], with successful applications in 2D assem-87

bly [23] when combined with RL. In robot learning, earlier works use deep RL for short-horizon88

challenges like peg-in-a-hole [10, 24, 25]. In [26] the use of structured representations in model-free89

RL is proposed to induce inductive biases in different stages of a curriculum for executing assembly90

tasks of building towers of variable heights. While the general motivation of this work is close to91

ours, [26] does not learn the sequence of the building blocks for constructing arbitrary structures, but92

it is essentially a goal-based method for learning pick-and-placing manipulation with known goal93

object positions. In a similar direction, the authors of [27] use learning from demonstrations to train94

two GNNs, one that selects objects in the scene and another one that selects a suitable goal state95

from a set of possible goal positions.96
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2 Proposed method97

The main research question we pose in this work is “how can a robot perform combinato-98

rial assembly tasks of abstract architectural designs?”. Fig. 1 depicts a typical setup con-99

taining a 7DoF manipulator robot, a varying number of building blocks, and one possible ar-100

chitectural target design. We formalize the task of autonomous construction of abstract target101

shapes given some available building blocks as a Markov decision process (MDP) [28]. As il-102

lustrated in Figs. 1 & 4 we can build one- up to four-sided structures. The overall desired103

structure is given by each side’s target topology, which is in turn defined by the coordinates of104

the target points spanning the area to be filled (see illustrative example in Fig. 2). The de-105

sired shape is thus parameterized by the set of target points ST = {xTi
|i ∈ Ni} (yellow).106

Figure 2: Setup with
a one-sided triangular
target shape defined
by three points (yel-
low), three unplaced
blocks (gray) and two
placed blocks (red).

The state also contains a set of blocks that are already placed in the scene107

SP = {xPj
|j ∈ Nj} (red) and a set of unplaced blocks SU = {xUk

|k ∈ Nk}108

(gray) that need to be added. The vector x ∈ R5 includes the 3D position109

and two booleans indicating the element’s properties (placed/unplaced, target110

point/building block). The state st at any time step t is thus given by the111

three sets s = (ST ,SP ,SU ) and has N = Ni + Nj + Nk elements. The112

objective is to use the available blocks to construct a stable structure that113

fills the desired target design. We use a discrete action space and define five114

relative placement actions, i.e., any unplaced block can be put on top, on115

the left, on the right, behind, in front w.r.t. any already placed block. In116

the robot experiments, however, the action space is augmented to also allow117

the specification of the manipulator’s orientation during grasping and placing.118

For most experiments, we choose over two possible grasping and placing orientations, resulting in119

four grasp-place combinations. Together with the placement actions, this yields Na = 4 × 5 = 20120

actions when placing one block w.r.t. another. Since the possible actions at depend on the number121

of placed and unplaced blocks, we end up with a time-varying action space of size Nj ×Nk ×Na.122

We assign a positive reward r(st, at) on all actions that increase the filling of the target structure123

while preserving its stability. Given the problem’s combinatorial complexity of discovering the124

optimal high-level action plan that will allow the assembly of complex 3D structures which are stable125

and kinematically feasible, we decompose it into three main problems: (i) finding an expressive126

representation for our state space, (ii) decoding states into meaningful actions, and (iii) ensuring127

stability and kinematic feasibility. Our research provides a thorough study of how we can tackle128

these problems, and we provide a novel 3D assembly algorithm with the robot-in-the-loop through129

combining a learned multi-head attention (MHA) representation with MCTS.130

2.1 Multi-head attention graph representation131

Graph-based representations [29] are an effective tool when dealing with combinatorial problems132

[30, 31, 32]. Compared to classical satisfiability solvers, their main advantage lies in their real-time133

capabilities, while their architectural properties allow generalization to problems of different sizes134

in contrast to most standard neural network architectures, which operate on fixed-size inputs and135

outputs. As those are essential properties for learning to assemble structures of combinatorial com-136

plexity, we will introduce below our proposed GNN model that is inspired by the combination of137

graphs and attention [33, 34]. GNNs receive as input a graph G = (N , E), and return a high-level138

encoding over nodes and edges to be further exploited for deciding which action to take. In our case,139

the set of nodesN = {ST ,SP ,SU} = {ni}i=1..N is given by the current state, and the connectivity140

information E is defined as a matrix of size N × N . If there is an edge connection between nodes141

ni and nj entry E(i, j) equates to 1, otherwise it is 0.142

Attention mechanisms [33] were introduced in GNNs [34] to enable nodes to attend over their143

neighbours’ features and learn different weights for different nodes without requiring costly ma-144

trix operations. We want to exploit this flexibility as solving the assembly task necessitates drawing145

connections on multiple levels, i.e., between nodes of the same type to encode the already existing146

structure or the target shape, as well as between all nodes to come up with a meaningful represen-147

tation for action-decision. In the following, we will introduce the proposed MHA architecture, that148

naturally reflects the necessary multi-level decision process of the assembly task, and has proven to149

be effective when combined with policy search for solving combinatorial problems, like the travel-150

ling salesman [31]. In the first step of MHA, the initial node embeddings n(0)
i = xi are projected151

into a higher dimensional space by152

n
(1)
i = g(n

(0)
i ) = ReLU(FC(n

(0)
i )), (1)
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Single attention head per node

Input: partially-connected graph

M heads

 rounds of message passing Encoded graph

Action decoding
 per node

Figure 3: GNN architecture illustration, mapping from the input graph to Q-values. The coloring follows Fig.
2. After an initial projection into a higher dimensional space follow l rounds of message passing using MHA.
This results in an encoded version of the graph, which is then exploited for action selection.
using a fully-connected (FC) layer followed by a rectified linear unit (ReLU) activation function.153

Note that the function g will be used repeatedly as we progress with the graph update, yet, as-154

suming different weights on each further appearance. Next follow L rounds of message passing,155

i.e.,applying (2) L times to obtain the final embedding for each node i according to156

n
(l)
i = h(g(h(MHA(N (l−1), i)))), (2)

with a skip connection layer h(f(x)) = x + f(x), the current round of message passing l, all157

node embeddings from the previous round N (l−1), and a MHA mechanism introduced below. As158

illustrated in Fig. 3, for a single out of the M attention heads with index o, we first compute three159

values – the key k, query q, and value v – using three different weight matrices Wk,o, Wq,o, Wv,o,160

respectively (ki,o = Wk,oni
(l−1), qi,o = Wq,oni

(l−1), vi,o = Wv,oni
(l−1)). Multiplying the key161

and query of all nodes results in a compatibility score ci,j for the ith-to-jth node connection162

ci,j,o =

{
1
d
qTi,okj,o, if E(i, j) = 1,
−∞, otherwise, (3)

with d a normalizing constant. From this score, we can then compute the attention weights using163

a softmax ai,j,o = e
ci,j,o∑

j′ e
c
i,j′,o to aggregate the values for each node, resulting in the output message164

mi,o =
∑
j′ ai,j,ovj,o. A weighted sum of all messages yields the final result of the MHA module165

MHA(N (l−1), i) =

M∑
o=1

Wm,omi,o, (4)

with weights Wm,o controlling the influence of each one of the single attention heads. Fig. 3 depicts166

a simplified example of the encoding performed by the MHA architecture.167

2.2 Learning assembly policies168

MHA-GNNs can only unfold their potential when combined with algorithms that refine their weights169

to form expressive representations exploited herein for action selection (Fig. 3). The GNN should170

thus be shaped based on the reward signal, resulting in a RL setup with the goal of obtaining per-171

formant policies. This powerful combination results in agents that (i) can be applied to different172

problem instances due to the representation’s flexibility, (ii) are reactive, despite the problem’s com-173

binatorial complexity, and (iii) can be trained directly in simulation environments which include the174

nonlinearities of the robot and the contacts. Due to the problem’s combinatorial complexity and its175

discrete, time-varying action space, we use model-free Q-learning, [35] which has been successfully176

applied to complex tasks such as playing Atari games from images. Moreover, we investigate its in-177

tegration with model-based planning, as the addition of search can counteract the overoptimism of178

the Q-function approximation and result in more robust behaviour [18, 36].179

Action Decoding. The encoded graph representation from Sec. 2.1 needs further processing to de-180

cide on the next action to take. As actions are defined relatively between unplaced and placed blocks181

(i.e., nodes) we can directly assign a value to all available actions182

Q(ni, nj , Na) = g

(
ni

(l), nj
(l),FC

(
1

N

∑
j′nj′

(l)

))
∀ni ∈ SU , nj ∈ SP (5)

with the total number of N nodes in the graph. Note that the Q-value does not only depend on the183

two nodes’ embedding, but also on a global feature based on averaging over all embeddings. As all184

the operations are defined over the set of nodes, this encoding-decoding architecture can seamlessly185

generalize to different problem sizes, i.e.,different number of blocks or target shapes.186

DQN: For our setting, we define the loss function as the smooth L1 loss between the current action-187

value estimate of the GNN, noted as Q(ni, nj , as) and the value obtained from the rollouts using a188
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target network, noted as QT , i.e., Q̂(ni, nj , as) = r(st, at) + γmaxni∈SU ,nj∈SP QT (ni, nj , as) with189

discount factor γ and the selected action as ∈ Na.190

MCTS: MCTS [37] has proven effective for solving tasks with discrete action spaces [38], hence,191

suitable for our problem. Contrary to model-free RL, MCTS relies on a model of the environment192

to perform tree search for action selection and does not require any form of function approximation.193

However, in scenarios with significant branching factors or expensive model evaluations, the time194

complexity quickly increases, and the use of MCTS becomes intractable. Consequently, [18, 19]195

exploit Q-learning for estimating the value of the nodes in MCTS and show impressive results in196

solving tasks of great complexity, like the game of Go. Also, in the context of accelerating and197

generalizing skill-learning, the combination of learning and planning has received increasing atten-198

tion [19, 36, 39, 40]. In this work, inspired by these advantages, we explore different algorithmic199

variations of the interplay between Q-learning and planning, as described below. Pseudocode for all200

variants is given in Appendix B.201

1) DQN+MCTS: Inspired by [18], we propose a variant of AlphaGo, that uses a pretrained Q-202

network as a prior for evaluating the leaf nodes of MCTS, leading to increased efficiency. As we203

seek to effectively combine learning and planning for autonomous assembly with the robot-in-the-204

loop, we use small search budgets for which the prominent solution for MCTS expansion - the205

exploration strategy of UCT [18, 41] - is unsuitable because it becomes over-optimistic [42]. There-206

fore, we use an ε-greedy expansion strategy during search, that allows better exploration than UCT.207

2) Q-MCTS: We follow a generalization of Q-learning using samples based on planning. As in208

[19, 36], we combine DQN with MCTS during training to perform an informed exploration and209

collect good samples through search. However, as motivated previously, due to small search bud-210

gets, our approach uses an ε-greedy expansion strategy over unexplored states, instead of UCT.211

Let QS(st, at) = QS(st, at) + r(st, at) + γmaxa′
t
Q(s′t, a

′
t) be the updated value of an expanded212

node, where s′t is the new state arriving during search. The resulting Q-MCTS methods augments213

the DQN learning objective with a cross-entropy loss defined on the values explored during search,214

i.e.,loss = −softmax(QS(st, at))
T log(softmax(Q(st, at))) which is intended to regularize and215

improve the Q-function estimate based on the experience collected while searching.216

3) ε-MCTS: This implementation follows [36] more closely. The main differences w.r.t. the Q-217

MCTS policy are that first, there is an ε-greedy decision on whether to do search or uniformly sam-218

ple a random action, whereas Q-MCTS always conducts search. Secondly, during search, ε-MCTS219

follows the UCT expansion strategy. The Q-learning objective remains the same as with Q-MCTS,220

however, the cross-entropy loss is computed only on the samples where search has been conducted.221

In essence, the method’s difference is in the way of collecting the model-based samples.222

2.3 Integrated learning and planning for robotic assembly223

All previous components can now be combined to obtain an algorithm capable of training agents224

to build desired target shapes, i.e., a robot capable of abstracting the sequence of actions for build-225

ing arbitrary stable target structures from individual elements while executing feasible actions in its226

workspace. Note that the only control component we assume given is a point-to-point control strat-227

egy based on the robot’s inverse kinematics. To enable this combined decision-making strategy that228

touches on the ground of TAMP literature, we propose the combination of the previously described229

graph representations and learning algorithms to provide a novel learn2assemble method. Briefly, a230

single step of a learning episode starts with selecting actions (with or without tree-search depending231

on the learning algorithm), i.e., the next object to be placed, the grasping pose, the goal position, and232

orientation. A path from the picking to the placing position is computed, and the robot executes the233

placement, for which it receives a reward. Consequently, we store the current graph’s state, action,234

reward, and new state in the replay memory to be later used for learning.235

3 Experimental Results236

For evaluating the different components of the proposed method and their respective contribution,237

we designed specific experimental scenarios. We start with an investigation over graph architectures,238

continuing with the different learning methods in environments for 3D assembly without including239

a robot yet. Selecting the best settings from the previous tests, we experiment with the robot-in-the-240

loop for our final empirical evaluations of the proposed algorithm.241

242
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(a) (b) (c) (d) (e)
Figure 4: (a) Illustration of the single-sided 3D assembly environment, (b) the two-sided 3D assembly environ-
ment, (c) the four-sided 3D assembly environment with the robot-in-the-loop, (d) the two-sided 3D environment
with the unplaced blocks placed at random, and (e) the two-sided environment with different building blocks.
Table 1: Comparison of different architectures on the single-sided environment without the robot and only one
type of block. R is the cumulative discounted return, f the ratio of runs that ended with failure, i.e., the structure
colliding, and b the ratio of runs that ended without success and no more blocks remaining. The star(*) marks
the environment where the agents were trained in.

3-by-3 grid, 20-24 blocks* 3-by-3 grid, 30-34 blocks 4-by-4 grid, 20-24 blocks
Method R b f R b f R b f

MHA (FC) 3.22 (0.04) 0.01 0.15 3.44 (0.04) 0.00 0.21 3.66 (0.05) 0.18 0.41
S2V (FC) 2.36 (0.08) 0.49 0.47 2.15 (0.10) 0.08 0.87 2.75 (0.20) 0.45 0.55

Simulation environments. The assembly environments are depicted in Fig. 4. We investigate, one-,243

two- and four-sided setups with each side of the target shape defined by the position of 3 (see Fig.244

2), 4, or 5 target points. The number of target points and their locations are sampled randomly from245

grids of different sizes, ranging from 3-by-3 (i.e., the sampled target points can at maximum span246

an area of height and width of 3 times the cube’s edge length) to 6-by-6. Due to the relative action247

space, every scene is always initialized with one initially placed element, marked in red, serving248

as the building base. For evaluating the assembly progression, we use depth cameras, placed on249

each side of the specified target structure. By projecting the target points into the images after each250

action, we obtain the change in the target shape’s filling. The reward functions endorse actions that251

lead to improvement in the filling (cf. Appx. C.2). The construction process is finished, once the252

total coverage exceeds a threshold, whenever there are no more unplaced blocks available, or upon253

executing an invalid action, i.e., an action resulting in an unstable configuration, in destructing the254

current structure, or if it is kinematically infeasible. In all environments without the robot, the plac-255

ing is done by directly specifying one of the five placement actions, resulting in a reduced action256

space of Na = 5. If not stated differently we use partially connected graphs (see Fig. 3), inducing257

a stronger inductive bias on the structured representation compared to fully connected (FC) graphs258

(cf. Appx. A.3 & D.3). In the following tables, for evaluating the agent’s performance, we report the259

cumulative discounted return R, the ratio of runs that ended with failure, i.e., upon an invalid action260

f , the ratio of runs that ended without success and no more blocks remaining b, as well as the mean261

number of actions conducted per run ā. The star(*) marks the agents’ evaluation in the same setting262

as in training, while the rest are OOD experiments, i.e., exclusively evaluating the agents in settings263

with previously unseen target shapes or number of blocks. For more details, see Appx. C.264

Graph Architectures. We evaluate the proposed MHA representation against the commonly used265

Structure2Vector (S2V) architecture [23, 30] (cf. Appx. A.1) in a simple environment (see Fig. 4a)266

only considering one type of object but omitting the robot. The learning is conducted with DQN.267

Results. As shown in the first column of Table 1, already in the original training environment, the268

MHA approach outperforms S2V significantly. The high rates of failure and exceeding the number269

of available blocks indicate that S2V cannot draw the connection between the target shape and the270

current structure. This might be due to S2V’s different message passing, which cannot weigh the271

importance of different nodes as with the attention mechanism. When increasing the number of272

available blocks and the size of the structure to be built (columns 3 & 4), we see an evident advan-273

tage of MHA in handling OOD tasks. In Appx. D.2.1, we provide additional results when using274

only a single attention head, which confirm that using attention is advantageous, and MHA yields275

the best performance. We, thus, continue our experimentation using the MHA architecture.276

Learning algorithms. To investigate the performance of the learning algorithms (Sec. 2.2), we277

will use the two-sided environment shown in Fig. 4b without the robot, thus using the reduced action278

space.279

Results. Table 2 summarizes the results, starting without any search budget (i.e., no tree search)280

to evaluate the learned Q-functions. The DQN and ε-MCTS agents perform similarly, with DQN281

slightly outperforming ε-MCTS through lower failure rates across tasks. Moreover, DQN can solve282
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Table 2: Combining Q-learning and MCTS in the two-sided environment without the robot.

Search 3-by-3, grid 20-24 blocks* 3-by-3 grid, 30-34 blocks 4-by-4 grid, 30-34 blocks 5-by-5 grid, 40-44 blocks
Budget Method R ā f R ā f R ā f R ā f

0 DQN 3.21 (0.05) 7.93 0.16 3.44 (0.08) 8.65 0.17 3.61 (0.06) 12.02 0.51 3.63 (0.08) 13.66 0.93
ε-MCTS 3.18 (0.03) 8.57 0.22 3.37 (0.10) 9.30 0.30 3.54 (0.09) 12.53 0.62 3.50 (0.13) 12.75 0.95
Q-MCTS 2.80 (0.15) 7.33 0.51 2.89 (0.09) 7.60 0.64 2.66 (0.08) 7.47 0.92 2.34 (0.17) 6.45 0.99

10 DQN+MCTS 3.47 (0.02) 8.16 0.05 3.66 (0.03) 8.96 0.06 3.96 (0.04) 13.92 0.31 4.08 (0.09) 17.33 0.87
ε-MCTS 3.21 (0.03) 8.48 0.20 3.37 (0.11) 9.10 0.31 3.60 (0.09) 12.65 0.61 3.63 (0.16) 13.16 0.93
Q-MCTS 3.24 (0.04) 8.56 0.27 3.39 (0.08) 9.24 0.41 3.42 (0.07) 10.99 0.76 3.41 (0.13) 11.27 0.96

1000 UCT 0.54 4.00 1.00 - - - - - - - - -

the task with fewer actions. Contrarily, the Q-MCTS agents perform significantly worse. We believe283

that this difference in performance is due to the constant cross-entropy regularization in Q-MCTS284

from the beginning of the training, especially when search samples might be bad, while for the ε-285

MCTS agent the regularization is only slowly added as training proceeds and less random actions are286

taken (search is better), which seems to be beneficial. Note that without the addition of search, in-287

creasing the number of blocks, as well as the target size, results in a quick increase of the failure rate288

for all methods. Adding a search budget of 10 already counteracts this trend, especially considering289

the DQN agent, where the rates of failure can be reduced for all the tasks by using DQN+MCTS at290

test time. For the Q-MCTS agent, the same trend is noticed, while the gains of the ε-MCTS agent291

are marginal. This suggests that the ε-MCTS agent is overoptimistic and seems to choose similar ac-292

tions as to when not using search at all. Overall, combining MCTS with a pretrained DQN results in293

the best performance in our experiments. The last row of the table underlines the problem’s combi-294

natorial complexity, illustrating that performing pure UCT without any prior and a search budget of295

1000 performs significantly worse for the simplest experimental setting (more details in Appx. D.4).296

Learn2assemble with the robot-in-the-loop. Next, we evaluate the DQN agent combined with297

tree-search in our target environments, including the robot manipulator. The task’s difficulty in-298

creases, as also the grasping and placing poses have to be specified while ensuring action feasibility299

by the robot and the structure’s stability. We start with constructing single-sided designs (Fig. 4a) to300

illustrate the necessity of training with the robot-in-the-loop before evaluating the proposed method301

with multi-sided designs (Fig. 4b & 4c).302

Results. We first compare two policies, one trained with, and the other without the robot us-303

ing plain DQN without any search in a single-sided environment (Fig. 4a). The agent trained304

with the robot-in-the-loop outperforms the other one resulting in a significantly reduced fail-305

ure rate of 15 % and consistently higher rewards (cf. Appx. D.5). This shows the neces-306

sity of including geometric planning during training for obtaining high-level decisions that are307

compatible with the low-level execution. It is thus not sufficient to only figure out where308

to place the parts; the kinematic constraints and robot motion have to be considered. In the309

subsequent experiments, we build 3D structures with the robot as shown in Figs. 4b & 4c.310

Table 3: Comparing policies with and without tree search on
the four-sided robotic environment.

3 by 3 grid 10-18 blocks* 3 by 3 grid 16-24 blocks
Method R ā f R ā f

DQN 2.67 (0.06) 6.91 0.30 2.55 (0.06) 7.25 0.35
DQN+MCTS 3.08 (0.06) 7.59 0.16 2.90 (0.07) 8.00 0.20

Our results in Tables 3 and 4 show that311

MCTS (search budget of 10) consistently312

improves performance in terms of higher313

returns and lower failure rate. In partic-314

ular, the experiments demonstrate that our315

proposed pipeline can execute multiple se-316

quential pick-and-placing actions, with a317

maximum of 17 correctly placed blocks for the 5-by-5 grid in the two-sided environment and up to318

22 correct placements in the four-sided environment, using DQN+MCTS with the robot-in-the-loop.319

Compared to the previous experiments, without the robot-in-the-loop, the failure rate is higher, in-320

dicating the task’s increased difficulty, and the need of adding a soft-placing controller.321

Generalization w.r.t. randomized scenes. To evaluate our algorithm’s robustness w.r.t. changes322

in the scene, we transfer the previously trained policies and evaluate them in scenarios where the323

unplaced blocks are placed randomly around the structure to be built, as shown in Fig. 4d.324

Results. Rows 3 & 4 of Table 4 reveal that the policies indeed generalize to these novel scenarios,325

as the percentage of unsuccessful experiments only increases at maximum by 11 % for the most326

complex scenario, compared to their performance in the original environment (rows 1 & 2). This327

confirms that our proposed method does not overfit the exact layout or geometry, but rather builds328

Table 4: Comparing policies with and without tree search on the two-sided robotic environment. Rows 1 & 2
correspond to evaluating in the original environments (Fig. 4b), while rows 3& 4 are the evaluation in randomly
initialized scenes (Fig. 4d).

Environment 3 by 3 grid 10-14 blocks* 3 by 3 grid 14-18 blocks 5 by 5 grid 14-18 blocks
Method initialization R ā f R ā f R ā f

DQN fixed 2.16 (0.06) 4.89 0.20 2.10 (0.05) 5.27 0.24 2.54 (0.15) 7.53 0.56
DQN+MCTS fixed 2.41 (0.05) 5.32 0.09 2.32 (0.03) 5.64 0.15 3.19 (0.11) 9.38 0.36
DQN random 2.06 (0.10) 4.93 0.24 1.88 (0.13) 5.02 0.32 2.28 (0.11) 7.52 0.64
DQN+MCTS random 2.33 (0.06) 5.38 0.10 2.14 (0.12) 5.54 0.20 2.85 (0.14) 9.31 0.47
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Table 5: Evaluating the trained policies in the environments with multiple different objects available (Fig. 4e).
The results in the first row correspond to using a modified environment without including the robot.

Environment 5 by 5 grid 20-24 blocks* 5 by 5 grid 30-34 blocks 6 by 6 grid 30-34 blocks
Method w/wo robot R ā f R ā f R ā f

DQN+MCTS wo robot 2.20 (0.02) 5.05 0.06 1.89 (0.03) 5.96 0.15 1.48 (0.09) 7.27 0.27
DQN+MCTS w robot 1.42 (0.05) 3.53 0.21 0.77 (0.09) 3.27 0.52 0.61 (0.08) 4.38 0.61

meaningful features that allow to successfully transfer the behaviour to scenes that are substantially329

different from those encountered during training.330

Generalization w.r.t. different building blocks. We finally investigate our method’s performance331

when using more complex objects (Fig. 4e). This makes the task significantly more difficult, as the332

agent has to not only learn each part’s admissible grasps but also differentiate the building blocks to333

select and place the correct object type. All novel objects are a combination of primitive boxes which334

allows keeping the relative action space, i.e., placing an unplaced primitive box belonging to a larger335

object w.r.t. a placed primitive box results in moving the entire object. For the experiments without336

the robot, we adjust the action space to enable changing the object’s orientation (cf. Appx. D.9).337

Results. The results in Table 5 illustrate the representation’s flexibility and ability to successfully338

deal with the different available building blocks. Despite the increased complexity, we achieve simi-339

lar performance in the scenes without the robot as in previous experiments (Table 2). When training340

with the robot, we can still handle the task’s complexity with a ∼ 80% success rate in the simplest341

setting, but observe a drop in performance with a larger number of objects and bigger target shapes.342

While one cause for the performance drop is the setting’s increased complexity, there are also several343

placement actions that would require 3D gripper orientation control allowing for a smooth insertion344

of the complex blocks. As our current top-down placing controller only offers planar orientation345

control, some placement actions cannot be executed appropriately resulting in increased failures.346

Remarks. We have conducted extensive experiments to show the superiority of our proposed MHA-347

GNN approach for solving combinatorial assembly tasks with the robot-in-the-loop. The results348

demonstrate how strong inductive biases combined with attention can shape meaningful relational349

representations. When combined with deep Q-learning, this representation allows us to take deci-350

sions over long horizons despite an increasing action space. Adding search at test time improves351

performance across all experiments, demonstrating that the proposed method can generalize w.r.t.352

different target shape sizes, number of building blocks, and different scenes. While we show very353

promising results in combining learning high-level action decisions with planning geometric ex-354

ecutions, we can see a combinatorial barrier in the decision-making that might be tackled with a355

more informed search in the graph space. Our experiments on using different objects underline the356

representation’s flexibility, but also reveal current limitations in the definition of the action space,357

especially considering the robotic execution, which may be mitigated by enriching the action space358

through 6D grasping and placing. Moreover, several assemblies failed due to “rough” robot actions,359

meaning that a more sophisticated motion generator might be needed for finer placement.360

4 Conclusion361

We presented a new learn2assemble algorithm for learning autonomous robotic 3D assembly from362

scratch without prior knowledge of any task plan. For addressing the problem’s combinatorial com-363

plexity while maintaining adaptability to different scenarios, we propose a graph-based multi-head364

attention representation that captures the spatial relationships between target construction designs365

and unplaced blocks, and is trained through deep Q-learning. The powerful representation forms the366

basis for our hierarchical controller that jointly conducts high-level learning over action sequences367

and goal specifications together with low-level path planning, ensuring the execution of long-horizon368

tasks. Our extensive experiments confirm the representation’s effectiveness and show extrapolation369

to environments with previously unseen target shapes, larger numbers of available elements, and370

different object types. When combining the learned Q-network with MCTS with computationally371

tractable small search budgets, we manage to improve performance and reliability across all tasks.372

Notably, we resolve the sequential long-horizon character of the assembly task by including the373

robot-in-the-loop to decide over feasible grasps and placing actions that ensure the stability of the374

construction. Our algorithm manages to correctly build structures using up to 22 building blocks375

with good success rates. In the future, we want to extend the algorithm to allow for a richer set of376

6D grasping and placing poses, learn fine-placing or even in-hand manipulation controllers on the377

low level, and investigate the implementation of an assembly/disassembly strategy, so that the robot378

can potentially re-use wrongly placed blocks or reconfigure existing structures.379
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