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Abstract

The stochastic gradient Langevin Dynamics is one of the most fundamental al-1

gorithms to solve sampling problems and non-convex optimization appearing in2

several machine learning applications. Especially, its variance reduced versions3

have nowadays gained particular attention. In this paper, we study two variants4

of this kind, namely, the Stochastic Variance Reduced Gradient Langevin Dynam-5

ics and the Stochastic Recursive Gradient Langevin Dynamics. We prove their6

convergence to the objective distribution in terms of KL-divergence under the7

sole assumptions of smoothness and Log-Sobolev inequality which are weaker8

conditions than those used in prior works for these algorithms. With the batch9

size and the inner loop length set to
p
n, the gradient complexity to achieve an10

✏-precision is Õ((n + dn1/2✏�1)�2L2↵�2), which is an improvement from any11

previous analyses. We also show some essential applications of our result to12

non-convex optimization.13

1 Introduction14

1.1 Background and Organization15

Over the past decade, the gradient Langevin Dynamics (GLD) has gained particular attention for16

providing an effective tool for sampling from a Gibbs distribution, a fundamental task omnipresent17

in the field of machine learning and statistics, and for non-convex optimization, which is nowadays18

witnessing an unignorable empirical success. Notably, GLD is a stochastic differential equation (SDE)19

that can be viewed as the steepest descent flow of the Kullback-Leibler (KL) divergence towards the20

stationary Gibbs distribution in the space of measures endowed with the 2-Wasserstein metric (Jordan21

et al., 1998). As a consequence of the unique properties of GLD, its implementable discrete schemes22

and their ability to suitably track it have been the subject of a large number of studies.23

The Euler-Maruyama scheme of GLD gives rise to an algorithm known as the Langevin Monte24

Carlo method (LMC). This algorithm is biased (Wibisono, 2018): that is, the distribution of the25

discrete scheme does not converge to the same as GLD. Nonetheless, it has been shown that this26

bias could be made arbitrarily small under certain assumptions by taking a sufficiently small step27

size (Dalalyan, 2017b; Vempala and Wibisono, 2019). Dalalyan (2017a,b) provided one of the first28

non-asymptotic rates of convergence of LMC for smooth log-concave distributions. Assumptions to29

obtain a non-asymptotic analysis and this controllable bias have been relaxed by further research to30

dissipativity and smoothness (Raginsky et al., 2017; Xu et al., 2018), and recently to Log-Sobolev31

inequality (LSI) and smoothness (Vempala and Wibisono, 2019). This relaxation of conditions32

is especially meaningful as the objective distribution nowadays tends to become more and more33

complicated beyond the classical assumption of log-concavity.34
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However, in the field of machine learning, the main function can often be formulated as the average35

of the loss function of an enormous number of training data points (Welling and Teh, 2011), which36

subsequently makes it difficult to calculate its full gradient. As a result, research on stochastic37

algorithms has been also conducted to avoid this computational burden (Chen et al., 2021; Dubey38

et al., 2016; Raginsky et al., 2017; Welling and Teh, 2011; Xu et al., 2018; Zou et al., 2018, 2019a,b,39

2021). Welling and Teh (2011) introduced the concept of Stochastic Gradient Langevin Dynamics40

(SGLD) which combines the Stochastic Gradient Descent with LMC. This has been the subject of41

successful studies (Raginsky et al., 2017; Welling and Teh, 2011; Xu et al., 2018). Nevertheless, the42

variance of its stochastic gradient is too large, which leads to a slow convergence compared to LMC.43

Therefore, stochastic gradient Langevin Dynamics algorithms with variance reduction, such as the44

Stochastic Variance Reduced Gradient Langevin Dynamics (SVRG-LD), have been considered and45

their convergence has been thoroughly analyzed for both sampling (Dubey et al., 2016; Zou et al.,46

2018, 2019a, 2021) and optimization (Huang and Becker, 2021; Xu et al., 2018).47

Dubey et al. (2016) first united SGLD with variance reduction techniques and proposed two new48

algorithms, namely, SVRG-LD and SAGA-LD. Chatterji et al. (2018) and Zou et al. (2018) proved49

the convergence rate of SVRG-LD to the target distribution in 2-Wasserstein distance for smooth50

log-concave distributions. Xu et al. (2018) showed the weak convergence of SVRG-LD under the51

smoothness and dissipativity conditions. They expanded the non-asymptotic analysis of Raginsky52

et al. (2017) to LMC and SVRG-LD, and improved the result for SGLD. Few years ago, Zou et al.53

(2019a) provided the gradient complexity of SVRG-LD to converge to the stationary distribution in54

2-Wasserstein distance under the smoothness and dissipativity assumptions. This convergence can be55

even improved if we make a warm-start (Zou et al., 2021). While these works investigated algorithms56

with fixed hyperparameters, Huang and Becker (2021) additionally assumed a strict saddle and some57

other minor conditions to study SVRG-LD with a decreasing step size and improved its convergence58

in high probability to the second order stationary point. Zou et al. (2019b) also applied variance59

reduction techniques to the Hamiltonian Langevin Dynamics, or underdamped Langevin Dynamics60

in opposition to GLD also known as overdamped Langevin Dynamics. As we can observe, the61

current convergence analyses of the stochastic schemes with variance reduction are mostly restricted62

to log-concavity and dissipativity, and do not enjoy the same broad convergence guarantee with a63

concrete gradient complexity as LMC does under LSI and smoothness in terms of KL-divergence.64

Therefore, in order to bridge this theoretical gap between LMC and stochastic gradient Langevin65

Dynamics with variance reduction, we study in this paper the convergence of the latter under the66

relaxed assumptions of smoothness and LSI. In Section 3, we study the convergence to the Gibbs67

distribution of SVRG-LD and the Stochastic Recursive Gradient Langevin Dynamics (SARAH-LD),68

another variant of stochastic gradient Langevin Dynamics with variance reduction inspired by the69

Stochastic Recursive Gradient algorithm (SARAH) of Nguyen et al. (2017a,b). On the other hand,70

optimization and sampling are only two sides of the same coin for GLD. That is why, in Section 4,71

we also investigate implications of Section 3 for non-convex optimization. We prove the convergence72

of SVRG-LD and SARAH-LD to the global minimum of dissipative functions and we provide their73

non-asymptotic rate of convergence. We also consider the additional weak Morse assumption and74

study its effect.75

1.2 Contributions76

The major contributions of this paper can be summarized as follows. We provide a non-asymptotic77

analysis of the convergence of SVRG-LD and SARAH-LD to the Gibbs distribution in terms of78

KL-divergence under smoothness and LSI which are weaker conditions than those used in prior works79

for these algorithms. KL-divergence is generally a stronger convergence criterion than both total80

variation (TV) and 2-Wasserstein distance as they can be controlled by KL-divergence under the LSI81

condition. Notably, we prove that, with the batch size and inner loop length set to
p
n, the gradient82

complexity to achieve an ✏-precision in terms of KL-divergence is Õ((n + dn1/2✏�1)�2L2↵�2),83

which is better than any previous analyses. See Table 1 for a comparison with previous research in84

terms of assumptions, criterion and gradient complexity. We also prove the convergence of SVRG-85

LD and SARAH-LD to the global minimum under an additional assumption of dissipativity with a86

gradient complexity of Õ((n+ n1/2✏�1dL↵�1)�2L2↵�2) which is better than previous work since87

it has almost all the time a dependence on n of O(
p
n) and does not require the batch size and the88

inner loop length to depend on the accuracy ✏. On the other hand, we import the idea of Li and89

Erdogdu (2020) from product manifolds of spheres to the Euclidean space in order to show that under90
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Table 1: Comparison of our main result with prior works (sampling). The first three works are about
LMC. Compared to Vempala et al. (2019), with the same assumptions and criterion, the order of
gradient complexity is improved from n to

p
n. The others are about SVRG-LD except the last one

which is about the Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance
Reduction. ✏ is the accuracy required on the criterion, d is the dimension of the input of the main
function, n is the number of data points, and L is the smoothness constant. ⇤ 2-Wass. stands for
“2-Wasserstein”, and conv. stands for “convergence”. ⇤⇤ poly(M,L) stands for a polynomial of M
and L.

Method Major Assumptions Criterion⇤ Gradient Complexity⇤⇤

Dalalyan (2017a) Smooth, Log-concave (M ) 2-Wass. Õ(nd

✏2
·poly(M,L))

Xu et al. (2018) Smooth, Dissipative Weak conv. Õ(nd

✏ )·e
Õ(d)

Vempala et al. (2019) Smooth, Log-Sobolev (↵) KL Õ(n

✏
·d�2L2↵�2)

Zou et al. (2018) Smooth, Log-concave (M ) 2-Wass. Õ
⇣
n+L

3/2
n
1/2

d
1/2

M
3/2

✏

⌘

Zou et al. (2019a) Smooth, Dissipative 2-Wass. Õ
⇣
n+n

3/4

✏2
+n

1/2

✏4

⌘
·eÕ(�+d)

Zou et al. (2021) Smooth, Dissipative, Warm-start TV Õ
⇣

�
2

✏2

⌘
·eÕ(d)

Zou et al. (2019b) Smooth, Dissipative 2-Wass. Õ

✓
(n+ n

1/2

✏2µ
3/2
⇤

)^µ
�2
⇤
✏4

◆

This paper Smooth, Log-Sobolev (↵) KL Õ
⇣⇣

n+ dn
1/2

✏

⌘
·�2L2↵�2

⌘

the additional assumption of weak Morse, the convergence in the Euclidean space can be accelerated91

by eliminating the exponential dependence on 1/✏.92

1.3 Other Related Works93

The theoretical study of GLD goes back to Chiang et al. (1987) who showed that global convergence94

could be achieved with a proper annealing schedule. This work did not specify how to implement95

this SDE, but Gelfand and Mitter (1991) filled this gap. Later, Borkar and Mitter (1999) proved an96

asymptotic convergence in terms of relative entropy for the discrete scheme of gradient Langevin97

Dynamics when the inverse temperature and the step size are kept constant.98

The variance reduction technique, introduced to Langevin Dynamics by Dubey et al. (2016), was orig-99

inally presented by Johnson and Zhang (2013) as Stochastic Variance Reduced Gradient (SVRG) to100

improve the convergence speed of Stochastic Gradient Descent. Other variance reduction techniques101

were also considered such as the Stochastic Recursive Gradient Langevin Dynamics (SARAH) from102

Nguyen et al. (2017a,b) which outperforms SVRG in non-convex optimization (Pham et al., 2020)103

and is used in many algorithms such as SSRGD (Li, 2019) and SpiderBoost (Wang et al., 2019).104

Li and Erdogdu (2020) extended Vempala and Wibisono’s result to Riemannian manifolds. One of105

the highlights of their work is that they showed the Log-Sobolev constant of the Gibbs distribution106

for a product manifold of spheres only depends on a polynomial of the inverse temperature under107

some particular conditions including weak Morse. We will adapt this result to our situation.108

In the concurrent work of Balasubramanian et al. (2022) (especially Section 6), they also studied109

the convergence of stochastic schemes of GLD with more relaxed conditions than prior analyses.110

However, our contributions are not overshadowed by theirs, and we clarify the reasons. In Subsection111

6.1 of their paper, Balasubramanian et al. (2022) focused on stochastic discrete schemes with finite112

variance and bias (which is not the case for SVRG-LD) and provided a first-order convergence113

guarantee in the space of measures equipped with the 2-Wasserstein distance. Subsection 6.2 proved114

a global convergence under some other conditions but most of these two analyses did not consider115

in particular the usual case in machine learning when F is the average of some other functions,116

which leads to a generally worse gradient complexity than ours. Concerning this finite sum setting,117

Balasubramanian et al. (2022) investigated the Variance Reduced LMC algorithm (slightly different118

from SVRG-LD in this paper) in Subsection 6.3 and gave a first-order convergence under the sole119

assumption of smoothness. When restrained in our problem setting, the gradient complexity of120

SVRG-LD and SARAH-LD we provide is still considerably better (see Section 3 for more details).121

3



1.4 Notation122

We denote deterministic vectors by a lower case symbol (e.g., x) and random variables by an upper123

case symbol (e.g., X). The Euclidean norm is denoted by k · k for vectors and the inner product124

by h·, ·i. For matrices, k · k is the norm induced by the Euclidean norm for vectors. We only125

treat distributions absolutely continuous with respect to the Lebesgue measure in Rd for simplicity.126

Especially, throughout the paper, ⌫ refers to the probability measure with the density function127

d⌫ / e��Fdx, where F is a function introduced below. a _ b is equivalent to max{a, b} and a ^ b128

to min{a, b}. We also use the shorthand Õ to hide logarithmic polynomials.129

2 Preliminaries130

In this section, we briefly explain the problem setting, necessary mathematical background and131

assumptions used in this paper.132

2.1 Problem Setting and GLD133

In Section 3, we consider sampling from a distribution written in the form d⌫ / e��Fdx where � is134

a positive constant (which corresponds to the inverse temperature) and F : Rd ! R is formulated as135

F (x) := 1
n

Pn
i=1 fi(x), the average of the loss function of n training data points {x(i)}ni=1. Here,136

fi(x) := f(x, x(i)) can be regarded as the loss of data x(i). For instance, F can be the average137

of the negative log likelihood of n training data points. In Section 4, we consider the non-convex138

optimization (minimization) of the same F as above.139

GLD can be described as the following stochastic differential equation (SDE):140

dXGLD
t = �rF (XGLD

t )dt+
p

2/�dB(t), (1)

where � > 0 is called the inverse temperature parameter and {B(t)}t�0 is the standard Brownian141

motion in Rd. It can be used for sampling since under some reasonable assumptions of F , the142

distribution ⇢GLD
t of XGLD

t governed by SDE (1) converges to the invariant stationary distribution143

d⌫ / e��Fdx, also known as the Gibbs distribution (Chiang et al., 1987). Moreover, as previously144

mentioned, this convergence is efficient in the sense that SDE (1) corresponds to the steepest descent145

flow of the Kullback-Leibler (KL) divergence towards the stationary distribution in the space of146

measures endowed with the 2-Wasserstein metric (Jordan et al., 1998). Alternatively, GLD can be147

interpreted as the composite optimization problem of a negative entropy and an expected function148

value as follows (Wibisono, 2018):149

min
q:density

Eq[�F ] + Eq[log q].

The gradient flow is the well-known Fokker-Planck equation associated to SDE (1):150

@⇢GLD
t

@t
= r · (⇢GLD

t rF ) +
1

�
�⇢GLD

t =
1

�
r ·
✓
⇢GLD
t r log

⇢GLD
t

⌫

◆
. (2)

This will be useful in our analysis. In addition to its potential for sampling, GLD can also be employed151

for non-convex optimization as the Gibbs distribution concentrates on the global minimum of F for152

sufficiently large values of � (Hwang, 1980).153

2.2 Algorithms of GLD154

Applying the Euler-Maruyama scheme to (1), we obtain the Langevin Monte Carlo (LMC)155

Xk+1 = Xk � ⌘rF (Xk) +
p
2⌘/�✏k,

where ⌘ is called the step size. This is similar to the gradient descent except the additional Gaussian156

noise
p
2⌘/�✏k, where ✏k ⇠ N(0, Id⇥d) and Id⇥d is the d⇥ d unit matrix. In the case n is huge and157

the computation of rF is too difficult, we are incited to use stochastic gradient methods in analogy158

to stochastic gradient optimization. This gives159

Xk+1 = Xk � ⌘v(Xk) +
p

2⌘/�✏k,
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Algorithm 1: SVRG-LD / SARAH-LD
1 input: step size ⌘ > 0, batch size B, epoch length m, inverse temperature � � 1
2 initialization: X0 = 0, X(0) = X0

3 foreach s = 0, 1, . . . , (K/m) do
4 vsm = rF (X(s))
5 randomly draw ✏sm ⇠ N(0, Id⇥d)

6 Xsm+1 = Xsm � ⌘vsm +
p
2⌘/�✏sm

7 foreach l = 1, . . . ,m� 1 do
8 k = sm+ l
9 randomly pick a subset Ik from {1, . . . , n} of size |Ik| = B

10 randomly draw ✏k ⇠ N(0, Id⇥d)
11 if SVRG-LD then
12 vk = 1

B

P
ik2Ik

(rfik(Xk)�rfik(X
(s))) + vsm

13 else if SARAH-LD then
14 vk = 1

B

P
ik2Ik

(rfik(Xk)�rfik(Xk�1)) + vk�1

15 end
16 Xk+1 = Xk � ⌘vk +

p
2⌘/�✏k

17 end
18 X(s+1) = X(s+1)m

19 end

where v(Xk) is the stochastic gradient. When v(Xk) is defined as 1
B

P
ik2Ik

rfik(Xk), where160

B is called the batch size and Ik is a random subset uniformly chosen from {1, . . . , n} such161

that |Ik| = B, we obtain the Stochastic Gradient Langevin Dynamics (SGLD). As this method162

exhibits a slow convergence, it has been popular to use variance reduction methods such as163

the Stochastic Variance Reduced Gradient Langevin Dynamics (SVRG-LD) where v(Xk) =164
1
B

P
ik2Ik

(rfik(Xk) � rfik(X
(s))) + rF (X(s)). Details of this algorithm is stated in Algo-165

rithm 1. X(s) is a reference point updated every m steps so that Xsm = X(s). As we can observe in166

Lemma A.4, around the optimal point, the variance of the stochastic gradient is indeed decreased167

as X(s) and Xk are both close to each other. We can also easily extend some successful stochastic168

gradient algorithms to Langevin Dynamics. Hence, we are motivated to extend the Stochastic Recur-169

sive Gradient Algorithm (SARAH) to Langevin Dynamics since we can expect that some bottlenecks170

of the analysis of SVRG-LD can be removed in that of SARAH-LD as subtracting the previous171

stochastic gradient enables a stabler performance than SVRG-LD. This algorithm can be described as172

Algorithm 1 with v(Xk) =
1
B

P
ik2Ik

(rfik(Xk)�rfik(Xk�1)) + v(Xk�1).173

Definition 1. We define ⇢k as the distribution of Xk generated at the kth step of SVRG-LD, and174

similarly �k for SARAH-LD.175

2.3 Assumptions176

The assumptions used throughout this paper can be summarized as follows.177

Assumption 1. For all i = 1, . . . , n, rfi is twice differentiable, and 8x, y 2 Rd, kr2fi(x)k  L.178

In other words, fi (i = 1, . . . , n) and F are L-smooth.179

Assumption 2. Distribution ⌫ satisfies the Log-Sobolev inequality (LSI) with a constant ↵. That is,180

for all probability density functions ⇢ absolutely continuous with respect to ⌫, the following holds:181

H⌫(⇢) 
1

2↵
J⌫(⇢),

where H⌫(⇢) := E⇢

⇥
log ⇢

⌫

⇤
is the KL-divergence of ⇢ with respect to ⌫, and J⌫(⇢) :=182

E⇢

h��r log ⇢
⌫

��2
i

is the relative Fisher information of ⇢ with respect to ⌫.183

The recent work of Vempala and Wibisono (2019) motivates us to use the combination of smoothness184

and LSI for the analysis of SVRG-LD and SARAH-LD. Indeed, they showed that these conditions185
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were enough to assure for the Euler-Maruyama scheme an exponentially fast convergence and a bias186

controllable by the step size. Under smoothness, LSI is not only the necessary condition of log-187

concavity and dissipativity, but is also robust to bounded perturbation and Lipschitz mapping, contrary188

to log-concavity (Vempala and Wibisono, 2019). For example, for any distribution d⌫ that satisfies189

LSI and bounded function B : Rd ! R, d⌫̃ / eBd⌫ satisfies LSI as well (Holley and Stroock, 1986).190

Moreover, while KL-divergence is not in general convex with regard to the Wasserstein geodesic,191

thanks to LSI, the Polyak-Łojaciewicz condition is satisfied. It is well-known that LSI suffices to192

realize an exponential convergence for the case of continuous time Langevin Dynamics (Vempala193

and Wibisono, 2019). That is why, it is actually both useful and natural to suppose LSI in this context.194

Note that under L-smoothness of F and LSI with constant ↵ for d⌫ / e��Fdx, it holds that ↵  �L195

(Vempala and Wibisono, 2019).196

As for optimization, we additionally use the following conditions.197

Assumption 3. F is (M, b)-dissipative. That is, there exist constants M > 0 and b > 0 such that for198

all x 2 Rd the following holds: hrF (x), xi � Mkxk2 � b.199

Assumption 4 (Li and Erdogdu (2020), Assumption 3.3). F satisfies the weak Morse condition. That200

is, for all non-zero eigenvalues of the Hessian of stationary points, there exists a constant �† 2 (0, 1]201

such that202

�†  inf
����i

�
r2F (x)

��� | rF (x) = 0, i 2 1, . . . , d, �i

�
r2F (x)

�
6= 0
 
.

Furthermore, for the set S of stationary points that are not a global minimum,203

supx2S �min

�
r2F (x)

�
 ��†.204

Assumption 5. r2fi is L0-Lipschitz and without loss of generality, we let minx2Rd F (x) = 0.205

Assumption 6. F has a unique global minimum.206

Smoothness and dissipativity are a classical combination of assumptions for this kind of problem207

setting (Raginsky et al., 2017; Xu et al., 2018; Zou et al., 2019a). We assume dissipativity instead of208

LSI for non-convex optimization in order to obtain an explicit value of the Log-Sobolev constant209

of d⌫ / e��Fdx in function of the inverse temperature parameter � (see Property C.3), making a210

non-asymptotic analysis possible. Furthermore, Assumptions 4 to 6 can ameliorate the exponential211

dependence of the inverse of the Log-Sobolev constant on the inverse temperature parameter to a212

polynomial one (see Property C.4).213

3 Main Results214

In this section, we state our main results which prove that SVRG-LD and SARAH-LD (Algorithm 1)215

achieve an exponentially fast convergence to the Gibbs distribution and a controllable bias in terms216

of KL-divergence under the sole assumptions of LSI and smoothness. We provide their gradient217

complexity as well. The proofs can be found in Appendix A and B respectively.218

3.1 Improved Convergence of SVRG-LD219

Our analysis shows that the convergence of SVRG-LD to the stationary distribution d⌫ / e��Fdx220

can be formulated as the theorem below.221

Theorem 1. Under Assumptions 1 and 2, 0 < ⌘ < ↵
16

p
6L2m�

, � � 1 and B � m, for all222

k = 1, 2, . . ., the following holds in the update of SVRG-LD where ⌅ = (n�B)
B(n�1) :223

H⌫(⇢k)  e�
↵⌘

�
kH⌫(⇢0) +

224⌘�dL2

3↵
(2 + 3⌅+ 2m⌅) .

We observe that the bias term of the upper bound, which is the second term linearly dependent on ⌘,224

can be easily controlled while the first term exponentially converges to 0 with k ! 1. This is more225

precisely formulated in the following corollary.226

Corollary 1.1. Under the same assumptions as Theorem 1, for all ✏ � 0, if we choose step size227

⌘ such that ⌘  3↵✏
448�dL2 , then a precision H⌫(⇢k)  ✏ is reached after k � �

↵⌘ log 2H⌫(⇢0)
✏ steps.228
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Especially, if we take B = m =
p
n and the largest permissible step size ⌘ = ↵

16
p
6L2

p
n�

^ 3↵✏
448dL2� ,229

then the gradient complexity becomes230

Õ

  
n+

dn
1
2

✏

!
· �

2L2

↵2

!
.

This gradient complexity is an improvement compared with prior works for three reasons. First of all,231

we provide a non-asymptotic analysis of the convergence of SVRG-LD under smoothness and Log-232

Sobolev inequality which are conditions weaker than those (e.g., log-concavity or dissipativity) used in233

prior works for these algorithms. Moreover, we prove it in terms of KL-divergence which is generally234

a stronger convergence criterion than both total variation (TV) and 2-Wasserstein distance as they can235

both be controlled by KL-divergence under the LSI condition. For instance, TV was used by Zou et al.236

(2021) and 2-Wasserstein distance by Dalalyan (2017a) and Zou et al. (2019a). KL-divergence makes237

it possible to unify these two different criteria. Finally, while prior research generally used Girsanov’s238

theorem which generates a bias term that accumulates through the iteration (see for example Raginsky239

et al. (2017) and Xu et al. (2018)), we solve this issue by taking benefit of the exponential convergence240

of GLD to the Gibbs distribution under LSI and smoothness that enables us to forget about past241

bias. That way, with the batch size and inner loop set to
p
n, the gradient complexity to achieve242

an ✏-precision in terms of KL-divergence becomes Õ((n + dn1/2✏�1)�2L2↵�2), which is better243

than previous analyses. For example, Vempala and Wibisono (2019) provided a gradient complexity244

of Õ
�
n✏�1d�2L2↵�2

�
for LMC under Assumptions 1 and 2, and Zou et al. (2019a) a gradient245

complexity of Õ(n+n3/4✏�2+n1/2✏�4) · eÕ(�+d) for SVRG-LD under Assumptions 1 and 3. Note246

that the dependence on the dimension d is not improved since ↵�1 may exponentially depend on d.247

Recently, Zou et al. (2019b) proposed the Stochastic Gradient Hamiltonian Monte Carlo Methods248

with Recursive Variance Reduction with a gradient complexity of Õ((n+n1/2✏�2µ�3/2
⇤ )^µ�2

⇤ ✏�4)249

in terms of 2-Wasserstein distance. Even though their algorithm is based on the underdamped250

Langevin Dynamics whose discrete schemes use to perform better than those of the overdamped251

Langevin Dynamics such as SVRG-LD, our gradient complexity, which applies to a broader family252

of distributions, is almost the same except for a small interval of ✏, but we do not require the batch253

size B and the inner loop length m to depend on ✏ while Zou et al. (2019b) do, i.e., B . B1/2
0 ,254

m = O(B0/B), where B0 = Õ
�
✏�4µ�1

⇤ ^ n
�
. This strengthens the importance of our result since255

it shows that adapting this analysis to other stochastic schemes of GLD is promising and could lead256

to tighter bounds and relaxation of conditions. See Table 1 for a summary. Concerning the concurrent257

work of Balasubramanian et al. (2022), under the sole assumption of smoothness, they provided258

a gradient complexity of O(L2d2n/✏2) for the Variance Reduced LMC algorithm that updates the259

stochastic gradient differently as SVRG-LD and SARAH-LD. This is almost the square of our result,260

and in some extent, our work can be interpreted as an acceleration of their result with a slightly261

stronger additional condition than Poincaré inequality.262

Proof Sketch Proceeding in a similar way as Vempala and Wibisono (2019), we evaluate how263

H⌫(⇢k) decreases at each step as shown in Theorem A.1 of Appendix A. This is realized by comparing264

the evolution of the continuous-time GLD for time ⌘ and one step of SVRG-LD. Since we use a265

stochastic gradient, we need at the same time to evaluate the variance of the stochastic gradient.266

Theorem 1 can be obtained by recursively solving the inequality derived in Theorem A.1.267

3.2 Convergence Analysis of SARAH-LD268

As for SARAH-LD, its convergence to the stationary distribution d⌫ / e��Fdx can be formulated269

as the theorem below. Interestingly, we obtain the same result as SVRG-LD (Theorem 1) but we do270

not require B � m anymore.271

Theorem 2. Under Assumptions 1 and 2, 0 < ⌘ < ↵
16

p
2L2m�

and � � 1, for all k = 1, 2, . . ., the272

following holds in the update of SARAH-LD where ⌅ = (n�B)
B(n�1) :273

H⌫(�k)  e�
↵⌘

�
kH⌫(�0) +

32⌘�dL2

3↵
(2 + ⌅+ 2m⌅) .

This is the first convergence guarantee of SARAH-LD in this problem setting so far, and it leads to274

the following gradient complexity.275
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Corollary 2.1. Under the same assumptions as Theorem 2, for all ✏ � 0, if we choose step276

size ⌘ such that ⌘  3↵✏
64�dL2 (2 + ⌅+ 2m⌅)�1, then a precision H⌫(�k)  ✏ is reached after277

k � �
↵⌘ log 2H⌫(�0)

✏ steps. Especially, if we take B = m =
p
n and the largest permissible step size278

⌘ = ↵
16

p
2L2

p
n�

^ 3↵✏
320dL2� , then the gradient complexity becomes279

Õ

  
n+

dn
1
2

✏

!
· �

2L2

↵2

!
.

The reason why we obtain the same gradient complexity for both SARAH-LD and SVRG-LD (except280

better coefficients for SARAH-LD) is that in our analysis, the Brownian noise added at each step281

of the Langevin Dynamics plays the role of a fundamental bottleneck that even SARAH-LD could282

not eliminate, and we still need to set B = m =
p
n. We can hypothesize that this order of gradient283

complexity might be tight for variance-reduced stochastic gradient Langevin Dynamics algorithms.284

4 Some Applications to Non-Convex Optimization285

Here, we apply our main results to non-convex optimization. Thanks to our analysis applicable to a286

broader family of probability distributions satisfying LSI, the additional conditions we pose in this287

section are mainly reflected in the concrete formulation of the Log-Sobolev constant, which keeps our288

study simple and clear. The proofs can be found in Appendix C. Since SVRG-LD and SARAH-LD289

exhibited almost the same performance in sampling, we can simultaneously analyse them. We first290

prove the convergence to the global minimum of SVRG-LD and SARAH-LD without clarifying the291

explicit formulation of the Log-Sobolev constant in function of �.292

Theorem 3. Using SVRG-LD or SARAH-LD, under Assumptions 1 to 3, 0 < ⌘ < ↵
16

p
6L2m�

,293

� � 4d
✏ log

�
eL
M

�
_ 8db

✏2 _ 1 _ 2
M and B � m, if we take B = m =

p
n and the largest permissible294

step size ⌘ = ↵
16

p
6L2

p
n�

^ 3
1792

↵2✏
L2d� , the gradient complexity to reach a precision of295

EXk
[F (Xk)]� F (X⇤)  ✏

is296

Õ

  
n+

n
1
2

✏
· dL
↵

!
�2L2

↵2

!
,

where ↵ is a function of �, and X⇤ is the global minimum of F .297

Remark 1. Under Assumptions 1 and 3, Assumption 2 is negligible as shown in Property C.2.298

Under Assumptions 1 to 3 only, this leads to a gradient complexity which exponentially depends on299

the inverse of the precision level ✏ as shown in the next corollary since the inverse of the Log-Sobolev300

constant exponentially depends on �.301

Corollary 3.1. Under the same assumptions as Theorem 3, taking � = i(✏) := 4d
✏ log

�
eL
M

�
_ 8db

✏2 _302

1 _ 2
M , we obtain a gradient complexity of303

Õ

  
n+

n
1
2

✏
· dL

C1i(✏)
eC2i(✏)

!
L2e2C2i(✏)

!

since ↵ = �C1e�C2� (Property C.3).304

The second term with n1/2 is almost all the time dominant since it has a factor that exponentially305

depends on 1/✏ and the first term not. This dependence on n of O(n1/2) is the best so far for these306

algorithms. Moreover, comparing with the gradient complexity Õ
�
n1/2��4✏�5/2

�
· eÕ(d), also of307

order n1/2, provided by Xu et al. (2018) who used SVRG-LD and the same assumptions, our gradient308

complexity is an improvement since their analysis required a batch size B and an inner loop length309

m that strongly depend on ✏ (i.e., B =
p
n✏�3/2, m =

p
n✏3/2) and ours does not. Note that the310

dependence of the gradient complexity of Xu et al. (2018) on 1/✏ is not necessarily better than ours311

as � is actually the spectral gap of the discrete-time Markov chain generated by (1) and its inverse312
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exponentially depends on 1/✏ as well. Although Xu et al. (2018) did not investigate the explicit313

nature of �, this is supported by Raginsky et al. (2017) who proved this exponential dependence for314

the spectral gap of the continuous-time SDE and by Mattingly et al. (2002) who showed the spectral315

gap of continuous-time SDE and that of discrete-time version are almost the same in this context.316

Analysis under the weak Morse condition Now, under the additional Assumptions 4 to 6, it is317

interesting to note that a polynomial dependence on 1/✏ is achieved as the following corollary shows.318

Corollary 3.2. Under the same assumptions as Theorem 3 and Assumptions 4 to 6, taking � =319

j(✏) := 4d
✏ log

�
eL
M

�
_ 8db

✏2 _1_ 2
M _C� , where C� is a constant independent of ✏ defined in Property320

C.4, we obtain a gradient complexity of321

Õ

  
n+

n
1
2

✏
· dL
C3

j(✏)

!
C2

3j(✏)
4L2

!
,

since ↵ = C3/� (Property C.4).322

The crux of this corollary is Property C.4. To prove this, we show like Li and Erdogdu (2020) that323

⌫ satisfies the Poincaré inequality with a constant independent of �. Since it is not hard to show324

this around the global minimum, we can step by step extend the set where this inequality holds by a325

Lyapunov argument (Theorems D.1 and D.2). The essential difference between this analysis and that326

of Li and Erdogdu (2020) is that we do not work on compact manifolds anymore. Some rather minor327

difficulties emerge as we cannot employ the compactness but they can be addressed by supposing328

dissipativity which assures a quadratic growth for large x.329

Remark 2. These results do not definitively assert that SARAH-LD and SVRG-LD show the exact330

same performance in terms of optimization. Indeed, suppose we are close enough to the global331

optimum. Then, a big noise is not necessary anymore since it is more important to stably converge to332

the global minimum. Here, we should be able to significantly decrease the noise ✏k, and the bottleneck333

from the noise should disappear. In this case, SARAH-LD would perform better than SVRG-LD as we334

approach the original non-convex optimization setting where SARAH outperforms SVRG.335

Remark 3. We also investigated an annealed version of SVRG-LD and SARAH-LD but could not336

ameliorate the gradient complexity. The detailed analysis can be found in Appendix E.337

5 Discussion and Conclusion338

The main limitations of our work reside in the gap between practice and theory. Indeed, while our339

paper supposes assumptions quite standard in the literature of GLD, it cannot explain the whole340

empirical success that machine learning is currently experiencing. Some choices of parameters may341

also seem different than the practical use. However, compared to previous work, we succeeded in342

the proving convergence of GLD with the popular stochastic gradient with relaxed conditions, and343

deleting the dependence of batch size and inner loop length on epsilon, which are all more realistic344

situations than prior work. The theoretical study in machine learning and deep learning precisely345

plays the role of filling as much as possible this large gap, and our work could be regarded as a further346

step forward to achieve this goal. Furthermore, in this paper, we focused on the pure sampling and347

optimization performance of the algorithms, and some of the drawbacks are simply due to this fact.348

For example, another limitation is that we did not investigate the generalization error in Section 4,349

but this was only outside the scope of this work.350

In conclusion, we analysed the convergence rate of stochastic gradient Langevin Dynamics with351

variance reduction under smoothness and LSI and its application to optimization. In Section 3, we352

proved the convergence of SVRG-LD in terms of KL-divergence with more relaxed conditions (LSI353

and smoothness) and with a better gradient complexity than previous works. We also expanded354

SARAH to SARAH-LD and showed that this algorithm enjoyed the same advantages as SVRG-LD355

with only an improvement in the coefficients of the gradient complexity. These results led us to356

apply SVRG-LD and SARAH-LD to non-convex optimization in Section 4. We provided the global357

convergence and a non-asymptotic analysis of SVRG-LD and SARAH-LD. We obtained better358

conditions than prior works. Furthermore, we showed that under the additional assumption including359

weak Morse and Hessian Lipschitzness, the gradient complexity could be ameliorated, eliminating360

the exponential dependence on the inverse of the required error.361
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