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Abstract

Efficient and automated design of optimizers plays a crucial role in full-stack1

AutoML systems. However, prior methods in optimizer search are often limited by2

their scalability, generability, or sample efficiency. With the goal of democratizing3

research and application of optimizer search, we present the first efficient, scalable4

and generalizable framework that can directly search on the tasks of interest. We5

first observe that optimizer updates are fundamentally mathematical expressions6

applied to the gradient. Inspired by the innate tree structure of the underlying math7

expressions, we re-arrange the space of optimizers into a super-tree, where each8

path encodes an optimizer. This way, optimizer search can be naturally formulated9

as a path-finding problem, allowing a variety of well-established tree traversal10

methods to be used as the search algorithm. We adopt an adaptation of the Monte11

Carlo method to tree search, equipped with rejection sampling and equivalent-12

form detection that leverage the characteristics of optimizer update rules to further13

boost the sample efficiency. We provide a diverse set of tasks to benchmark our14

algorithm and demonstrate that, with only 128 evaluations, the proposed framework15

can discover optimizers that surpass both human-designed counterparts and prior16

optimizer search methods.17

1 Introductions18

Motivated by a vision of democratizing machine learning, the central objective for automated19

machine learning (AutoML), such as automated architecture [22, 25, 28, 39, 53, 59, 62] / optimizer20

[10, 12, 15, 17, 57, 64] / loss [35] / augmentation search [36, 38], lies in reducing the need for expert21

design on a diverse set of tasks. To achieve this goal, it is critical for AutoML systems to exhibit a22

high level of efficiency, so that they can be directly applied to a variety of tasks without consuming23

a humongous amount of computing resources. A widely successful example of such an effort is24

DARTS [39] in Neural Architecture Search (NAS), which reduces the search cost from thousands of25

GPU days of early RL-based algorithms to a single digit, enabling direct application of NAS systems26

to a wide range of tasks [31, 32, 37, 43, 48].27

Inspired by the success of efficient NAS methods, we turn our attention to another important but28

much less studied area of AutoML - Automated optimizer search, where an efficient, scalable29

and generalizable framework is still absent. Optimizer search aims to automatically design30

a suitable update function that takes gradients as inputs and produces update directions for the31

optimizee’s parameters. Pioneering work in this area, coined Learning to Optimize (L2O), adopts32

a data-driven approach by replacing human-designed update rules with a learnable parametric33

function [10, 12, 17, 57]. However, parametric optimizers are fundamentally not scalable to large34

models or datasets, as inferring its parameters typically requires expensive meta-learning steps such35

as backpropagating through gradient descent [10, 15, 64]. Moreover, the learned optimizer often36

generalizes poorly to even minor variants of its training task (Figure 3) [10, 64]. Poor scalability and37
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generability prevent L2O from being served as a general-purpose optimizer search framework that38

can be directly applied to tasks of interest.39

The aforementioned limitations of parametric optimizers bring our attention to another line of method40

that searches over the discrete space of non-parametric update functions 1, which generally exhibit41

the same level of scalability and generality as human-designed optimizers [15, 49]. NOS-RL [15]42

extends early RL-based NAS framework [22] to optimizer search, proposing to learn a sequential43

controller to produce optimizer update rules according to a predefined pattern. However, NOS-RL is44

sample inefficient, requiring over 10k evaluations to find good candidates. More recently, AutoML-45

Zero [49, 65] proposes to search over the vast space of computer codes for the entire ML pipeline46

(including the optimizer). The excessive generality of its search space makes it even more costly to47

run than RL-based method. The search cost of existing non-parametric optimizer search frameworks48

makes them computationally prohibitive not only for practitioners to apply but also for researchers to49

analyze.50

With the goal of democratizing research and practical applications of automated optimizer design,51

we introduce the first efficient, scalable, and generalizable optimizer search framework that can52

be directly applied to a wide range of tasks. We observe that non-parametric update rules are53

essentially mathematical expressions, with an innate tree structure where nodes are elementary math54

operators and edges represent their I/Os. Consequently, generating an update rule can be viewed as55

progressively appending nodes to the expression tree until it is complete. Inspired by this observation,56

we re-imagine the optimizer search space as a super-tree of mathematical expressions. Each leaf node57

on the super-tree contains an optimizer, and the path towards it represents the generation process58

of that optimizer’s underlying expression. With the tree-structured search space, optimizer search59

can be naturally formulated as a path-finding problem, allowing a wide range of well-established60

tree-traversal methods to be used as the search algorithm. We show that a simple adaptation of61

Monte Carlo Sampling [29, 51], equipped with our proposed rejection sampling and equivalent-form62

detection, can already produce remarkable results on our search space within a fraction of budgets63

compared with NOS-RL (∼ 1%).64

We extensively evaluate the proposed framework on a diverse set of learning tasks: digit clas-65

sification with MNISTNET [10], image classification with ConvNet [15], graph learning with66

(Cluster-)GAT [21, 27], norm-bounded adversarial attack on robustly trained models [20, 44, 45],67

and BERT fine-tuning on NLP datasets [33, 54]. These tasks cover both constraint and unconstrained68

optimizations and span over a large variety of models and datasets. Despite the simplicity, the pro-69

posed framework is able to discover update rules that surpass human-designed optimizers and prior70

optimizer search methods, with a budget of only 128 evaluations. We hope the proposed framework71

could lower the barrier of entry to practical non-parametric optimizer search, thereby providing an72

entry point for researchers and practitioners from ML community and beyond to study and utilize73

automated optimizer search systems.74

2 Efficient, scalable and generalizable framework for optimizer search75

2.1 Optimizer design space76

Notations and problem formulation Deep learning tasks are frequently expressed as optimizing a77

loss function L(·) defined over parameter domain θ ∈ Θ. The minimizer of L can thus be obtained78

by θ∗ = argminθ∈Θ L(θ). For differentiable functions, a standard optimizer typically takes the79

form of iterative gradient descent: θt+1 = θt − γ ∗ ϕ(∇θL(θt)), where t is the current iteration, γ80

is the learning rate and ϕ denote the update function. Existing optimizers primarily differ in their81

design of update function ϕ; For example, vanilla gradient descent uses identity mapping ϕ(x) = x82

as the update function, whereas Adam adopts a momentum-based dynamic learning rate schema:83

ϕ(∇θL(θt)) = m(∇θL(θt))/
√
m((∇θL(θt))2), where m(·) denotes the momentum function with84

an internal state.85

The goal of optimizer search is to automatically find a suitable update function ϕ over some hypothesis86

space Φ. The hypothesis spaces used in prior work can be divided into two categories: non-parametric87

and parametric spaces. Most human-designed optimizers belong to the first category, where the update88

1Sometime it is referred to as symbolic optimizers, which is a somewhat inaccurate categorization as
symbolic functions could also contain learnable parameters.
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function ϕ is not trainable. Learnable optimizers, such as L2LGD2 [10] and SymbolicL2O [64], fall89

into the second category. Our work mainly focuses on non-parametric optimizer search, with the goal90

of providing an efficient, scalable and generalizable optimizer search framework that can be directly91

apply to various tasks.92

Optimizer update rules as expression trees The first step toward such a framework is to under-93

stand the structure of non-parametric optimizers. We realize that, fundamentally, optimizers are94

mathematical expressions consisting of elementary operators (+, −, sign(), inputs, e.t.c.). Math95

expressions have an inherent tree structure that preserves its order of execution, where nodes are96

operators and edges represent their I/Os. For instance, Diagram 1 shows the expression tree of97

Adam [9]:

/
√

m2

m1

Diagram 1: Adam optimizer

log(| · |)

+

decay()sign()

g

Diagram 2: Our discovered Optimizer for adver-
sarial attack

98

where m1 and m2 denote the first and second order momentum (which can also be broken down into99

their own expression trees).100

Therefore, the generation of an update rule, as a mathematical expression, can also be conducted via101

top-down node selection: Take Adam as an example, we first select division (/) as the root node. For102

its left child, we pick m1, which is a leaf node and thus ends the branch. For the right child, we select103 √
, and subsequently pick m2 to follow it. At this point, there is no empty branches left, and we104

obtain the complete update rule for Adam.105

root(<>)

g (SGD)· · ·· · ·< L > / < R >

m1/ < R >

m1/
√
<>

m1/
√
m2 (Adam)

<>→ m2

< R >→
√

· · ·

< L >→ m1

<>→ / <>→ g

Figure 1: An illustration of traversing the super-
tree to discover Adam and SGD.

A tree-structured search space Inspired by106

the completion process of update rules, we rear-107

range all expressions into a super-tree, where108

each leaf node contains an update rule and each109

path represents its completion process. The110

super-tree can be generated in a top-down man-111

ner: Starting from the root node with an empty112

update rule, we generate each of its child nodes113

by inserting a different operator into the update114

rule, and repeat this process for the generated115

nodes. Consequently, an optimizer can be sam-116

pled by traversing the super-tree until a leaf node117

is reached. Since the super-tree can grow in-118

finitely deep, it is often desirable to restrict the tree to a predefined depth N , where only the paths that119

can be completed within depth N are included. Figure 1 provides an instantiation of our super-tree,120

where the paths leading to Adam and SGD optimizers are displayed as an example.121

The benefit of arranging the optimizer space into a tree is two folds. Firstly, the tree-based search122

space is tight:123

Proposition 1 Define the length of an update rule as the number of operators it includes, then the124

above tree-based search space is tight: a super-tree with a maximum depth of N covers all update125

rules of length no greater than N .126

In a tight search space, all optimizers can be represented at the right level of complexity, allowing127

them to be visited by the search algorithm without exploring unnecessarily deep into the super-tree.128

Although tightness is a fairly obvious result for our space, it is not the case for the previous search129

space defined in NOS-RL, as we will explain later. Secondly, with our super-tree, optimizer search130

can be naturally formulated as a path-finding problem, allowing a variety of well-established tree131

traversal methods to be deployed as search algorithms.132
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Contents To concretize the content of the search space, we allow three types of operators in the133

optimizer update rule:134

• a set of p1 unary operators (e.g. log(| · |), exp(·),
√
| · |, sign(·), drop(·))135

• a set of p2 binary operators (e.g. +, −, ×, /, pow(·, ·))136

• a set of L leaf values (input operators) containing gradients (e.g. g, m1), decays (e.g.137

cosine_decay), and constants (e.g. 1, 2)138

This categorization of mathematical operators is not new, as it is also adopted in symbolic math139

solver [34] and NOS-RL [15].140

Comparison with NOS-RL’s search space Although both NOS-RL [15] and our framework use141

elementary math operators as building blocks for optimizers, they have little in common in terms of142

the arrangement of the search spaces. Optimizers in NOS-RL’s search space are formed by a chain of143

predefined motifs: b(u(I), u(I)), where b, u, I denote binary, unary and input operators. Due to the144

fixed structure of such motifs, NOS-RL’s search space is not tight: there exist many optimizers that145

take extra longer sequences to express, potentially lowering their chance of being discovered by the146

search algorithm. For instance, Diagram 2 shows an optimizer of length 5, but it takes (10− 1) nodes147

(two chained motifs) to represent it under NOS-RL’s arrangement; Moreover, NOS-RL’s search space148

also requires extra bypass operators (e.g. u(x) = x and b(x, y) = x) to cover even human-design149

optimizers such as Adam and PGD, further increasing the complexity. In contrast, our representation150

of optimizers is directly inspired by the innate structure of its underlying mathematical expressions,151

resulting in a tight tree-based search space. In our search space, optimizer search can be naturally152

formulated as a form of top-down path-finding problem. In the next sections, we will detail our153

choice of algorithms for traversing the super-tree, as well as several techniques that leverage the154

characteristics of optimizer update rules to boost the sample efficiency.155

2.2 Monte Carlo Sampling for tree traversal156

We adopt a simple adaptation of Monte Carlo Sampling to tree traversal [29, 51, 66] (MCT) as the157

search algorithm. The idea is to assign scores to the nodes in the super-tree (Figure 1), and use these158

scores to guide the tree traversal. We define the score of a node v as a Monte Carlo estimation over159

unrolling steps from v: If v is an internal node, we randomly generate a set of unrolled paths from v160

to the corresponding leaf nodes, and take the average score of the resulting optimizers as the score for161

v; If v is a leaf node, we set its score to 0 as it cannot be expanded. The search can thus be conducted162

as follows: 1). Starting from the root node v(0) at level 0, we generate all child nodes {v(1)} of v(0)163

by inserting each operator from the candidate pool to the update rule in v(0); 2). From there, we select164

the child node v∗(1) with the highest MC score to expand, and move on to the next level; 3). The165

process is repeated until a predefined maximum search level is reached. Algorithm 1 in the Appendix166

provides a detailed summary of the complete search process.167

Directly applying the MCT algorithm to optimizer search would not perform well under limited168

search budgets, due to two unique characteristics of optimizer update rules that challenge the sample169

efficiency of the Monte Carlo estimates. Firstly, the majority of mathematical expressions, when170

deployed as optimizer update rules, perform poorly or even would not converge. This is usually not171

the case for other AutoML tasks such as neural architecture search, as most networks in the search172

space perform reasonably well. The large body of poor-performing optimizers not only consumes173

precious search budget, but also causes the MC estimation to be unstable. Secondly, there exists174

many mathematical redundancies in the expression space, for example: sign(sign(sign(x))) can175

be reduced to sign(x), and m1+
√
m2√

m2
is equivalent to m1√

m2
+ 1. Identifying and eliminating these176

redundancies would not only save budget, but also prevent the sampling distribution from biasing177

toward mathematically simple and shallow update rules. To address these issues and further boost178

the sample efficiency, we propose two sets of techniques - rejection sampling and equivalent-form179

detection. When combined with these techniques, the simple MCT algorithm becomes particularly180

effective for the optimizer search task. We will discuss them in detail in the following sections.181

2.3 Rejection sampling182
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Figure 2: Performance distribution of op-
timizers after applying descent test, under
λd = 0.15 and a batch size of 25.

Eliminating poor optimizers with a train-free task-183

agnostic test Inspired by the characteristics of op-184

timizer update rules, we develop a train-free task-185

agnostic test to eliminate poor optimizers without186

evaluating them. We propose a necessary condition187

for a valid optimizer: it must produce an acute angle188

with steepest descent direction (i.e. gradients). We189

check the validity of optimizers against this condition190

and only evaluate those that pass the test. For the191

test to be task-agnostic, we feed the optimizer with a192

batch of random Gaussian vectors in place of actual193

gradients. Formally, the descent test can be written194

as:195

Eu∼N (0,1)

[
cos(ϕ(∇θL),∇θL)

]
> λd

where λd is a predefined threshold. Although our descent test is by-no-mean comprehensive, it196

can effectively rule out a large chunk of poor optimizers with negligible false-negative rates, as197

demonstrated in Figure 2.198

Reducing the variance of MC estimates via score thresholding After applying the descent test,199

there still remains a non-negligible portion of poor optimizers. When sampled during the unrolling200

step, these optimizers would drastically lower the Monte Carlo score of the stem node, causing the201

MC estimation to exhibit high variance and thus become unreliable. This adverse effect is especially202

severe under the efficient setting when the sample size is small. Therefore, we propose to simply203

reject candidates with scores lower than a predefined threshold, thereby removing them from the MC204

scores of the corresponding stem nodes.205

2.4 Detecting and handling redundancies in mathematically equivalent forms206

On-the-fly constraint tree-traversal for redundant path pruning One benefit of formulating207

the search problem as top-down path-finding is that we can easily apply constraints on-the-fly to208

eliminate undesirable branches - those that lead to mathematically redundant expressions in our case.209

We identify three main categories of such constraints:210

• child operator that nullifies its parent’s operator. e.g. −(−x) = x, ln(ex) = x211

• child operator that is redundant under its parent. e.g. clip(clip(x)) = clip(x)212

• sequence of operators that reduces to a constant in the search space. e.g.
√
|sign(x)| = 1213

The complete sets of constraints we used can be found in the Appendix. Enforcing these constraints214

during the traversal can effectively trim down the search tree, allowing the algorithm to explore215

branches that lead to more diverse and complex expressions.216

Hashing mathematically equivalent expressions Besides enforcing constraints during the traver-217

sal, it is also important to detect mathematically equivalent optimizers to avoid duplicated evaluations.218

One can always apply off-the-shelf symbolic solvers to identify the equivalence of two expressions, ϕ219

and ϕ′, by checking if (ϕ− ϕ′) can be reduced to 0. However, it could become extremely slow as the220

pool of evaluated optimizers {ϕi}N1 gets larger and larger, since we need to solve N pair of equations221

every time a new update rule is sampled. Instead, we apply hashing to efficiently query the evaluated222

candidate pool for mathematically equivalent optimizers. Concretely, we assign each optimizer a223

hash code, obtained by feeding a fixed probing vector as input to the optimizer and recording its224

output. When a newly sampled optimizer arrives, we only need to compare its code with the hash225

table to check the existence of its equivalent form. Empirically, it is much faster to run the proposed226

hashing-based checker than symbolic solvers.227

3 Discussions and relationship to prior work228

Automated optimizer design Optimization plays a crucial role in training deep learning models.229

Generally, there does not exist one optimizer that aces all scenarios, as different tasks (dataset,230
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architecture, loss, parameterization, e.t.c.) might favor different optimization methods [2, 10]. The231

demand for task-specific optimizers stimulates research interest in developing automated systems232

for optimizer design [10, 12, 15, 17, 40, 49, 57, 63, 64]. Early work adopts a data-driven method by233

modeling the optimizer update with a parametric function [10, 12, 57]. L2LGD2 [10] deploys an234

LSTM model as the update function that takes historical gradients as input and produces the update235

direction. However, parametric optimizer search methods are fundamentally limited by its scalability,236

as inferring its parameters requires expensive meta-learning steps such as back-propagation through237

optimization [10, 57, 64]. Although SymbolicL2O [64] improves the scalability of the learned238

LSTM optimizer by distilling it into a lightly-parameterized symbolic optimizer, it still requires a239

pretrained LSTM model to begin with. Instead of learning a parametric optimizer, NOS-RL [15]240

directly searches over a discrete space of non-parametric update functions comprised of mathematical241

operators. It extends early RL-based NAS method [22] to optimizer search, by training a sequential242

controller to produce the optimizer update rule according to a predefined pattern. However, similar to243

its NAS counterpart, NOS-RL is also computationally expensive, requiring over 10k evaluations to244

find good candidates.245

Symbolic optimization and differential program synthesis Symbolic optimization (SO) [1, 13,246

51, 58, 60, 61] aims at optimizing an objective over a symbolic hypothesis space of functions (or more247

broadly, programs). One line of work attempts to recover the unknown equation from its generated248

data, with great potential in automating scientific discoveries [52, 61]. Another line of methods249

aims at finding a more interpretable and generalizable symbolic model to replace the black-box250

neural networks [51, 58, 60]; Applications that witnessed some success include learning symbolic251

policy networks for RL [60] and sequential classification models [51, 58]. The latter is often studied252

under the concept of Program Synthesis [23], where a model is extended to include programmatic253

rules such as if-else clause, indexing, e.t.c. SO is closely connected to AutoML at a high level, as254

both fields frame their problems as discrete optimization. Indeed, many existing optimizer search255

methods can find their counterparts in symbolic optimization. Our method is also inspired by the256

rich body of literature in deep symbolic mathematics and program synthesis, which also explores257

tree-based expression spaces for differential equations and programs [29, 34, 51, 58, 61]. However,258

due to significant differences in taskonomy, SO and AutoML methods are often developed separately,259

converging into different branches of techniques. Symbolic optimization often studies tasks where260

candidates are cheap to evaluate but finding the global optimal is desired [1, 52, 61]; As a result,261

sample efficiency is often not the primary concern. Much to the opposite, in AutoML tasks, candidate262

evaluations are extremely expensive; Therefore, it is more beneficial to identify a good-enough263

candidate within a limited amount of budget.264

4 Empirical evaluations on a diverse set of tasks265

We extensively evaluate the proposed framework on a suite of tasks, covering a variety of models266

and datasets. On standard benchmark tasks for optimizer search, our method is able to discover267

optimizers that outperform its human-designed and automatically searched counterparts. In addition,268

we also show that the proposed framework enables automated optimizer design for many other269

popular learning tasks, such as adversarial attack, GNN training, and BERT finetuning. Due to the270

space limits, we will include detailed descriptions, search settings, and discovered optimizers for271

each task in the Appendix.272

4.1 General setting273

MCT algorithm Across all experiments, we limit the maximum level of MCT traversal to 4, and274

set the number of Monte Carlo samples to 32 (a multiple of 8 for parallelism on 8-GPU servers)275

for each level. This amounts to a fixed total budget of 128 evaluations. The maximum depth for276

the super-tree is set to 10, which already covers many top-performing optimizers for various tasks.277

We use a similar set of elementary operations as NOS-RL to build the optimizers, with only minor278

adjustments for some tasks (see Appendix for more details).279

Optimizer evaluation We follow the default settings and hyperparameters for each task, and only280

swap out the optimizer; This potentially puts our algorithm at a disadvantage, as the hyperparameters281

are usually tuned around the default optimizers. Before optimizer evaluation, we perform grid search282
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on a small proxy task (fewer steps) to find a proper learning rate. During the grid search, we also283

aggressively terminate optimizers if their performance falls under a certain threshold. Since early284

stopped optimizers consume fewer resources than a full evaluation, we do not count them into the285

budget (number of evaluations).286

4.2 Hand-written digit classification287

Figure 3: Training loss trajectory on hand-written digit classification task (log scaled). Each optimizer
is evaluated for 4 random seeds. Our method is marked in red.

We first compare our method with the LSTM-based optimizer (L2LGD2) on hand-written digit288

classification. Following L2LGD2 [10], the goal is to minimize the cumulative training loss of a289

single-hidden-layer MLP with Sigmoid activation (MNISTNET) on the MNIST dataset; The search290

is conducted on MNISTNET for 100 steps with a batch size of 128, and the discovered optimizers291

are subsequently transferred to three variants of MNISTNET with different activations (MNISTNET-292

ReLU), number of hidden layers (MNISTNET-2Layer), and dimensions (MNISTNET-Big). Under293

this setting, our method finishes in 0.92h on RTX 2080ti, much faster than L2LGD2 (2.62h).294

As shown in Figure 3, our discovered optimizer achieves the lowest training loss under both direct295

search and transfer settings. Notable, the LSTM-based parametric update function indeed converges296

faster when the number of steps is close to the search phase (black-dotted vertical line on Figure297

3). However, it extrapolates poorly to longer trajectories. As the training proceeds, all other non-298

parametric optimizers eventually catch-up, achieving much lower training loss. Moreover, LSTM-299

based optimizer also generalizes poorly to other model variants (most noticeably MNISTNET-ReLU),300

revealing its tendency to overfit the search task.301

4.3 Image classification with ConvNet302

We proceed to evaluate our method on the CIFAR-10 [8] classification task proposed in NOS-RL303

[15]. The model of choice is a 3-layer ConvNet. Each layer of this network contains a 32-filter 3x3304

convolution with ReLU activation and batch normalization. Following NOS-RL’s setting, for every305

optimizer, the best learning rate is searched over a grid of {1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1} with306

1 epoch of training, and the discovered learning rate is subsequently used to train the model for a307

longer period of time (5 epochs). Since NOS-RL’s implementation is not open-sourced, we reproduce308

and compare with the two families of discovered optimizers described in NOS-RL paper: AddSign309

and PowSign.310

The results are summarized in Table 1. For NOS-RL, we display the performance of the top 4311

variants of PowSign and AddSign, which are obtained after training the controller for over 10k312

evaluations (Figure 4 in the NOS-RL paper [15]). With only a fraction (∼1%) of the search budget,313

our framework is able to discover optimizers that reach a test accuracy of 77.02%, topping both314

PowSign and AddSign optimizers and also human-designed ones by a sizable margin. The sheer315

reduction in search cost and the improvement in search performance evince the efficiency and316

effectiveness of the proposed framework for discovering better optimizers.317

4.4 Adversarial attack318

Next, we apply our framework to discover optimizers for constraint optimization. We select adver-319

sarial attack, which aims at finding norm-bounded perturbations in the input space that alter the320

model’s predictions. The de facto optimizer used in adversarial attack is Projected Gradient Descent321
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Table 1: Performance of automated search algorithms on CIFAR-10.
Optimizer Test Accuracy

(%)
Search
Method

Search Budget
(#evaluations)

SGD 70.99% ± 2.12 manual -
SGD + Momentum 74.12% ± 0.44 manual -
Nesterov 74.15% ± 0.52 manual -
Adam 73.42% ± 0.56 manual -
RMSprop 71.42% ± 1.42 manual -
PowSign-ld 75.48% ± 0.45 RL on hand-crafted patterns >10,000
PowSign-cd 76.21% ± 0.16 RL on hand-crafted patterns >10,000
AddSign-ld 75.54% ± 0.39 RL on hand-crafted pattern space >10,000
AddSign-cd 76.07% ± 0.59 RL on hand-crafted pattern space >10,000
Ours 77.02% ± 0.19 MCT on super-tree space 128

(PGD) [20]. We consider the most popular l∞-norm setting. For l∞-norm bounded attack, PGD322

takes the form of: x = ProjB∞
ϵ (xo)(x + γsign(∇xL(x)))), where B∞

ϵ (xo) represents a ϵ ball323

around the original image xo w.r.t. l∞-norm. The models of choice come from the AutoAttack324

library [45], which holds a leaderboard of top defense methods. Following their settings, we set325

ϵ = 8/255, and run each optimizer once for 100 steps on every image from the test split [45].326

Table 2: Attack success rate of different optimizers
on top defense methods on CIFAR-10.

Defense Models PGD APGD Ours
Carmon2019 (WRN-28-10) [26] 37.83% 38.22% 38.35%
Gowal2020‡ (WRN-70-16) [46] 31.10% 32.00% 32.00%
Gowal2020‡ (WRN-34-20) [46] 40.05% 40.46% 40.50%
Gowal2020‡ (WRN-28-10) [46] 33.65% 34.33% 34.34%
Sehwag2020‡ (WRN-28-10) [50] 40.00% 40.43% 40.46%
Wu2020‡ (WRN-28-10) [56] 36.41% 36.70% 36.78%
Wang2020‡ (WRN-28-10) [41] 37.78% 38.16% 38.27%
Engstrom2019 (RN-50) [30] 47.76% 48.25% 48.32%
Wong2020Fast (RN-18) [55] 53.69% 54.11% 54.19%
‡ Methods that explore extra data during robust training.

327

On this task, we mainly search for the update328

rule inside the projection operator (e.g. sign()329

for PGD). The search is conducted on the pre-330

trained Carmon2019 model [26], and the pro-331

posed optimizer is subsequently evaluated on332

other top defense methods for WideResNet [14]333

(WRN-<depth>-<width>) and ResNet [11] (RN-334

<depth>). As shown in Table 2, our discov-335

ered optimizer consistently outperforms PGD336

by a sizable margin. Surprisingly, we found that337

the algorithm tends to pick log(| · |) rather than338

sign(·) as the first operator, resulting in many339

log-based optimizers that surpass sign-based PGD.340

In addition to PGD, we also compare our log-based optimizer with the best handcrafted and tuned341

optimizer for adversarial attack: Adaptive PGD (APGD) [45]; The design of APGD is packed with342

domain expertise: it combines a well-tuned momentum update rule with a conditional learning rate343

decay based on a handcrafted schedule and sophisticated decay conditions (see Appendix for details).344

However, the performance of our automatically discovered optimizer rivals APGD across various345

defense methods, despite of having a much simpler form (see Appendix for details). This result346

demonstrates the potential of applying our framework to reduce the need of human expertise in347

designing optimizers for diverse tasks.348

4.5 Node classification on graphs349

Table 3: Performance of our discovered optimizers
against Adam on GATs on five commonly used
Graph datasets of diverse size. Results that use the
same GAT implementations are grouped together.

Dataset Adam Ours
Products 77.49% ± 0.56† 80.15% ± 0.16
Cora 84.72% ± 0.32 85.20% ± 0.19
Citeseer 71.70% ± 1.03 73.10% ± 0.43
PubMed 78.20% ± 0.22 79.25% ± 0.70
PPI 97.53% ± 0.45‡ 98.13% ± 0.10‡

† Our reproduced accuracy using ogbn-
leaderboard’s implementation is lower than
the displayed number (79.23% ± 0.78).

‡ F1 Score

We next test our framework for optimizing graph350

neural networks to classify nodes on graphs. The351

model of interest is Graph Attention Network352

(GAT) [21], one of the most widely used ar-353

chitectures in graph learning tasks. We com-354

pare our method against Adam [9] - the standard355

optimizer for optimizing GATs - on five com-356

monly used graph datasets: OGBN-Product [47],357

Cora [4], Citeseer [3], PubMed [6], and PPI [18].358

Among them, OGBN-Product is the largest in359

scale, consisting of 2,449,029 nodes. Since stan-360

dard GATs cannot scale to this dataset, we in-361

stead adopt an adaptation of cluster-GCN [27]362

to GAT as the testbed, termed Cluster-GAT.363

Cluster-GAT trains standard GAT on smaller364

partitions of the original graph, thereby allow-365
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ing the model to be applied to large-scale graphs. We refer the reader to the Appendix for detailed366

descriptions of all GAT implementations and experimental setups.367

The results are summarized in Table 3. On all datasets, our search algorithm is able to discover368

optimizers that outperform Adam. An interesting observation is that the top-performing optimizers369

discovered for this task almost always contain sign(·) operators, revealing the potential of adopting370

sign-based optimizers to improve the training of graph neural networks.371

4.6 BERT fine-tuning on NLP datasets372

Table 4: Performance of our discovered opti-
mizers for BERT finetuning on GLUE tasks.

Dataset AdamW Ours
Cola 59.56 ± 2.04⋆ 60.89 ± 1.33⋆

MRPC 82.84 ± 0.57‡ 86.64 ± 0.94‡

STS-B 87.80 ± 1.14† 88.91 ± 0.30†

RTE 65.97 ± 1.56‡ 68.50 ± 1.93‡

WNLI 53.17 ± 5.49‡ 56.34 ± 0.00‡

⋆ Mathews Correlation.
† Spearman Correlation.
‡ Accuracy (%).

We also evaluate the proposed framework on BERT373

finetuning task on GLUE benchmark [24]. For this374

task, we follow all configurations of the Hugging-375

Face [54] implementations: we finetune a pretrained376

BERT (base cased) model for 3 epochs on Cola [42],377

STS-B [16] and RTE [7] dataset, and 5 epochs on378

MRPC [5] and WNLI [24] dataset. The batch size379

is set to 32. We compare our discovered optimizers380

with the default AdamW [19]. As shown in Table 4,381

our automatically discovered optimizers outperform382

AdamW on all datasets.383

5 Ablation study384

In this section, we ablate the proposed framework using the MNISTNET task. All experiments are385

repeated over 4 random seeds to account for randomness in the search phase.386

Table 5: Performance comparison of
Random Search and MCT.

Method Training Loss (sum) Test Accuracy
Random 60.25 ± 2.99 88.02% ± 1.53
MCT 59.25 ± 2.50 89.43% ± 0.85

Random search baseline We study the effectiveness of387

our MCT algorithm alone by comparing it with random388

sampling. Concretely, instead of traversing the tree based389

on MC scores, we randomly generate all optimizers from390

the root. Everything else in our framework remains un-391

changed, including our rejection sampling and equivalent-392

form detection techniques. This is equivalent to Random Search on our search space. As shown in393

Table 5, MCT algorithm outperforms Random Search baseline by a sizable margin, showing that the394

Monte Carlo node scoring schema can indeed guide the traversal towards promising branches of the395

tree.396

Score thresholding As discussed in prior sections, score thresholding is important to the perfor-397

mance of the MCT algorithm. To verify this, we ablate this technique by disabling it in our framework398

while keeping everything else the same. Without score thresholding, the cumulative training loss of399

the proposed optimizers raises from 59.25 ± 2.50 to 60.25 ± 2.87, similar to that of random search.400

6 Conclusion and limitations401

Despite the recent advancement of practical AutoML systems in automatizing the design of architec-402

tures, data augmentation policies, and hyperparameters, progress in automated discovery of optimizers403

is still inadequate due to the limitations of prior methods in terms of 1). efficiency, 2). generability,404

and 3). scalability. In this paper, we introduce the first optimizer search framework that meets all405

these criteria, allowing it to be directly applied to the tasks of interest. The proposed framework406

demonstrates promising results across a variety of tasks, from image classification, adversarial attack,407

to graph learning and BERT finetuning. Our method by-no-mean solves the optimizer search problem,408

as there is plenty of room for improvement on the algorithm and search space; Rather, our goal is to409

open up a new possibility for future development in non-parametric optimizer search methods. We410

hope the proposed framework could democratize research and applications of automated optimizer411

search, and stimulate interest among researchers and practitioners.412
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contributions and scope? [Yes]416
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not aware of any negative societal impacts of this work.419
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-426
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they428

were chosen)? [Yes] Due to space limits, some of these training details are included in429

the Appendix430

(c) Did you report error bars (e.g., with respect to the random seed after running experi-431

ments multiple times)? [Yes] The error bars for all optimizers are shown in the main432

text. The only exception is MNISTNET task, where we removed error bar for a cleaner433

plot. We will display the error bar for this task in the Appendix.434

(d) Did you include the total amount of compute and the type of resources used (e.g., type435

of GPUs, internal cluster, or cloud provider)? [Yes]436

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...437
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(b) Did you mention the license of the assets? [Yes]439
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(d) Did you discuss whether and how consent was obtained from people whose data you’re441

using/curating? [N/A]442

(e) Did you discuss whether the data you are using/curating contains personally identifiable443

information or offensive content? [N/A]444

5. If you used crowdsourcing or conducted research with human subjects...445

(a) Did you include the full text of instructions given to participants and screenshots, if446

applicable? [N/A]447

(b) Did you describe any potential participant risks, with links to Institutional Review448

Board (IRB) approvals, if applicable? [N/A]449

(c) Did you include the estimated hourly wage paid to participants and the total amount450

spent on participant compensation? [N/A]451
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A Appendix634

A.1 Pseudocode for our search algorithm635

Algorithm 1 and 2 summarize the complete search process.636

Algorithm 1: MCT algorithm
1 Input: Candidate set A, constraints C, operator set O, maximum super-tree depth D, maximum

traversal level L, MC sample size M for each level, score threshold ρ, proposal size K.

2 Main search:
3 for level in 1 to L do
4 current node vc = root node ; // root node hosts an empty update rule
5 score dict S = ∅ ; // scores of optimizers generated from stem nodes
6 number of samples m = 1

7 while m <= M do
8 u = randomly pick a child of vc, by inserting an operator o ∈ O to vc under constraint C;
9 ϕ = unroll(u, C,O, D);

10 if not descent_test(ϕ) then
11 continue;
12 sϕ = evaluate(ϕ) ; // the score for early stopped ϕ are set to ρ

13 if sϕ > ρ then
14 register (u, sϕ) in S;
15 register (ϕ, sϕ) in A;
16 m += 1;

17 for each node u in S do
18 if u is a non-leaf node then
19 compute the average score of u;
20 else
21 set the score of u to 0;

22 vc = node with the best score as computed above ; // move on to the next level
23 return: TopK(A);

Algorithm 2: Pseudocode for the unrolling step
1 Input: Stem node v, constraint C, operator set O, maximum super-tree depth D

2 Unroll:
3 set current node vc = v

4 while True do
5 vc = randomly pick a child of vc, by inserting an operator o ∈ O to vc under constraint C;
6 if ϕvc is a complete update rule then
7 break;
8 else if length(ϕvc ) == D then
9 vc = v ; // restart unrolling

10 continue;

11 return: ϕvc

B Set of operators used for constructing the search space637

Inspired by NOS-RL, we adopt the following set of mathematical operators in our experiments:638
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• Unary operators: −(·), exp(·), log(| · |),
√

| · |, clip0.003(·), drop0.1(·), sign(·)639

• Binary operators: +, −, ×, /, pow(·, ·)640

• Input Operators: g, g2, g3, m1, m2, m3, sign(g), sign(m1), Adam, RMSprop, 1, 2, ld,641

cd, rd642

Here, m1, m2, m3 denote the first, second and third order momentum respectively, and ld, cd, rd643

denote linear decay, cosine decay, and restart decay [15]:644

linear decay : 1− t

T

cosine decay : 0.5 ∗ (1 + cos(2πn
t

T
))

restart decay : 0.5 ∗ (1 + cos(π
(tn)%T

T
))

where t and T are the current and maximum step. Following NOS-RL, we use n = 0.5 for cosine645

decay and n = 20 for restart decay. We set the bound for clip operator to 0.003, and the dropout646

ratio to 0.1 for drop operator. Note that one can always include more options of these values by647

adding new operator variants to the space (e.g. drop0.3() with dropout ratio set to 0.3). For all input648

operators, we use their default PyTorch implementations and hyper-parameters. The only exception649

is the learning rates for Adam and RMSprop. We found that under the default learning rate, the norm650

of Adam and RMSprop is sometimes quite small compared with other operands such as sign(g),651

making them potentially less effective as a submodule of some optimizers. Therefore, we raise their652

default learning rate by 3× in our experiment. Note that we make one minor adjustment to the set for653

the ConvNet task: g3, m3, Adam, and RMSprop are removed as they rarely show up on the tops654

optimizers.655

Our set of operators is a subset of the full operator set presented in Section 4.1 of the NOS-RL paper.656

However, note that NOS-RL also uses much smaller subsets rather than the full set to conduct the657

search. We refer the readers to "Further discussions on NOS-RL baseline" in Appendix C.3 for more658

details.659

C More details on experimental settings660

C.1 General settings for our search algorithm661

Search configurations For all experiment, we allow 4 levels of traversal and set the number of662

Monte Carlo samples for each level to 32. This amounts to a total budget of 128 evaluations. The663

maximum depth for the super-tree is set to 10. The evaluation of Monte Carlo samples for each level664

of traversal are completely independent, and therefore can be easily parallelized onto multiple GPUs.665

As mentioned in the main text, we also apply score thresholding during the Monte Carlo estimation.666

We use a universal threshold of 10 for losses, 20% for accuracy and correlations. After the search667

phase, top 5 optimizers are usually proposed for further evaluations.668

Early stopping We also early stop poor optimizers to speedup the search process. We use the669

following standard procedure for deciding whether to terminate the training of an optimizer: If the670

search signal is training loss, we track if the moving average of the training loss keeps increasing for671

certain amount of consecutive steps. If the search signal is accuracy or correlations, we check if the672

accuracy fails to reach the score threshold after 10% of training.673

Constraints We use the following constraints during tree traversal: 1). log(exp(·)) and −(−(·))674

are prohibited. 2). sign(·) must not be followed by sign(·), sign(m1), sign(g), clip0.003(·), 1, 2,675

ld, cd, and rd. 3).
√
| · | must not be followed by sign and 1. 4). clip0.003(·) must not be followed676

by clip0.003(·), 1, 2, ld, cd, and rd.677

C.2 Hand-digit classification with MNISTNET678

Task setting In this task, the goal is to minimize the cumulative training loss of a simple MLP679

(MNISTNET). All experimental setups (including model variants) and the LSTM-based optimizer680
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Table 6: Performance of different optimizers on MNISTNET models.
Method MNISTNET MNISTNET-2Layer MNISTNET-Big MNISTNET-ReLU

Train Loss (Sum) Test Acc Train Loss (Sum) Test Acc Train Loss (Sum) Test Acc Train Loss (Sum) Test Acc
SGD 364.96 ± 3.32 93.09% ± 0.17 638.23 ± 12.91 92.27% ± 0.44 334.72 ± 1.90 93.88% ± 0.08 317.33 ± 7.47 93.56% ± 0.37
SGD + Mom 276.26 ± 10.78 93.07% ± 0.46 358.61 ± 8.96 93.05% ± 0.32 207.54 ± 5.12 95.29% ± 0.25 265.15 ± 9.58 94.03% ± 0.53
Nesterov 248.96 ± 6.51 93.53% ± 0.32 317.86 ± 6.38 93.32% ± 0.32 192.03 ± 13.13 95.35% ± 0.31 283.50 ± 41.82 92.95% ± 0.83
Adam 327.15 ± 11.55 91.54% ± 0.53 403.07 ± 31.20 90.69% ± 0.54 219.25 ± 4.43 94.29% ± 0.33 273.02 ± 15.47 92.56% ± 0.72
RMSprop 269.48 ± 5.74 93.72% ± 0.17 336.99 ± 13.33 93.44% ± 0.37 230.69 ± 4.30 95.01% ± 0.20 280.28 ± 11.59 93.61% ± 0.33
L2LGD2 300.94 ± 12.49 90.63% ± 0.14 338.18 ± 11.69 90.11% ± 0.30 286.63 ± 8.33 90.94% ± 0.32 791.35 ± 55.13 84.24% ± 1.49
Ours 237.76 ± 5.34 93.86% ± 0.23 291.90 ± 7.89 93.75% ± 0.38 186.17 ± 6.68 95.42% ± 0.16 238.19 ± 8.37 94.29% ± 0.30

baseline are borrowed from the open-sourced PyTorch implementation of L2LGD22 The default681

MNISTNET has one 20-dimensional hidden layers with Sigmoid activation. In addition, we also682

consider three other variants of MNISTNET: 1). MNISTNET-2Layer, which doubles the number of683

layers in MNISTNET; 2). MNISTNET-Big, which doubles the hidden layer dimension of MNIST-684

NET; 3). MNISTNET-ReLU, which replaces the Sigmoid activation in MNISTNET with ReLU. All685

models are trained for 1000 steps with a batch size of 128 on the MNIST dataset. We use a fixed686

50/50 split of training and testing set for MNIST.687

Optimizer evaluation For each optimizer, the best learning rate is obtained from688

{0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 1.0}. During the grid search, we train the689

network for 100 steps. After that, the network is retrained for 1000 steps with the best learning rate.690

We record the cumulative training loss and test accuracy of each optimizer for comparison. Note that691

following the L2LGD2 implementation, the grid search for the LSTM-based optimizer is applied at692

training time rather than test time.693

Search setting Again, we follow the search settings implemented in the L2LGD2 codebase for our694

experiment. The search is conducted on the default MNISTNET by training it for 100 steps on the695

training split. Standard early stopping procedure is enabled for this task. Empirically, we found that696

roughly 7.2% optimizers are terminated.697

Discovered optimizers We represent some of the discovered optimizer down below. Note that the698

forms of these optimizers are already simplified using the Sympy library.699

mnist1: m1 +RMSprop ∗ exp(Adam)

mnist2: m1 ∗ (exp(Adam) + exp(exp(Adam))) +RMSprop

mnist3: m1 +RMSprop ∗ rdg
3

Interestingly, the pattern m1 +RMSprop shows up quite frequently in the discovered optimizers for700

this task.701

More experimental results In addition to the convergence figures in the main text, we also present702

the results in tabular form. Table 6 summarizes both the cumulative training loss and test accuracy of703

the optimizers on four MNISTNET models. All models are trained for 1000 steps. Our discovered704

optimizer achieves the best cumulative training loss and test accuracy for all cases.705

C.3 Image classification with ConvNet706

Task setting The goal of this task is to train a ConvNet on CIFAR-10 dataset. Following NOS-RL,707

the ConvNet has two 32-filter 3x3 convolution layers, each followed by ReLU activation and batch708

normalization [15] (Correction: We made a typo in the main text on the number of layers - it should709

be 2 instead of 3). We use a fixed held-out validation set of 5000 images for grid search. Note that the710

held-out validation set is used throughout the search phase, and it will be added back to the training711

set during final evaluation of the proposed optimizers.712

Optimizer evaluation The grid search is performed over {1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1} for 1713

epoch of training, and the best learning rate is selected based on the accuracy on held-out validation714

2https://github.com/chenwydj/learning-to-learn-by-gradient-descent-by-gradient-
descent
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set. After that, the optimizers are trained for a longer period of time (5 epochs). The batch size is set715

to 100.716

Search setting For this task, we disable early stopping (i.e. all optimizers will be counted into717

the budget.), to establish fair comparisons with NOS-RL’s search budget; The reason is as follows:718

Although NOS-RL also aggressively early stops poor optimizers, the authors added them back when719

plotting Figure 4 in their paper; And since our estimation of NOS-RL’s search budget comes from720

Figure 4, it would be rational to also disable it in our experiment. Each evaluation takes about 3721

minutes to finish. And the duration for the entire search phase is around 7 hours on a single RTX722

2080ti.723

Discovered optimizers Some of the discovered optimizers are shown below. Note that the forms of724

these optimizers are already simplified using Sympy library.725

conv1: cd ∗ drop0.1(g)/ld

conv2: cd ∗ sign(m1) ∗ |m2|
√

|ld|/2

conv3: drop1(cd ∗m1)

conv4: m1 ∗ (rd+ |g|) ∗ exp(cd)

Further discussions on NOS-RL baseline NOS-RL applies Reinforcement Learning to train726

a LSTM controller to generate optimizer update rules according to a predefined pattern. Due to727

the training difficulty, NOS-RL adopts a multi-config-multi-run search strategy: It conducts the728

search multiple times with different subset of operators (unknown) and different optimizer length729

(5,10,15,20). Out of all search runs with different configurations, two families of best optimizers730

are reported in the paper. This leads to several challenges that prevent us from obtaining exact731

comparisons with NOS-RL: 1). It is difficult to know or measure the exact search cost of NOS-RL732

due to its multi-config-multi-run strategy. The paper only mentions that a single search run can finish733

in one-day with heavily parallelism on Google’s infrastructures. Therefore, the best we can do is734

to make an estimation based on Figure 4 in their paper, where it shows that the controller begins to735

converge at least after 10k evaluations. 2). The particular subsets of operators used during each search736

run is also unknown; The paper only mentions that the search spaces generated by these subsets737

typically contains 106 to 1011 update rules. As a result, we have to pick our own operator set to run738

the search on.739

We conjecture that the main purpose of NOS-RL paper is to offer the discovered optimizer for740

practitioners to use, rather than providing a baseline to stimulate further developments of non-741

parametric optimizer search methods. This can be evidenced by its prohibitive search cost, and also742

by the fact that the source code is not released. The nature of NOS-RL, combined with aforementioned743

challenges, necessitate an open-sourced resource-friendly non-parametric optimizer search framework744

for the community, which we hope to provide in this work.745

C.4 Adversarial Attack746

Task setting Adversarial attack aims at finding a norm-bounded perturbation to the input space747

that misleads the model predictions. In this case, the parameter to be optimized is the data itself. We748

use the AutoAttack library3 to implement our experiments for this task. The library contains a set of749

defense methods, as well as an implementation of the APGD optimizer that we used as the baseline.750

The attack is conducted on the default test split of CIFAR-10 dataset, which contains 10000 images.751

Our metric of choice is attack success rate. Concretely, if the perturbed image successfully mislead752

the model’s prediction into a wrong class, then the attack is successful for that image. The success753

rate is thus the percentage of images that the optimizer successfully attacked.754

Optimizer evaluation The search is conducted on the Carmon2019 method. We use755

{0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 1} to search for the best learning rate. The grid search756

is conducted on only 1000 test images. After that, the optimizers will be evaluated by training for757

100 steps.758

3https://github.com/fra31/auto-attack
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Search setting During the search phase, all optimizers are evaluated with only 20 steps, as it is759

usually enough to identify top optimizers. To further reduce the search cost, we use only 400 images760

for grid search and 4800 (400 * 12) images for evaluation. The search takes around one GPU day to761

finish on a single RTX 2080ti.762

Discovered optimizers We present some of the discovered optimizers for adversarial attack down763

below.764

attack1: log(|cd+ sign(g)|)
attack2: log(|cd+ exp(g3) ∗ sign(g)|)
attack3: log(|ld+ sign(RMSprop)|)

As mentioned in the main text, we found that many top optimizers are log-based. More specifically,765

these optimizers often have the form of log(|decay+ sign(·)|). The discovered log-based optimizers766

are also highly effective when transferred to other defense models, as showing in Table 2.767

Discussion on Adaptive Projected Gradient Descent (APGD) optimizer APGD is currently the768

strongest manually design and tuned optimizer for adversarial attack. It consists of two parts: 1). a769

momentum update rule and 2). a dynamic learning rate decay schema. The momentum update rule770

takes the following form:771

z(k+1) = ProjB∞
ϵ (xo)(x

(k) + γ(k)sign(∇xL(x
(k))))) (1)

x(k+1) = ProjB∞
ϵ (xo)(x

(k) + (1− µ)(z(k+1) − x(k)) + µ(x(k) − x(k−1))) (2)
where k is the current step and µ is the momentum ratio. The µ is tuned to be 0.25, much lower than772

the default momentum ratio for standard optimizers such as SGD and PGD. The dynamic learning773

rate decay schema halves the learning rate if a set of two conditions are satisfied at some predefined774

steps {wj}100j=1:775

wj−1∑
i=wj−1

1L(x(i+1))<L(x(i)) < ρ ∗ (wj − wj−1) (3)

γ(wj) ≡ γ(wj−1) and L(wj)
min ≡ L(wj−1)

min (4)
where ρ is a threshold term and L denotes the loss function. The steps (wj) to check for these776

conditions are set to {23, 42, 58, 71, 81, 88, 94, 100}. As we can see, APGD has a quite complicated777

form, and its design also packs a lot of human expertise. On the other hand, our automatically778

discovered optimizers are much simpler, while also rivaling the performance of APGD.779

C.5 Node classification on graphs780

Task Setting We consider node classification task on graphs. The model of choice is Graph781

Attention Network (GAT). There exists many PyTorch implementations of GAT and its variants, each782

covers only some datasets. As a result, we have to use more than one codebase for this experiment.783

For training cluster-GAT on OGBN-Products dataset, we use the official implementation from OGBN784

library4. For training vanilla GAT on Cora dataset, we use pyGAT 5. For training vanilla GAT on785

Citeseer, PubMed, and PPI dataset, we use the implementations from DGL library6. We follow the786

instructions provided in their README.md files to run all of our experiments. The only except is for787

Cora dataset, where we disable early stopping in the original implementation. The reason is that the788

default criteria often terminate training prematurely for our optimizers.789

Optimizer evaluation The grid search is conducted over {0.0003, 0.0006, 0.001, 0.003, 0.006,790

0.01, 0.03, 0.06}, as we found that most of the optimizers’ best learning rates (including Adam)791

fall into this range. After the grid search, all optimizers are evaluated under 4 random seeds. As792

mentioned above, all other hyperparameters, including the total number of epochs, batch size, weight793

decay, e.t.c., are set to their default values as in the original codebases.794

4https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/cluster-gat
5https://github.com/Diego999/pyGAT
6https://github.com/dmlc/dgl/tree/master/examples/pytorch/gat
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Search setting We deploy standard early stopping schema for this task. The percentage of early795

terminated optimizers is around 10% to 17% for vanilla GATs. We found that Cluster-GAT is much796

harder to optimize: roughly 25% of the optimizers are early terminated. The search is conducted on797

each dataset separately, and we will discuss the transferability of the discovered optimizers in the798

next paragraph. For Products dataset, we parallelize the search over 8 RTX 2080ti GPUs. All other799

datasets are ran on a single device. The search takes about 2 GPU days to finish for Products dataset,800

1 GPU day for PPI and Cora, and 3 hours for PubMed and Citeseer.801

Discovered optimizers We present some of the discovered optimizers on each dataset down below.802

Interestingly, we found that sign-based optimizers dominate the graph learning task.803

products1: ld ∗ sign(m1)−Adam

products2: ld ∗ (sign(m1)−RMSprop)

cora: sign(m1) +m3

citeseer: drop0.1((sign(g)−m1)/cd)

pubmed: sign(m1) + sign(m1 − drop0.1(g
3))

ppi: drop0.1(rd
2) ∗ sign(m1)

Table 7: Performance of our discovered optimizers
against Adam on GATs on five commonly used
Graph datasets of diverse size. Results that use the
same GAT implementations are grouped together.

Dataset Adam products2
Products 77.49% ± 0.56† 79.98% ± 0.17
Cora 84.72% ± 0.32 84.87% ± 0.29
Citeseer 71.70% ± 1.03 71.78% ± 0.51
PubMed 78.20% ± 0.22 77.12% ± 0.53
PPI 97.53% ± 0.45‡ 98.38% ± 0.07‡
† Our reproduced accuracy using ogbn-

leaderboard’s implementation is lower than
the displayed number (79.23% ± 0.78).

‡ F1 Score

More experimental results on the transfer804

setting Among the optimizers listed above,805

we found that "product2" optimizer exhibits the806

highest level of transferability. As shown in807

Table 7, it outperforms Adam on all but the808

citeseer dataset. Note that for graph learning809

task, there exists a non-negligible performance810

gap between transfer and direct search settings.811

We conjecture that it is because different graph812

dataset might indeed require different optimiz-813

ers. The reason is as follows: Most graph neu-814

ral networks, including GATs, adopt the mes-815

sage passing framework, where the features of816

neighboring nodes are passed to the target node817

through their edges in the forward pass. Since818

the connectivity of nodes are defined by the ad-819

jacency matrix in the dataset, the computation graph (and thus the learning process) is inherently820

encoded in the dataset itself. Moreover, some of the datasets and models we considered are inherently821

heterogeneous. For example, PPI is designed for inductive learning, whereas all other dataset are822

for transductive setting; and also the Cluster-GAT model we used for OGBN-Products dataset is823

inherently different from vanilla GATs.824

C.6 BERT fine-tunning on NLP datasets825

Task setting We use Hugging Face’s official implementation of BERT finetuning task for our826

experiment7. The goal of this task is to finetune a pretrained BERT (base cased) model on a set of827

NLP datasets. Following the instructions on the official repo, we set the number of epochs to 5 for828

MRPC and WNLI, and 3 for CoLA, STS-B, and RTE dataset. We also observe that finetuning for829

more epochs generally harms the performance of all optimizers. The model is trained with a batch830

size of 32 on a single GPU. We refer the reader to Hugging Face’s offical repo (link in the footnote)831

for more details on this task.832

Optimizer evaluation We use {2e−5, 0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01} for learn-833

ing rate grid search. Note that this grid is intentionally shifted to cover Hugging Face’s default834

learning rate for AdamW (2e−5). After the grid search, the optimizers are trained for 4 random seeds835

with the best learning rate.836

7https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-clas
sification
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Search setting Similar to GAT task, our search is conducted on each dataset separately, and we837

will discuss the transferability of discovered optimizers later. We early stop optimizers if their838

performance (accuracy, Matthew’s correlation, or Spearman’s correlation) fall below the default839

threshold (0.2) during the grid search. Empirically, we found that roughly 13.5% optimizers are840

terminated. This rate is slightly higher than that of MNISTNET task (7.2%), because we are using the841

same threshold as MNISTNET task even though the accuracies (or correlations) on BERT fine-tuning842

tasks are much lower. For this task, we parallelize the search over 8 RTX A6000 GPUs. The search843

can be finished in less than 10 hours on all dataset.844

Discovered optimizers We present some of the discovered optimizers on each dataset down below.845

Similar to those found on the GAT tasks, many optimizers are sign-based. Note that the power846

operator in cola2 optimizer might return NaN, which will be mapped to 0 by the sign function.847

cola1: drop0.1(Adam+ g3)

cola2: sign(m
clip0.003(rd)+clip0.003(sign(g))−sign(m1)
1 )

mrpc: drop0.1(clip0.003(sign(g) + sign(RMSprop) ∗ rd))
stsb: sign(RMSprop+ 2/(g +m3))

rte: drop0.1(clip0.003(m1 −
√
|drop0.1(g3)| ∗ sign(m1)))

wnli: sign(m1)−m3

Table 8: Performance of our discovered
"cola2" optimizer for BERT finetuning task.
Results above baseline are bolded.

Dataset AdamW cola2 optimizer rte optimizer
Cola 59.56 ± 2.04⋆ 60.05 ± 2.38⋆ 59.91 ± 1.54⋆
MRPC 82.84 ± 0.57‡ 85.48 ± 0.74‡ 85.60 ± 0.68‡
STS-B 87.80 ± 1.14† 87.90 ± 0.28† 87.91 ± 0.98†
RTE 65.97 ± 1.56‡ 66.52 ± 1.83‡ 68.50 ± 1.93‡
WNLI 53.17 ± 5.49‡ 56.34 ± 0.00‡ 55.28 ± 1.83‡
⋆ Mathews Correlation.
† Spearman Correlation.
‡ Accuracy (%).

More experimental results on the transfer setting848

We found that both "cola2" and "rte" optimizer ex-849

hibits high level of transferability. Although they850

perform slightly worse than the optimizers directly851

searched on the target dataset, it still consistently out-852

performs AdamW by a sizable margin. The results853

are summarized in Table 8. Note that some of our854

reproduced results for AdamW is a bit different than855

the reported numbers on the Hugging Face repository.856

The reason is that we run each optimizer for 4 seeds857

and report the average results, whereas the official858

repository only records the number after a single run.859

C.7 License860

The Hugging Face libary we used is licensed under Apache License 2.0. All other public repositories861

are licensed under MIT License.862

D Reproducibility & ethics statements863

Reproducibility We have specified the setup for ours experiments in the main paper and Appendix,864

including settings for each task and hyperparameters for our method. The code and the optimizers865

found by our methods will also be published on Github upon acceptance to encourage future866

development. Before then, a copy of our code is included in the supplementary material for reference.867

Ethics We are not aware of any potential ethical concerns regarding our work.868

869

E Limitations870

Our view of this work is as a starting point of an efficient, scalable, and generalizable framework for871

optimizer search. And we expect plenty of room for improvement for future works. For instance, we872

identify the following concrete limitations of the method. 1). We use precomputed momentum terms873

as input to our search space. This is a practice we borrowed from NOS-RL. Adding commonly used874
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terms ease the job of the search algorithm because it does not have to rediscover them from scratch875

every time. However, searching for novel momentum update rules could potentially help to find even876

stronger optimizers. In principle, our framework allows it: one can do this by inserting an operator877

with its own internal state. This would serve as a potential direction for future work. 2). Identifying878

proper hyperparameters for an optimizer is essentially for evaluation. In the current work, we use879

a simple grid search to discover the best learning rate for an optimizer. While it works fine for our880

tasks, this could potentially be suboptimal as it might underestimate some optimizers. Leveraging881

advanced fast HPO during the search phase could be another direction to explore. 3). Although our882

framework is 100x faster than the comparable method (NOS-RL), it still requires 128 evaluations in883

the search phase. These evaluations can be largely parallelized. But potentially, the efficiency can be884

improved further with better search algorithms, more train-free tests, knowledge transfer, e.t.c.885
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