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ABSTRACT

Vision Transformers (ViTs) take all the image patches as tokens and construct
multi-head self-attention (MHSA) among them. A complete leverage of these im-
age tokens brings redundant computations since not all the tokens are attentive
in MHSA. Examples include that tokens containing semantically meaningless or
distractive image background do not positively contribute to the ViT model pre-
dictions. In this work, we propose to reorganize image tokens during the feed-
forward process of ViT models. Our token reorganization method is integrated
into ViT during training. For each forward inference, we identify attentive image
tokens between the MHSA and FFN (i.e., feed-forward network) modules. The
attentiveness identification of image tokens is guided by the corresponding class
token. Then, we reorganize image tokens by preserving attentive image tokens and
fusing inattentive ones to expedite subsequent MHSA and FFN computations. To
this end, our method improves ViTs from two perspectives. First, under the same
amount of input image tokens, our method reduces MHSA and FFN computation
for efficient inference. For instance, the inference speed of DeiT-S is increased
by 50% while its recognition accuracy is decreased by only 0.3% for ImageNet
classification. Second, by maintaining the same computational cost, our method
empowers ViTs to take more image tokens as input for recognition accuracy im-
provement, where the image tokens are from higher resolution images. An exam-
ple is that we improve the recognition accuracy of DeiT-S by 1% for ImageNet
classification at the same computational cost of a vanilla DeiT-S. Meanwhile, our
method does not introduce more parameters to ViTs. Experiments on the standard
benchmarks show the effectiveness of our method. Code will be made available.

1 INTRODUCTION

Computer vision research has evolved into Transformers since ViTs (Dosovitskiy et al., 2021).
Equipped with global self-attention, ViTs have shown impressive capability upon local convolution
(i.e., CNNs) on prevalent visual recognition scenarios, including image classification (Dosovitskiy
et al., 2021; Touvron et al., 2021a; Jiang et al., 2021; Graham et al., 2021), object detection (Carion
et al., 2020), and semantic segmentation (Xie et al., 2021; Liu et al., 2021; Wang et al., 2021a;c),
with both supervised and unsupervised (self-supervised) training (Caron et al., 2021) configurations.
Based on the main spirit of ViTs (i.e., MHSA), there are wide investigations (Liu et al., 2021; Yuan
et al., 2021; Chu et al., 2021; Wang et al., 2021a; Xie et al., 2021; Han et al., 2021a) to explore
network structure of ViT models for continuous recognition performance improvement.

Along with the development of ViT models, the computation burden is becoming an issue. The
global self-attention between image tokens and long-range dependency make the model converge
slow compared to CNNs. As illustrated in (Dosovitskiy et al., 2021), training a ViT from scratch
typically requires larger datasets (e.g., ImageNet-21k and JFT-300M) than those of CNNs (e.g.,
CIFAR-10/100 and ImageNet-1k). Also, using more training iterations is a necessity for network
convergence (Dosovitskiy et al., 2021; Touvron et al., 2021a). Without such large scale training,
the ViT models are not fully exploited and perform inferior on visual recognition scenarios. These
issues have made it necessary to expediting ViTs.

The model acceleration of ViTs is important to reduce computational complexity. However, there are
few studies focused on ViT acceleration. This is because the significant model difference between
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Figure 1: ViT predictions with incomplete input image tokens. The DeiT-S from (Touvron et al.,
2021a) is used to perform the experiment. On the first two rows, removing image tokens unrelated
to the visual content of the corresponding category does not deteriorate ViT predictions. On the last
two rows, removing related image tokens makes ViT predict incorrectly.

CNNSs and ViTs prevents CNN model acceleration (e.g., pruning and distillation) from applying on
ViTs. Nevertheless, we analyze ViT from another perspective. We observe that not all image tokens
in ViTs contribute positively to the final predictions. Figure 1 shows some examples where part of
the input image tokens are randomly dropped out. On the last two rows, removing image tokens
related to the visual content of the corresponding category makes the ViT predict incorrectly. In
comparison, removing unrelated image tokens do not affect ViT predictions as shown on the first
two rows. On the other hand, we notice that ViTs divide images into non-overlapping tokens and
perform self-attention (Vaswani et al., 2017) computation on these tokens. A notable characteristic
of self-attention is that it can process varying number of tokens. These observations motivate us to
reorganize image tokens for ViT model accelerations.

In this work, we propose a token reorganization method to identify and fuse image tokens. Given all
the image tokens as input, we compute token attentiveness between these tokens and the class token
for identification. Then, we preserve the attentive image tokens and fuse the inattentive tokens into
one token to allow the gradient back-propagate through the inattentive tokens for better attentive
token identification. In this way, we gradually reduce the number of image tokens as the network
goes deeper to decrease computation cost. Also, the capacity of the ViT backbone can be flexibly
controlled via the identification process where no additional parameters are introduced. We adopt
our token reorganization method on representative ViT models (i.e., DeiT (Touvron et al., 2021a)
and LV-ViT (Jiang et al., 2021)) for ImageNet classification evaluation. The experimental results
show our advantages. For instance, with the same amount of input image tokens, our method speeds
up the DeiT-S model by 50%, while only sacrificing 0.3% recognition accuracy on ImageNet classi-
fication. On the other hand, we extend our methods to boost the ViT model recognition performance
under the same computational cost. By increasing the input image resolution, our method facilitates
Vision Transformers in taking more image tokens to achieve higher classification accuracy. Numer-
ically, we improve the ImageNet classification accuracy of the DeiT-S model by 1% under the same
computational cost. Moreover, by using an oracle ViT to guide the token reorganization process,
our method can increase the accuracy of the original DeiT-S from 79.8% to 80.7% while reducing
its computation cost by 36% under the multiply accumulate computation (MAC) metric.
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2 RELATED WORK

2.1 VISION TRANSFORMERS

Transformers (Vaswani et al., 2017) have drawn much attention to computer vision recently due to
its strong capability of modeling long-range relation. A few attempts have been made to add self-
attention layers or Transformers on top of CNNs in image classification (Hu et al., 2019), object de-
tection (Carion et al., 2020), segmentation (Wang et al., 2021c), image retrieval (Lu et al., 2019) and
even video understanding (Sun et al., 2019; Girdhar et al., 2019). Vision Transformer (ViT) (Doso-
vitskiy et al., 2021) first introduced a set of pure Transformer backbones for image classification
and its follow-ups modify the ViT architecture for not only better visual recognition (Touvron et al.,
2021a; Yuan et al., 2021; Zhou et al., 2021) but many other high-level vision tasks, such as ob-
ject detection (Carion et al., 2020; Zhu et al., 2020; Liu et al., 2021), semantic segmentation (Wang
etal.,2021a; Xie et al., 2021; Chu et al., 2021), and video understanding (Bertasius et al., 2021; Fan
etal., 2021). Vision Transformers have shown its strong potential as an alternative to the previously
dominant CNNGs.

2.2 MODEL ACCELERATION

Neural networks are typically overparameterized (Allen-Zhu et al., 2019), which results in signifi-
cant redundancy in computation in deep learning models. To deploy the deep neural networks on
mobile devices, we must reduce the storage and computational overhead of the networks. Many
adaptive computation methods are explored (Bengio et al., 2015; 2013; Wang et al., 2018; Graves,
2016; Hu et al., 2020; Wang et al., 2020b; Han et al., 2021b) to alleviate the computation burden.
Parameter pruning (Srinivas & Babu, 2015; Han et al., 2015; Chen et al., 2015b) reduces redundant
parameters which are not sensitive to the final performance. Some other methods leverage knowl-
edge distillation (Hinton et al., 2015; Romero et al., 2014; Luo et al., 2016; Chen et al., 2015a) to
obtain a small and compact model with distilled knowledge of a larger one. These model accelera-
tion strategies are limited to convolutional neural networks.

There are also some attempts to accelerate the computation of the Transformer model, including
proposing more efficient attention mechanisms (Wang et al., 2020a; Kitaev et al., 2020; Choroman-
ski et al., 2020) and the compressed Transformer structures (Liu et al., 2021; Heo et al., 2021; Wang
et al., 2021a). These methods mainly focus on reducing the complexity of the network architecture
through artificially designed modules. Another approach to ViT acceleration is reducing the number
of tokens involved in the inference of ViTs. Notably, Wang et al. (2021b) proposed a method to
dynamically determine the number of patches to divide on an image. The ViT will stop inference
for an input image if it has sufficient confidence on the prediction of the intermediate outputs. An-
other related work is DynamicViT (Rao et al., 2021), which introduces a method to reduce token
for a fully trained ViT, where an extra learnable neural network is added to ViT to select a subset of
tokens. Our work provides a novel perspective for reducing the computational overhead of inference
by proposing a token reorganization method to progressively reduce and reorganize image tokens.
Unlike DynamicViT, our method does not need a fully trained ViT to help the training and brings no
additional parameters into ViT.

3 TOKEN REORGANIZATIONS

Our method EViT is built upon ViT (Dosovitskiy et al., 2021) and its variants for visual recognition.
We first review ViT and then present how to incorporate our method into the ViT training procedure.
Each component of EViT, including the attentive token identification and inattentive token fusion,
will be elaborated. Furthermore, we analyze the effectiveness of our method by visualizing the
attentive tokens at different layers and discuss training on higher resolution images with EViT.

3.1 VIT OVERVIEW

Vision Transformers (ViTs) are first introduced by Dosovitskiy et al. (2021) into visual recognition.
They perform tokenization by dividing an input image into patches and projecting each patch to a
token embedding. An extra class token [CLS] is added to the set of image tokens and is respon-
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Token keep rate | 1.0 0.9 0.8 0.7 0.6 0.5
Top-1 ACC (%)‘ 79.8  79.7(-0.1) 79.2(-0.6) 78.5(-1.3) 76.8(-3.0) 73.8(-6.0)

Table 1: ImageNet classification accuracy of a straightforward inattentive token removal for a trained
DeiT-S (Touvron et al., 2021a). The inattentive tokens are directly removed based on the attention
from the class token to other tokens at the 4, 7" and 10" layers.

sible for aggregating global image information and final classification. All of the tokens are added
by a learnable vector (i.e., positional encoding) and fed into the sequentially-stacked Transformer
encoders consisting of a multi-head self-attention (MHSA) layer and a feed-forward network (FFN).
In MHSA, the tokens are linearly mapped and further packed into three matrices, namely @, K, and
V. The attention operation is conducted as follows.

QK'
Vd

where d is the length of the query vector. The result of Softmax(QK ' /v/d) is a square matrix
which is called the attention map. The first row of attention map represents the attention from
[CLS] to all tokens and will be used to determine the attentiveness (importance) of each token
(detailed in the next subsection). The output tokens of MHSA are sent to FFN, consisting of two
fully connected layers with a GELU activation layer (Hendrycks & Gimpel, 2016) in between. At
the final Transformer encoder layer, the [CLS] token is extracted and utilized for object category
prediction. More details of Transformers can be found in Vaswani et al. (2017).

Attention(Q, K, V) = Softmax( V. (1)

3.2 ATTENTIVE TOKEN IDENTIFICATION

Let n denote the number of input tokens to a ViT encoder. In the last encoder of ViT, the [CLS] to-
ken is taken out for classification. The interactions between [CLS] and other tokens are performed
via the attention mechanism (Vaswani et al., 2017) in the ViT encoders:

T
qclass ° K

Vd

where g.1ass, JC, and V' denote the query vector of [CLS], the key matrix, and the value matrix,
respectively, in an attention head. In other words, the output of the [CLS] token X a5 is a linear
combination of the value vectors V' = [vy, va,. .., 'un]T, with the combination coefficients (denoted
by a in Eq. 2) being the attention values from [CLS] with respect to all tokens. Since v; comes
from the i-th token, the attention value a; (i.e., the i-th entry in @) determines how much information
of the ¢-th token is fused into the output of [CLS] (i.e., T ]ass) through the linear combination. It is
thus natural to assume that the attention value a; indicate the importance of the ¢-th token.

Tlass = Softmax( W=a-V. 2)

Moreover, Caron et al. (2021) also showed that the [CLS] token in ViTs pays more attention (i.e.,
having a larger attention value) to class-specific tokens than the tokens on the non-object regions.
To this end, we propose to use the attentiveness of the [CLS] token with respect to other tokens
to identify the most important tokens. Based on these arguments, a simple method to reduce com-
putation in ViT is to remove the tokens with the smallest attention values. However, we find that
directly removing those tokens severely deteriorate the classification accuracy, as shown in Table 1.
Therefore, we propose to incorporate image token reorganization during the ViT training process.

In multi-head self-attention layer, there are multiple heads performing the computation of Eq. I in
parallel. Thus, there are multiple [CLS] attention vectors a(®), h = [1,..., H], with H being the
total number of attention heads (Vaswani et al., 2017). We compute the average attentiveness value
of all heads by a = Zthl a™ /H. As shown in Figure 2, we identify and preserve the tokens
corresponding to the k largest (top-k) elements in a (k is a hyperparameter), which we call the
attentive tokens, and further fuse the other tokens (which we call the inattentive tokens) into a new
token. The fusion of tokens are detailed in the following paragraph. We define the token keeping
rate as kK = k/n.
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Figure 2: Token reorganization within a single Transformer encoder. Based on ViT (Dosovitskiy
et al., 2021), we reorganize tokens in the original Transformer encoder. Specifically, we calculate
the attentiveness of the class token with respect to each image token. Then, we use the attentiveness
value as a criterion to identify the top-k attentive tokens and fuse the inattentive tokens.

3.3 INATTENTIVE TOKEN FUSION

At the initial training stage, the ViT model is not stable and attentive tokens are incorrectly identified.
To mitigate this effect, we fuse the remaining tokens at the current stage to supplement attentive ones,
as illustrated in Figure 2. The inattentive token fusion benefits our method to accurately identify
attentive tokens. Meanwhile, the ViT training converges more efficiently.

We denote the indices set of the inattentive tokens as . The proposed inattentive token fusion is a
weighted average operation, which can be written as follows:

Ltused = Z a;T; (3)
1EN
The fused token xryseq is appended to the attentive tokens and sent to the subsequent layers. The
computation cost of token fusion is negligible compared to the bulk computation of ViT.

3.4 ANALYSIS

Training with higher resolution images. Since our approach is efficient in processing image to-
kens, we are able to feed more tokens into an EViT while maintaining the computational cost at the
same level of a vanilla ViT. A straightforward method to get more tokens is resizing the input im-
ages to a higher resolution and keeping the patch size unchanged. Note that these higher resolution
images do not need to come from raw images with a larger resolution. In our vision recognition
experiments on ImageNet, we simply resize the standard input images of size 224 x 224 to a larger
spatial size (e.g., 256 x 256) via bicubic interpolation to obtain the higher resolution images, which
are further divided into more tokens. Therefore, compared to a vanilla ViT, EViT uses no addi-
tional information for the images to obtain the prediction results in both training and inference. The
experimental results in Table 6 validate the effectiveness of our proposed method.

Visualization. Our proposed EViT accelerates ViTs by identifying the attentive tokens and discard-
ing the redundant calculation on inattentive image tokens. To further investigate the interpretability
of EViT, we visualize the attentive token identification procedure in Figure 3. We present the origi-
nal images and the attentive token identification results at different layers (e.g., the 4%, 7t" and 10*"
layer). It can be seen that as the network deepens, the inattentive tokens are gradually removed or
fused, while the most informative/attentive tokens are identified and preserved. In this way, our pro-
posed method facilitates the ViTs in focusing on class-specific tokens in images. The visualization
results also validate that our EViT is effective in dealing with images with either simple backgrounds
or complex backgrounds.
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input image  layer 4 layer 7 layer 10 inputimage layer4 layer 7 layer 10

Figure 3: Visualization of inattentive tokens on EViT-DeiT-S with 12 layers. The masked regions
represent the inattentive tokens that are fused into a new token. Our method can effectively identify
inattentive tokens in images with either simple inattentive tokens (in the first two rows) or complex
inattentive tokens (in the last two rows).

Table 2: Comparison on the two variants of EViT on DeiT-S (Touvron et al., 2021a). The results are
the average of three independent trials for reducing the influence of randomness.

(a) Attentive token identification w/o inattentive (b) Attentive token identification w/ inattentive to-

token fusion ken fusion

Keep Top-1 ACC Top-5 ACC Throughput MACs Keep Top-1 ACC Top-5 ACC Throughput MACs (G)
rate (%) (%) (images/s) rate (%) (%) (images/s)

DeiT-S 79.8 94.9 2923 5.0 DeiT-S 79.8 94.9 2923 5.0

0.9  79.9(+0.1) 949 (-0.0) 3201 (+10%) 4.3 (-14%) 09  79.8(-0.00 950 (+0.1) 3197 (+9%) 4.3 (-14%)
0.8  79.7(-0.1) 94.8(-0.1) 3772 (+27%) 3.7 (-26%) 08  79.8(-0.0)0 949 (-0.0) 3619 (+24%) 3.7 (-26%)
0.7  794(-04) 94.7(-0.2) 4249 (+45%) 3.2 (-36%) 07 795(-03) 94.8(-0.1) 4385 (+50%) 3.2(-36%)
0.6  78.9(-0.9) 94.5(-0.4) 4967 (+70%) 2.8 (-44%) 0.6  789(-0.9) 945(-04) 4722 (+62%) 2.8 (-44%)
0.5  784(-1.4) 94.1(-0.8) 5325(+82%) 2.5(-50%) 0.5  785(-1.3) 942(-0.7) 5408 (+85%) 2.5 (-50%)

4 EXPERIMENTS

Implementation details. We train all of the models on the ImageNet (Deng et al., 2009) training
set with approximately 1.2 million images and report the accuracy on the 50k images in the test
set. By default, the token identification module is incorporated into the 4*", 7¢* and 10" layer of
DeiT-S and Deit-B (with 12 layers in total) and incorporated into the 5%, 9'" and 13" layer of
LV-VIiT-S (with 16 layers in total). The image resolution in training and testing is 224 x 224 unless
otherwise specified. For the training strategies and optimization methods, we simply follow those in
the original papers of DeiT (Touvron et al., 2021a) and LV-ViT (Jiang et al., 2021). Since our method
can be easily incorporated into these models without making substantial modification to them, the
original training strategies work well with our method. Besides, we adopt a warmup strategy for
the attentive token identification. Specifically, the keep rate of attentive tokens is gradually reduced
from 1 to the target value with a cosine schedule. Unlike DynamicViT (Rao et al., 2021), we do not
use a pretrained ViT to initialize our models in most experiments, except in the experiments with
an oracle ViT (see the following paragraphs). We train the models with EViT from scratch for 300
epochs on 2 NVIDIA A100 GPUs and measure the throughput of the models on a single A100 GPU
with a batch size of 128 unless otherwise specified.
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Table 3: Results of EViT on DeiT-B (Touvron et al., 2021a) and LV-ViT-S (Jiang et al., 2021).

(a) Results of EViT on DeiT-B
(b) Results of EViT on LV-ViT-S

Keep Top-1 ACC Top-5 ACC Throughput MACs (G)

rate (%) (%) (images/s) Keep Top-1 ACC Top-5 ACC Throughput MACs (G)
DeiT-B 81.8 95.6 1295 18.3 rate (%) (%) (images/s)

0.9 81.8(-0.0) 95.6(-0.0) 1441 (+11%) 16.0 (-12%) LV-ViT-s 833 - 2112 6.6
0.8  81.7(-0.1) 954(-0.2) 1637 (+26%) 13.8 (-25%) 07 830(03) 96.3 2054 (+40%) 4.7 (29%)
0.7  813(-0.5 953(-03) 2053 (+59%) 12.0 (-34%) 05 825(08) 962 3603 (+71%) 3.9 (41%)

0.6 80.9(-0.9) 95.1(-0.5) 2177 (+68%) 10.5 (-43%)
0.5 80.0(-1.8) 94.5(-1.1) 2482 (+92%) 9.2 (-50%)

Table 4: The performance of EViT-DeiT-S with different combinations of keep rates and reorgani-
zation positions (layers), which have the same level of inference throughput and MACs.

Reorganization layers Keep rates Top-1 Top-5 Throughput (img/s) MACs (G)
[4,7,10] [0.70,0.70,0.70] 79.50 94.77 4385 3.25
[5,7,10] [0.64,0.70,0.70] 79.57 94.80 4271 3.23
[3,7,10] [0.74,0.70,0.70] 79.47 94.72 4261 3.23
[4,8,10] [0.70,0.64,0.70] 79.64 94.86 4299 3.25
[4,6,10] [0.70,0.75,0.70] 79.54 94.78 4250 3.25

We report the main result of EViT on Tables 2 and 3. On both DeiT and LV-ViT, the proposed
EViT achieves significant speedup while restricting the accuracy drop in a relatively small range.
For example, DeiT-S trained with EViT with a keep rate of 0.7 increase the inference throughput
by 50% while maintaining the Top-1 accuracy reduction within 0.3% on ImageNet. We plot these
results in Figure 4, which shows EViT is very competitive against many vision models in terms of
computation-accuracy trade-off.

Inattentive token fusion. As we have discussed in the previous section, random factors in ViTs
training (such as random initialization) may interfere with the token selection process. To mitigate
this problem, we propose inattentive token fusion, which fuse the non-topk tokens according to the
attentiveness from the [CLS] token. We experimentally compare the proposed token reorganiza-
tion method with and without inattentive token fusion. As shown in Table 2, token reorganization
with inattentive token fusion generally outperforms the vanilla counterpart without inattentive token
fusion, while the two has basically the same computational complexity and inference throughput.
Moreover, we observe in our experiments that the vanilla token reorganization has a higher fluc-
tuation in accuracy. On average, token reorganization method w/ inattentive token fusion has an
standard deviation of 0.12 in accuracy, which is smaller than that w/o inattentive token fusion (0.15).

Token reorganization locations. It is possible that different combinations of keep rates and token
reorganization layers can reach the same computational efficiency. For example, wee can a) move the
reorganization operation one layer ahead and increase the keep rate, or b) move the reorganization
operation one layer behind and decrease the keep rate, to keep the computation cost (approximately)
unchanged. We train DeiT-S with different reorganization locations, each of which has a similar
computational cost as the first one. To reduce the influence of randomness, we repeat the experiments
and report the average over two trials in Table 4. The results show that moving reorganization
operations to deeper layers slightly improve the accuracy over the standard configuration (the first
row) used in our experiments, suggesting the possibility of further improvement of the proposed
method. For simplicity, we did not search for better configurations and stick with the standard one.

Epochs of training. Since ViTs do not have inductive bias such as translational invariance processed
by CNNs, they typically require more training data and/or training epochs to reach a comparable
generalization performance as CNNs (Dosovitskiy et al., 2021; Touvron et al., 2021a). We find that
training longer epochs continues to benefit ViTs in efficient computation regime. We train the DeiT-
S model with 0.7 keep rate for longer epochs of 450 and 600, respectively. As shown in Table 5,
their performance steadily improves with training epochs.
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Table 5: Results of training EViT-DeiT-S with a keep rate of 0.7 for different epochs.

Keep rate  Epochs Top-1 Top-5 MACs (G)

0.7 300 79.5 94.8 3.25
0.7 450 80.2 95.1 3.25
0.7 600 81.0 95.3 3.25

Table 6: Results of training/finetuning on high resolution images. EViT-DeiT-S and EViT-LV-ViT-S
have a throughput/MACs comparable to the baselines while achieving better recognition accuracy
on ImageNet. The number behind 7 indicates the image size for finetuning for 100 epochs.

(a) DeiT-S (b) LV-ViT-S

Model Keep Image Top-1 Top-5 img/s MACs Model Keep Image size Top-1 Top-5 img/s MACs

rate  size (%) (%) (G) rate (%) (%) (©)
, LV-VITS 1.0 224 833 - 2112 660
DelS 10 224 798 949 2923 499 LV-VITS 1.0 2241384 844 — 557 219

EViT 05 256 793 947 3788  3.33
EViT 0.5 288 80.1 95.0 3138 4.38
EVIT 0.5 304 81.0 956 2905 497
EVIT 0.6 256 80.0 95.0 3524 379
EViT 0.6 288 81.0 954 2927 499
EViT 0.7 272 803 953 2870 5.01

EViT 0.9 240 83.6 965 1956 6.79
EViT 0.8 256 83.6 96.6 1901 6.93
EViT 0.7 256 835 96.5 2102 6.22
EViT 0.7 272 83.7 96.6 1829 7.07
EViT 0.5 304 834 965 1758 7.38
EViT 0.7 2721448 847 97.1 548 21.5

Training/Finetuning on higher resolution images. By fusing the inattentive tokens, We are able
to feed EViT with more tokens under the same computational cost. Therefore, we train and/or
finetune EViT on resized images with higher resolutions than the standard resolution of 2242, and
we report the results on Table 6. We can see that EViT in most tested cases performs favourably
against a vanilla DeiT/LV-ViT, while having a comparable or higher inference throughput than the
baselines. Notably, training EViT-LV-ViT-S on images of resolution 2242 and further finetuning it
on a higher resolution of 4482 for another 100 epochs gives a very competitive Vision Transformer
model, achieving an ImageNet top-1 accuracy of 84.7%, which is 0.3% higher than LV-ViT-S @384
with basically the same throughput and number of parameters. The experimental results validate
our hypothesis that images typically contain tokens that are less informative and contribute little
to the recognition task. Since ViTs perform global self-attention among all tokens in as early as
the first layer, the early interaction and information exchange between tokens makes it possible to
discard/fuse some of the least informative tokens in intermediate ViT layers since they have been
“seen” by other tokens (including the [CLS] token). In comparison, the receptive field of a CNN
at the shallow layers is relatively small due to the locality property of convolution, which makes it
difficult to reduce computation at early stages.

Training with an oracle ViT. In EViT, the criterion of selecting tokens is the attention between the
[CLS] token and other tokens. Therefore, it would be very helpful if we know the importance of
each token to the prediction tasks in advance. To this end , we introduce an oracle ViT to guide

Table 7: Results of training EViT-DeiT-S and EViT-DeiT-B using DeiT-S as an oracle. Training for
longer epochs continues to benefits the EViT in efficiency regime.

Model Keeprate Epochs Top-1 Top-5 Throughput (img/s) MACs (G)

DeiT-S 1.0 300 79.8 949 2923 4.99
EViT-DeiT-S w/o Oracle 0.7 300 79.5 948 4385 3.25
EViT-DeiT-S w/ Oracle 0.7 300 80.8 954 4385 3.25
EViT-DeiT-S w/ Oracle 0.7 450 81.0 955 4385 3.25
EViT-DeiT-S w/ Oracle 0.7 600 813 955 4385 3.25

DeiT-B 1.0 300 81.8 956 1295 18.3
EViT-DeiT-B w/o Oracle 0.7 300 813 953 2053 12.0
EViT-DeiT-B w/ Oracle 0.7 300 82.1 95.6 2053 12.0
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Figure 4: Comparison of different models with various accuracy-throughput trade-off. The proposed
method EViT achieves better trade-off than the other methods (marked with circles). The throughput
is measured on an NVIDIA A100 GPU using the largest possible batch size for each model. The in-
put image size is 2242 unless specified after the @. The comparing methods include DeiT (Touvron
et al., 2021a), CaiT (Touvron et al., 2021b), LV-ViT (Jiang et al., 2021), CoaT (Xu et al., 2021),
Swin (Liu et al., 2021), Twins (Chu et al., 2021), Visformer (Chen et al., 2021), ConViT (d’Ascoli
etal., 2021), TNT (Han et al., 2021a), and EfficientNet (Tan & Le, 2019).

the [CLS] through the token selection process. A good oracle knows which tokens are important
and which are not. For this purpose, we use a fully trained DeiT-S/B as an oracle and initialize
EViT-DeiT-S/B with the parameters of the oracle ViT, such that the EViT know the which tokens
contribute more to prediction result. We train EViT equipped with an oracle using the same training
setup as training a vanilla EViT. As shown in Table 7, training with an oracle significantly improves
the recognition accuracy of EViT.

5 CONCLUSION

In this paper, we present a token reorganization method. By identifying the tokens with highest
attention from the class token, the proposed EViT reach a better trade-off between accuracy and
efficiency than various Vision Transformer models. Moreover, we propose inattentive token fusion,
which fuse the information from less informative tokens to a new token. Inattentive token fusion im-
proves both the recognition accuracy and training stability. Experimentally, we apply the proposed
token reorganization method to two variants of Vision Transformer, namely, DeiT (Touvron et al.,
2021a) and LV-ViT (Jiang et al., 2021). In both variants, EViT achieves a significant speedup in
inference while the reduction in recognition accuracy is relatively small. Moreover, when training
on higher resolution images, EViT improves the accuracy to various extents while maintaining a
similar or smaller computation cost as the original DeiT/LV-ViT models. Besides, when equipped
with an oracle ViT which knows which tokens are more important, EViT can achieve further im-
provement on the trade-off of accuracy and efficiency. The proposed EViT can be easily adapted in
ViTs and brings no additional parameters, nor does it require sophisticated training strategies. The
proposed token reorganization method can serve as an effective acceleration approach for Vision
Transformers.
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A VISUALIZATION

In this part, we present more visualization results in Figure 5 to show the attentive token identifica-
tion. The input images are randomly selected from ImageNet dataset. The results validate that our
EViT is able to deal with different images from various categories.

input image  layer 4 layer 7 layer 10 inputimage  layer 4 layer 7 layer 10

Figure 5: Extended visualization results of inattentive tokens on EViT-DeiT-S with 12 layers.. The
regions without masks represent the attentive tokens. The masked regions denote the inattentive
tokens that are fused into a new token. Our EViT is effective in dealing with images from different
categories.
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Algorithm 1: PyTorch-like pseudocode of EViT for a ViT encoder.

number of attention heads

number of input tokens

the dimension of token vector

the token keep rate
: the input tokens with shape [N, C], with the first being the [CLS]
token

He e e e
X~z

# fc_qg, fc_k, fc_v: linear transforms for query, key, and value of self-
attention

# @: matrix multiplication

# proj: linear projection in self-attention

# norm: layer normalization

# ffn: feed-forward network

# initialize

avg_cls_attn = zeros(N-1)

x_out = []

x_residual = x

X = norm(x)

## multi-head self-attention computation
for i in range (0, H): # compute self-attention for each attention head
# linearly map the tokens to query, key, and value matrices
a, k, v = fc_qgli]l (x), fc_k[i](x), fc_vI[i] (x)
# compute the attention map
attn = (g @ k.transpose()) / sqrt (C/H)
attn = softmax (attn, dim=1)

X_head = attn @ v
x_out.append (x_head)

# compute the [CLS] attentiveness w.r.t. other tokens,
# without using [CLS] attention to itself

cls_attn = attn[0, 1:]

avg_cls_attn += cls_attn

# concatenate the output tokens of all heads

x = concat (x_out, dim=1)
X = proj(x) # shape: [N, C]
X = x + xX_residual

# average the [CLS] attentiveness over all heads
avg_cls_attn /= H

# sort the avg_cls_attn in descending order
sorted_cls_attn, idx = sort(avg_cls_attn)

# compute the number of attentive tokens, without counting the [CLS] token
K = ceil(k » (N - 1))

topk_attn, topk_idx = sorted_cls_attn[:K], idx[:K]
non_topk_attn, non_topk_idx = sorted_cls_attn[K:], idx[K:]

# separate [CLS] token and other tokens
cls_token = x[0:1]
X_without_cls = x[1:]

# obtain the attentive and inattentive tokens
attentive_tokens = x_without_cls[topk_idx]
inattentive_tokens = x_without_cls[non_topk_idx]

# compute the weighted combination of inattentive tokens
fused_token = non_topk_attn @ inattentive_tokens

# concatenate these tokens

x_new = concat ([cls_token, attentive_tokens, fused_token], dim=0)
x_residual = xX_new
X_new = norm(x_new)
x_new = ffn(x_new)

X_new = xX_new + x_residual
return x_new
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