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Abstract

The role of feedback (or recurrent) connections is a fundamental question in neu-
roscience and machine learning. Recently, two benchmarks [1, 2], which require
following paths in images, have been proposed as examples where recurrence was
considered to be essential for efficiently solving them. In this work, we demon-
strate that these tasks can be solved equally well or even better using efficient
convolutional feed-forward neural networks (CNNs). We analyse ResNet train-
ing regarding model complexity and sample efficiency and show that a narrow,
parameter-efficient ResNet performs on par with the recurrent and computationally
more complex hCNN and td+hCNN models from previous work on both bench-
marks.
Code: https://eckerlab.org/code/cnn-efficient-path-tracing

1 Introduction

The proper use of recurrent processing could be crucial to enable neural networks to solve inherently
iterative problems such as understanding subway maps or searching for complex patterns. While
evidence from neuroscience suggests that human perception heavily relies on feedback connections,
most successful computer vision models follow the feed-forward paradigm.

In an effort to determine the limits where recurrence is necessary, Linsley et al. [1] introduced the
pathfinder challenge. Subsequently, the cABC dataset following a similar paradigm was proposed
by Kim et al. [2]. In both tasks, dotted paths must be traced in order to decide if two points are
connected via a path or pertain to different paths. Each image contains two points along with multiple
distractions, and a learner must make a single binary decision for each image. Building upon earlier
work using variants of gated recurrent units [3, 1], Kim et al. [2] present a convolutional recurrent
neural network (hCNN) featuring horizontal connections, and its extension td+hCNN, which features
horizontal connections and top-down feedback. They report that recurrent architectures perform well
on pathfinder and cABC, respectively. In contrast, they observe that commonly used feed-forward
architectures including ResNets and U-Nets fail at the highest difficulty level despite requiring
magnitudes more trainable parameters than the proposed RNNs. Based on this result, the authors
diagnose “a computational deficiency of feedforward networks.”

Contributions In this work we demonstrate that, contrary to the claims of [1] and [2], recurrence
is not necessary for these path-finding tasks and convolutional neural networks are capable of solving
even the most challenging variants efficiently. We investigate the factors that enable ResNets to learn
solving these tasks reliably. We found that the network width accounts for only a small fraction
of performance and ResNets can be stripped off substantially, improving upon td+hCNN in terms
of parameter efficiency and inference speed (the latter holds for all ResNets) while matching its
performance.
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Figure 1: Four samples of different difficulty levels from the Pathfinder (left) and cABC datasets
(right) each. Positive means a connections exists, while in negatives samples the dots are not
connected.

Related Work The question of when recurrence is required and how it is implemented is old and
central to the fields of neuroscience and machine learning. For a long time, the primary choice for text
processing were recurrent neural networks such as LSTM [4] or GRU [5], due to their ability to adapt
the number of processing steps. However, it was found that temporal convolutional neural networks
were able to solve these tasks [6]. Later, attention-based feed-forward architectures revolutionized
the field [7]. For robotic path planning, CNNs were shown to work well, too [8].

2 Experiments

2.1 Pathfinder and cABC Datatset

The task of the Pathfinder dataset is to determine if two dots are connected by a curve (or path) or
not (Fig. 1, left). Curves are dashed (i.e. composed of small segments) and can intersect. Both
paths and dots are rendered into a single image. Hence the decision if a connection exists is a binary
classification problem for which we can report an accuracy. Pathfinder consists of three datasets of
varying difficulty, which is controlled by the path length: 6, 9 and 14 elements.

In follow-up work, Kim et al. [2] introduced the Cluttered ABC (cABC) dataset (Fig. 1, right), which
shares the binary image classification format and the division into three levels of difficulty (easy,
intermediate and hard). In contrast to Pathfinder, it has global semantics in form of letters, but is
locally degenerate. The latter is due to paths being randomly sprinkled dots which follow a curve as
an ensemble on a higher level. In order to follow paths here, dots must be grouped in a top-down
manner. Indeed, Kim et al. [2] report that top-down feedback enables solving this task while they
failed to train wide CNNs on this task.

2.2 Models

We focus our analysis on the ResNet model family, which has emerged as one of the predominant
feed-forward CNN architectures. They use residual connections, which bypass computational blocks
preventing vanishing gradients. Contrary to feedback connections, which induce information from
higher levels of processing, residual connections are strictly feed-forward shortcuts. The original
ResNet18 [9] designed for ImageNet [10] has around 11.2 million parameters.

2.2.1 Narrow ResNet18 (nRN18)

We adopt the ResNet18 architecture [9] but reduce the number of channels, since the synthetic images
used in this paper are less complex than the natural images ResNet was designed for. While the
original ResNet18 contains blocks that have 64, 128, 256 and 512 feature channels, we reduce these
numbers to 16, 32, 32 and 32 yielding around 120,000 trainable parameters while maintaining the
network depth. Thus it matches the 142,000 parameters of hCNN 1. We refer to this model as “narrow
ResNet18,” abbreviated by nRN18. We use two additional variants of nRN18 in some experiments:
An extremely reduced network with channel numbers of 8, 16, 16 and 16, called super narrow
ResNet18 (snRN18). This network has only around 30,000 parameters. Conversely, the larger-narrow
ResNet18, lnRN18, has 24, 48, 48 and 128 channels.

1personal communication with the author [1]
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Figure 2: Accuracies of RN18 (red) and nRN18 (blue) on Pathfinder (left) and cABC (right). Scores
in gray are adapted from [2].

2.3 Implementation

If not described otherwise, we use the Adam optimizer [11] to minimize the binary cross entropy
loss with a learning rate of 0.001 and a batch size of 196. We train our models on 360,000 samples
for Pathfinder and 144,000 samples for cABC, except for the analysis of sample efficiency (Fig. 6)
and parameter efficiency (Fig. 5, left). Here we use 54,000 (Pathfinder) and 40,500 (cABC) samples
in order to match the setup by Kim et al. [2]. We train for up to 80 epochs with an early stopping
criterion after 7 epochs without improvement on the validation loss. For the efficiency experiments,
the early stopping criterion is relaxed to 50 epoch and the validation accuracy is considered for
stopping. Images are scaled to 150x150 pixels. We use the PyTorch [12] framework along with
Numpy [? ] and OpenCV [13].

2.4 Results

Our main result is that both datasets – Pathfinder and cABC – can be solved with the same accuracy
as models including recurrence and feedback [2] using a plain ResNet-18 (Fig. 2, red) or even
a more parameter-efficient narrow ResNet-18 (Fig. 2, blue). On Pathfinder, nRN18 matches the
performance of hCNN’s best-of-5 run (Fig. 2, gray). On cABC, nRN18 even outperforms the state-
of-the-art network td+hCNN [2] (hCNN fails on this task). Due to the different training set sizes,
this comparison is not entirely fair, but demonstrates that ResNet can solve the benchmark very well
given enough training samples.

These experiments show that feedback or recurrent connections are not required to solve the proposed
tasks. In addition, feed-forward CNNs do not need more parameters to solve the tasks. nRN18
has approximately 120,000 parameters. The hCNN model used in [2] has slightly more parameters
(144,000), while td+hCNN is substantially more complex (725,000 parameters). In fact, in section
2.4.1 we will see that we can use an even smaller model without sacrificing a lot of accuracy.

Stability In all other experiments we provide only point estimates of the accuracy rather than
intervals due to computational demands. To assess how reliable these results are, we train nRN18 on
Pathfinder-14 ten times. We make three observations (Fig. 3):

• Larger batch sizes are more stable.

• The larger RN18 performs better on cABC and is generally more stable than nRN18.

• Pathfinder seems to be more sensitive to batch size but in general easier to solve. The latter
is suggested by a generally larger fraction of correctly classified samples in Pathfinder and a
smaller gap between RN18 and nRN18.

Training/Inference Speed We found our models to train magnitudes faster than the public hCNN
implementation (Tab. 1). The reason for computational complexity is that each hCNN-GRU cell
carries out two convolutions with a filter size of 15x15 with stride 1 on a 150x150 input grid.
Although the number of channels is fairly small (20), these convolutions in each time step require
approximately 3.3 billion multiplications. The td+hCNN model, which is more complex than hCNN,
uses 8 timesteps.
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Figure 3: Training stability for RN18 and nRN18 for different batch sizes.

RN18 nRN18 hGRU (15x15)

Training (360K 150x150 images) 4.4 min 3.0 min 475 min
Forward (8 × 8 samples) 0.64s 0.23s 34.2s

Table 1: Approximate times required for training (measured on GPU) and forward passes (measured
on CPU) on Pathfinder.
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Figure 4: Training loss of
snRN18 (green), nRN18 (blue)
and RN18 (red) on Pathfinder-
14.

Training Issues We found that small batch sizes (12 for RN18
and nRN18, 24 only for nRN18) can prevent the training on
Pathfinder-14 from converging. Considering this in conjunction
with the finding that small batch sizes tend to be unstable (Fig. 3),
we recommend using large batch sizes. In addition, training pro-
gresses slowly at the beginning (Fig. 4). It might take more than
seven runs over the entire dataset before the training loss begins to
decrease significantly. Thus early stopping criteria must be chosen
carefully.

2.4.1 Model Complexity

A key claim of [1, 2] is that recurrence enables parameter-efficient
models. Hence it seems natural to ask: How many parameters are
actually needed by our ResNets? We find that by reducing the number of channels in each layer, we
can train ResNet variants with smaller number of parameters than hCNN and td+hCNN to the same
level of accuracy (Fig. 5, left).

Interestingly, the smaller the number of channels and thus parameters in a model, the more iterations
are required for convergence (Table 2 and Fig. 5 right). This phenomenon can be explained with
the lottery ticket hypothesis [14–16], which states that by randomly initializing the weights, sub-
networks capable of partially solving the tasks emerge. As the chances of accidentally initializing a
well-performing sub-network increase with model size, small models may have to learn more while
larger models can rely on identifying a well-initialized sub-network.

# iterations Acc
params. PF cABC PF cABC

snRN18 0.03M 53K 22K 97.3 89.3
nRN18 0.12M 29K 10K 98.1 91.9
RN18 11.17M 20K 7K 98.7 95.4

Table 2: Model complexity, training
iterations and accuracies for ResNets:
Smaller models require more iterations
to train.
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Figure 5: Left: parameter-performance trade-off when
trained on 54K/40.5K samples (accuracy for hCNN on
cABC is ∼54%). Right: validation accuracy during train-
ing on Pathfinder-14 (full dataset) for different models.
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Figure 6: Classification accuracy for different training dataset sizes using nRN18.

2.4.2 Sample Efficiency

Sample efficiency expresses which performance (here in terms of accuracy) can be achieved with a
fixed number of training examples, i.e. it measures how efficient a model makes use of the samples
it sees. Choosing the right inductive biases, e.g. shift equivariance of convolutional layer for many
image processing tasks, often improves sample efficiency.

A key argument of Kim et al. [2] is the high sample efficiency of their models as they use only 60,000
(Pathfinder) and 40,000 (cABC) samples. Hence, it seems natural to assess the sample efficiency of
our ResNets models, too. To this end, we train each model for 25,000 iterations on a varying number
of training samples. Validation error is computed (on 5,000 samples) every 100 iterations and early
stopping with patience 20 is applied (number of validation runs without improvement after which the
training is stopped).

First, we observe that the easy benchmark settings require fewer samples than the hard ones. In case
of hard samples, nRN18 indeed seems to be more data-hungry than td+hCNN [2]. Thus, at first
glance, these results seem to confirm the superior sample efficiency of the recurrent networks.

However, we found three simple ways to improve the sample efficiency of nRN18 and bring it on
par with its recurrent competitors: (1) using a larger learning rate, (2) using a simple form of data
augmentation by randomly flipping images along their horizontal and vertical axes (as done in [1])
and (3) using a form of curriculum learning by initializing the weights from a model trained on the
easiest version of the respective dataset (Pathfinder: path-length 6; cABC: easy).2

Using a larger learning rate (0.005 for Pathfinder, 0.01 for cABC) improves sample efficiency
substantially (at the price of training stability3). While this finding might seem surprising, it is
consistent with previous research on batch normalization (BN): While Santurkar et al. [17] found
BN to facilitate the optimization by smoothing both loss landscape and gradient, Bjorck et al. [18]
argue the effects of improved generalization and faster convergence are due to the larger learning
rates enabled by BN.

Furthermore, both other strategies to increase sample efficiency – data augmentation and pre-training –
work well for nRN18, too (Fig. 6). The latter is particularly remarkable as it allows for very small
training sets and shows that sample efficiency is to some degree a matter of choosing the right
initializations. By contrast, the effect of augmentation sets in only above 25,000 samples.

In order to compare our results with Kim et al. [2], we train various ResNets using exactly the same
training dataset sizes (Tab. 3). The additional lnRN18 model is a version of the narrow ResNet with
larger channel sizes than nRN, yet it has fewer parameters than td+hCNN (and the normal ResNet18).
In contrast to the previous experiment, here we use validation accuracy instead of loss as the stop
criterion for both datasets.

We find that residual connections are not relevant for training on either dataset. This might be due to
image statistics being different than natural images where residual connections work well. All our
models come close to the performance of td+hCNN but only lnRN18 matches its performance, while

2For the pre-trained models, the validation interval is set to 50 instead of 100 iterations due to fast convergence.
3The reported numbers for Pathfinder at lr=0.005 for 100K and 360K samples were obtained in a second run

after the first round of training did not converge. cABC uses a batch size of 512 at 144K samples. Note, Kim
et al. [2] report best-of-five scores.
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Accuracy
model Res. channels Pathfinder cABC parameters

snRN18 X 8-16-16-16 94.6 83.2 30,409
nRN18 X 16-32-32-32 96.3 87.7 119,697
nRN18 16-32-32-32 95.8 87.6 119,697
lnRN18 X 24-48-48-128 96.6 89.5 687,305

td+hCNN [2] 96 89 ∼720,000

Table 3: Comparison of sample efficiency using 54,000 and 40,500 training samples for Pathfinder
and cABC respectively. The best accuracy over five runs is reported. Res. indicates if the model uses
residual connections.

still being more parameter efficient. This demonstrates that recurrence is not a necessary component
for sample-efficient or parameter-efficient learning on Pathfinder and cABC.

3 Conclusion

Our work shows that the Pathfinder and cABC benchmarks can be solved using parameter-effient and
sample-efficient feedforward convolutional networks (ResNets), contrary to previous belief. There
is no fundamental limitation that prevents CNNs from following paths through learning long-range
dependencies, although training can be challenging due to instability of small batch sizes. We were
able to use ResNets with only 30,000 parameters and found that a high sample efficiency can be
attained through various means: large learning-rates, augmentation or pre-training. In a comparison
with the recurrent td+hCNN [2] model our feed-forward ResNets were able to match its performance.
The fact that our CNN architectures are identical in all experiments contradicts the claim by Kim
et al. [2] that feedforward models must be specifically tuned for complex visual tasks. Despite
these findings, we do believe that recurrence could be an essential ingredient for intelligent systems,
particularly in tasks requiring a high degree of processing depth.
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