
On Solving Class Incremental Learning
in Continual Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Continual learning (CL) is concerned with learning a sequence of tasks incremen-1

tally. There are two popular CL settings, class incremental learning (CIL) and task2

incremental learning (TIL). A major challenge of CL is catastrophic forgetting3

(CF). While a number of techniques are already available to effectively overcome4

CF for TIL, CIL remains to be highly challenging. So far, little study has been5

done to provide a theoretical guidance on how to solve the CIL problem. This6

paper performs such a study. It first shows that probabilistically, the CIL problem7

can be decomposed into two sub-problems: within-task prediction and task-id pre-8

diction. It further proves that task-id prediction is correlated to out-of-distribution9

(OOD) detection, which connects CIL and OOD detection and at the same time,10

offers a principled approach to solving CIL. Experiments have been conducted to11

empirically verify the theoretical result. Based on the result, new CIL methods are12

also designed, which outperform strong baselines by a large margin.113

1 Introduction14

Continual learning aims to incrementally learn a sequence of tasks [1]. Each task consists of a set of15

classes to be learned together. A major challenge of CL is catastrophic forgetting (CF). Two main16

CL settings have been extensively studied: class incremental learning (CIL) and task incremental17

learning (TIL) [2]. In CIL, the learning process builds a single classifier for all tasks/classes learned18

so far. In testing, a test instance from any class may be presented for the model to classify. No prior19

task information (e.g., task-id) of the test instance is provided. Formally, CIL is defined as follows.20

Class incremental learning (CIL). CIL learns a sequence of tasks, 1, 2, ..., T . Each task k has a21

training dataset Dk = {(xi
k, y

i
k)

nk
i=1}, where nk is the number of data samples in task k, and xi

k ∈ X22

is an input sample and yik ∈ Yk is its class label. All Yk’s are disjoint and
⋃T

k=1 Yk = Y. The goal23

of CIL is to construct a single predictive function or classifier f : X → Y that can identify the class24

label y of each given test instance x.25

In the TIL setup, each task is a separate classification problem (e.g., one task could be to classify26

different breeds of dogs and another task could be to classify different types of birds). Here, one27

model is built for each task in a shared network. In testing, the task-id of each test instance is provided28

and the system uses only the specific model for the task (dog or bird classification) to classify the test29

instance. Formally, TIL is defined as follows.30

Task incremental learning (TIL). TIL learns a sequence of tasks, 1, 2, ..., T . Each task k has a31

training dataset Dk = {((xi
k, k), y

i
k)

nk
i=1}, where nk is the number of data samples in task k ∈ T =32

{1, 2, ..., T}, and xi
k ∈ X is an input sample and yik ∈ Yk ⊂ Y is its class label. The goal of TIL is33

1The code has been submitted in the Supplementary Materials.

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

to construct a predictor f : X×T → Y to identify the class label y ∈ Yk for (x, k) (the given test34

instance x from task k).35

Several techniques are already available to effectively overcome CF for TIL (with almost no CF) [3, 4].36

However, CIL remains to be highly challenging. This work focuses on CIL. Before discussing the37

proposed work, let us recall the traditional machine learning (ML) paradigm, which builds a classifier38

based on the training data of a set of classes. The resulting classifier is then used to classify test39

instances of the same set of classes. This ML paradigm is said to make the closed-world assumption,40

meaning that the classes seen in testing must have been seen in training. However, in many real-life41

applications, there are unknowns in the testing or application environment, which is called the open42

world. In open world learning, the training (or known) classes are called in-distribution (IND) classes.43

A classifier built for the open world can (1) classify test instances of training/IND classes to their44

respective classes, which is called IND prediction, and also (2) detect test instances that do not belong45

to any of the IND/known classes but some unknown classes, called out-of-distribution (OOD) classes,46

which is called OOD detection. In fact, many OOD detection algorithms can perform both IND47

prediction and OOD detection [5].48

This paper conducts a theoretical study of CIL. Instead of focusing on the traditional PAC generaliza-49

tion bound [6, 7], we focus on how to solve the CIL problem. We first decompose the CIL problem50

into two sub-problems in a probabilistic framework: within-task IND prediction (WIP) and task-id51

prediction (TP). WIP means that the prediction for a test instance is only done within the classes of52

the task to which the test instance belongs. TP simply predicts the task-id. TP is needed because in53

CIL, task-id is not provided in testing. This paper then proves based on the popular cross-entropy loss54

that (1) the CIL performance is bounded by WIP and TP performances, and (2) TP and task OOD55

detection performance bound each other (which connects CL and OOD detection). These theoretical56

results provide a principled approach to solving the CIL problem, i.e., designing algorithms that can57

achieve good WIP performance and TP performances.2 Since WIP is basically IND prediction for58

each task and many OOD techniques perform both IND prediction and OOD detection, to achieve59

a good CIL performance, a strong OOD detection algorithm is needed. Any improvement in OOD60

detection performance means an improvement in CIL performance.61

Based on the theoretical guidance, several new CIL methods are designed, including techniques based62

on the integration of a TIL method and an OOD detection method for CIL, which outperforms strong63

baselines by a large margin. This combination is particularly attractive because TIL has achieved64

no forgetting, and we only need a strong OOD technique that can perform both IND prediction and65

OOD detection to learn each task to achieve strong CIL performances.66

2 Related Work67

Despite the fact that numerous CL approaches have been proposed, little study has been done to68

provide a theoretical guidance on how to solve the problem. Most existing approaches belong to69

several categories. We briefly review a list of representative methods, but the list of citations is70

by no means exhaustive. Using regularization [8] and knowledge distillation [9] to minimize the71

change in previous models are two popular approaches [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].72

Memorizing some old examples and using them to adjust the old models in learning a new task is73

another popular approach (called replay) [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Several systems74

learn to generate pseudo training data of old tasks and use them to jointly train the new task, called75

pseudo-replay [33, 34, 35, 36, 37, 38, 39, 40, 41]. Orthogonal projection learns each task in an76

orthogonal space to other tasks and thus have minimum interference [42, 43, 44]. Our theoretical77

analysis is applicable to any continually trained classification model. We try some representative78

methods from the categories to demonstrate our idea in experiment.79

Parameter isolation is yet another popular approach, which makes different subsets (which may80

overlap) of the model parameters dedicated to different tasks using masks [3, 45] or finding a81

sub-network for each task by pruning [46, 4, 47]. This approach is particularly suited for the TIL82

setting. Several methods have almost completely overcome forgetting. HAT [3] and CAT [45] protect83

previous tasks by masking the important parameters. PackNet [46], CPG [47] and SupSup [4] find84

an isolated sub-network for each task and use it in inference. HyperNet [48] initializes task-specific85

parameters conditioned on task-id. ADP [49] decomposes parameters into shared and adaptive parts86

2By no mean do we claim this is the only approach.

2

to construct an order robust TIL system. CCLL [50] uses task-adaptive calibration on convolution87

layers. A network of experts is proposed in [51]. We include several approaches in this category in88

our experiment to show the efficacy of our analysis.89

Our methods designed based on the proposed theoretical results make use of two parameter isolation-90

based TIL methods and two OOD detection methods. The latest strong OOD detection method CSI91

in [5] helps produce very strong CIL methods. CSI is based on data augmentation [52] and contrastive92

learning [53]. Excellent surveys of OOD detection include [54, 55].93

Some methods have been proposed to use a TIL method for CIL with an additional task-id prediction94

technique. iTAML [56] requires the test samples to come in batches and each batch must be from95

a single task. This is not practical as test samples usually come one by one. CCG [57] builds a96

separate network to predict the task-id. Expert Gate [51] constructs a separate autoencoder for each97

task. HyperNet [48] and PR-Ent [58] use entropy to predict the task id. Since none of these papers98

proposed a theoretical study, they did not know that a strong OOD detection algorithm is the key. Our99

methods based on OOD detection perform dramatically better.100

Several theoretical studies have been made on lifelong/continual learning. However, they focus on101

traditional generalization bound. [6] proposes a PAC-Bayesian framework to provide a learning102

bound on expected error in future tasks by the average loss on the observed tasks. The work in [59]103

studies the generalization error by task similarity and [7] studies the dependence of generalization104

error on sample size or number of tasks including forward and backward transfer. [60] shows that105

orthogonal gradient descent gives a tighter generalization bound than SGD. Our work is very different106

as we focus on how to solve the CIL problem. Our work is thus orthogonal to the existing theoretical107

analysis. Our theoretical finding is applicable to tasks without any underlying relation in similarity.108

3 CIL by Within-Task IND Prediction and Task Prediction109

This section presents our theoretical study. It first shows that the CIL performance improves if110

the within-task IND prediction (WIP) performance and/or the task-id prediction (TP) performance111

improve, and then shows that TP and OOD detection bound each other, which indicates that CIL112

performance is controlled by WIP and OOD detection, which connects CL and OOD detection113

research. Finally, we study the necessary conditions for a good CIL model, which includes a good114

WIP, and a good TP (or a good OOD detection).115

3.1 CIL Problem Decomposition116

This sub-section first presents the assumptions made by CIL based on its definition and then proposes117

a decomposition of the CIL problem into two sub-problems. A CL system learns a sequence {Ti}i=1118

of tasks, where Ti is the domain of task i and each task consists of domains of classes as Ti = ∪jSi,j ,119

where j indicates the jth class in task i. Based on the definition of class incremental learning (CIL)120

(see Section 1), the following assumptions are implied,3121

Assumption 1. The domains of all classes of the same task are disjoint, i.e., Si,j ∩Si,j′ = ∅, ∀j ̸= j′.122

Assumption 2. The domains of tasks are disjoint, i.e., Ti ∩ Ti′ = ∅, ∀i ̸= i′.123

For any ground event D, the goal of a CIL problem is to learn P(x ∈ Si,j |D). This can be decom-124

posed into two probabilities, within-task IND prediction (WIP) probability and task-id prediction125

(TP) probability. WIP probability is P(x ∈ Si,j |x ∈ Ti, D) and TP probability is P(x ∈ Ti|D). We126

can rewrite the CIL problem using WIP and TP based on the two assumptions,127

P(x ∈ Si0,j0 |D) =
∑

i=1,...,n

P(x ∈ Si,j0 |x ∈ Ti, D)P(x ∈ Ti|D) (1)

= P(x ∈ Si0,j0 |x ∈ Ti0 , D)P(x ∈ Ti0 |D) (2)

where i0 means a particular task and j0 a particular class in the task.128

Remark 1. Eq. 2 shows that if we can improve either the WIP or TP performance, or both, we can129

improve the CIL performance.130

3Note that the CIL definition and the subsequent analysis are applicable to tasks with any number of classes
(including only one class) and to online CIL where the training data for each task or class comes gradually in a
data stream and may also cross task boundaries as our analysis is based on an already-built CIL model.

3

In the following sub-sections, we develop this further concretely to derive the sufficient and necessary131

conditions for solving the CIL problem in the context of cross-entropy loss as it is used in almost all132

supervised CL systems.133

3.2 CIL Improves as WIP and/or TP Improve134

The study here is based on a trained CIL model and not concerned with the algorithm used in training135

the model. We use cross-entropy as the performance measure of a trained model as it is the most136

popular loss function used in supervised CL. For experimental evaluation, we use accuracy following137

classification papers. Denote the cross-entropy of two probability distributions p and q as138

H(p, q)
def
= −Ep[log q] = −

∑
i

pi log qi. (3)

For any x ∈ T , let y to be the CIL ground truth label of x, where yi0,j0 = 1 if x ∈ Si0,j0 otherwise139

yi,j = 0. Let ỹ be the WIP ground truth label of x, where ỹi0,j0 = 1 if x ∈ Si0,j0 otherwise ỹi0,j = 0.140

Let ȳ be the TP ground truth label of x, where ȳi0 = 1 is x ∈ Ti0 otherwise ȳi = 0. Denote141

HWIP (x) = H(ỹ, {P(x ∈ Si0,j |x ∈ Ti0 , D)}j), (4)
HCIL(x) = H(y, {P(x ∈ Si,j |D)}i,j), (5)
HTP (x) = H(ȳ, {P(x ∈ Ti|D)}i) (6)

where HWIP , HCIL and HTP are the cross-entropy values of WIP, CIL and TP, respectively. We142

now present our first theorem. The theorem connects CIL to WIP and TP, and suggests that by having143

a good WIP or TP, the CIL performance improves as the upper bound for the CIL loss decreases.144

Theorem 1. If HTP (x) ≤ δ and HWIP (x) ≤ ϵ, we have HCIL(x) ≤ ϵ+ δ.145

The detailed proof is given in Appendix A.1. This theorem holds regardless of whether WIP and146

TP are trained together or separately. When they are trained separately, if WIP is fixed and we let147

ϵ = HWIP (x), HCIL(x) ≤ HWIP (x) + δ, which means if TP is better, CIL is better. Similarly, if148

TP is fixed, we have HCIL(x) ≤ ϵ +HTP (x). When they are trained concurrently, there exists a149

functional relationship between ϵ and δ depending on implementation. But no matter what it is, when150

ϵ+ δ decreases, CIL gets better.151

Theorem 1 holds for any x ∈ T that satisfies HTP (x) ≤ δ or HWIP (x) ≤ ϵ. To measure the overall152

performance under expectation, we present the following corollary.153

Corollary 1. Let U(T) represents the uniform distribution on T . i) If Ex∼U(T)[HTP (x)] ≤ δ,154

then Ex∼U(T)[HCIL(x)] ≤ Ex∼U(T)[HWIP (x)] + δ. Similarly, ii) Ex∼U(T)[HWIP (x)] ≤ ϵ, then155

Ex∼U(T)[HCIL(x)] ≤ ϵ+ Ex∼U(T)[HTP (x)].156

The detailed proof is given in Appendix A.2. The corollary is a direct extension of Theorem 1 in157

expectation. The implication is that given TP performance, CIL is positively related to WIP. The158

better the WIP is, the better the CIL is as the upper bound of the CIL loss decreases. Similarly,159

given WIP performance, the better TP performance results in the better CIL performance. Due to the160

positive relation, we can improve CIL by improving either WIP or TP using their respective methods161

developed in each area.162

3.3 Task Prediction (TP) to OOD Detection163

Building on Eq. 2, we have studied the relationship of CIL, WIP and TP in Theorem 1. We now164

connect TP and OOD detection. They are shown to be dominated by each other to a constant factor.165

We again use cross-entropy H to measure the performance of TP and OOD detection of a trained166

network as in Sec. 3.2. To build the connection between HTP (x) and OOD detection of each task,167

we first define the notations of OOD detection. We use P′
i(x ∈ Ti|D) to represent the probability168

distribution predicted by the ith task’s OOD detector. Notice that the task prediction (TP) probability169

distribution P(x ∈ Ti|D) is a categorical distribution over n tasks, while the OOD detection170

probability distribution P′
i(x ∈ Ti|D) is a Bernoulli distribution. For any x ∈ T , define171

HOOD,i(x) =

{
H(1,P′

i(x ∈ Ti|D)) = − logP′
i(x ∈ Ti|D), x ∈ Ti,

H(0,P′
i(x ∈ Ti|D)) = − logP′

i(x /∈ Ti|D), x /∈ Ti.
(7)

4

In CIL, the OOD detection probability for a task can be defined using the output values corresponding172

to the classes of the task. Some examples of the function is a sigmoid of maximum logit value or a173

maximum softmax probability after re-scaling to 0 to 1. The following theorem shows that TP and174

OOD detection bound each other.175

Theorem 2. i) If HTP (x) ≤ δ, let P′
i(x ∈ Ti|D) = P(x ∈ Ti|D), then HOOD,i(x) ≤ δ, ∀ i =176

1, . . . , n. ii) If HOOD,i(x) ≤ δi, i = 1, . . . , n, let P(x ∈ Ti|D) =
P′

i(x∈Ti|D)∑
j P′

j(x∈Tj |D) , then HTP (x) ≤177

(
∑

i 1x∈Ti
eδi)(

∑
i 1− e−δi), where 1x∈Ti

is an indicator function.178

See Appendix A.3 for the proof. As we use cross-entropy, the lower the bound, the better the179

performance is. The first statement (i) says that the OOD detection performance improves if the TP180

performance gets better (i.e., lower δ). Similarly, the second statement (ii) says that the TP perfor-181

mance improves if the OOD detection performance on each task improves (i.e., lower δi). Besides,182

since (
∑

i 1x∈Ti
eδi)(

∑
i 1− e−δi) converges to 0 as δi’s converge to 0 in order of O(|

∑
i δi|), we183

further know that HTP and
∑

i HOOD,i are equivalent in quantity up to a constant factor.184

In Theorem 1, we studied how CIL is related to WIP and TP. In Theorem 2, we showed that TP and185

OOD bound each other. Now we explicitly give the upper bound of CIL in relation to WIP and OOD186

detection of each task. The detailed proof can be found in Appendix A.4.187

Theorem 3. If HOOD,i(x) ≤ δi, i = 1, . . . , n and HWIP (x) ≤ ϵ, we have

HCIL(x) ≤ ϵ+ (
∑
i

1x∈Ti
eδi)(

∑
i

1− e−δi),

where 1x∈Ti is an indicator function.188

3.4 Necessary Conditions for Improving CIL189

In Theorem 1, we showed that the good performance of WIP and TP is sufficient to guarantee a190

good performance of CIL. In Theorem 3, we showed that the good performance of WIP and OOD191

is sufficient to guarantee a good performance of CIL. For completeness, we study the necessary192

conditions of a well-performed CIL in this sub-section.193

Theorem 4. If HCIL(x) ≤ η, then there exist i) a WIP, s.t. HWIP (x) ≤ η, ii) a TP, s.t. HTP (x) ≤ η,194

and iii) an OOD detector for each task, s.t. HOOD,i ≤ η, i = 1, . . . , n.195

The detailed proof is given in Appendix A.5. This theorem tells that if a good CIL model is trained,196

then a good WIP, a good TP and a good OOD detector for each task are always implied. More197

importantly, by transforming Theorem 4 into its contraposition, we have the following statements: If198

for any WIP, HWIP (x) > η, then HCIL(x) > η. If for any TP, HTP (x) > η, then HCIL(x) > η.199

If for any OOD detector, HOOD,i(x) > η, i = 1, . . . , n, then HCIL(x) > η. Regardless of whether200

WIP, TP and OOD detection are defined explicitly or implicitly by a CIL algorithm, good WIP, good201

TP and good OOD detection are necessary for a good CIL performance.202

Remark 2. It is important to note that our study in this section is based on a CIL model that has already203

been built. In other words, it tells the CIL designers what should be achieved in the final model.204

Clearly, one would also like to know how to design a strong CIL model based on the theoretical205

results, which also considers catastrophic forgetting (CF). One effective method is to make use of a206

strong existing TIL algorithm, which can already achieve no or little forgetting (CF), and combine it207

with a strong OOD detection algorithm (as mentioned earlier, most OOD detection methods can also208

perform WIP). Thus, any improved method from the OOD detection community can be applied to209

CIL to produce improved CIL systems (see Sections 4.3 and 4.4).210

Recall in Section 2, we reviewed prior works that have tried to use a TIL method for CIL with a211

task-id prediction method [48, 51, 56, 57, 58]. However, since they did not know that the key to the212

success of this approach is a strong OOD detection algorithm, they are weak (see Section 4).213

4 New CIL Techniques and Experiments214

Based on Theorem 3, we have designed several new CIL methods, each of which integrates an215

existing CL algorithm and an OOD detection algorithm. The OOD detection algorithms that we use216

can perform both within-task IND prediction (WIP) and OOD detection. Our experiments have two217

5

goals: (1) to show that a good OOD detection method can help improve the accuracy of an existing218

CIL algorithm, and (2) to fully compare two of these methods with strong baselines to show that they219

outperform the existing strong baselines considerably.220

4.1 Datasets, CL Baselines and OOD Detection Methods221

Datasets and CIL Tasks. Four popular benchmark image classification datasets are used, from222

which six CIL problems are created following the recent methods [20, 29, 21]. (1) MNIST consists223

of handwritten images of 10 digits with 60,000 examples for training and 10,000 examples for testing.224

We create a CIL problem (M-5T) by splitting it into 5 tasks where each task consists of 2 consecutive225

classes. (2) CIFAR-10 consists of 32x32 color images of 10 classes in 60,000 samples with 50,000226

training samples and 10,000 test samples. We create a CIL problem (C10-5T) by splitting it into 5227

tasks with 2 consecutive classes per task. (3) CIFAR-100 consists of 60,000 32x32 color images of228

which 50,000 are training and 10,000 are testing samples. We create two CIL problems by splitting229

100 classes into 10 tasks (C100-10T) and 20 tasks (C100-20T), where each task has 10 and 5 classes,230

respectively. (4) Tiny-ImageNet has 120,000 64x64 color images of 200 classes with 500 images per231

class for training and 50 images per class for testing. We create two CIL problems by splitting 200232

classes into 5 tasks (T-5T) and 10 tasks (T-10T), where each task has 40 and 20 classes, respectively.233

Baseline CL Methods. We include different families of CL methods to verify our theoretical234

result: regularization, orthogonal projection, replay, and parameter isolation. EWC [8], MUC [20],235

and PASS [21] are regularization-based methods. OWM [42] is an orthogonal projection method.236

For replay methods, we use LwF [9], iCaRL [24], Mnemonics [61], BiC [27], DER++ [29], and237

Co2L [32]. Finally, for parameter isolation, we use CCG [57], HyperNet [48], HAT [3], SupSup [4]238

(or Sup), and PR [58].4 We use the official codes for the baselines except for Co2L, CCG, and PR.239

For these three systems, we copy the results from their original papers as CCG does not released its240

code and we are unable to run Co2L and PR on our machines.241

OOD Detection Methods. Two OOD detection methods are used to verify the theoretical results242

by combining them with the above existing CL algorithms. Both these methods can also perform243

within-task IND prediction (WIP).244

(1). ODIN: Researchers have proposed several methods to improve the OOD detection performance245

of a trained network by post-processing [62, 63, 64]. ODIN [64] is a representative method. It adds246

perturbation to input and applies a temperature scaling to the softmax output of a trained network.247

(2). CSI: It is a recently proposed OOD detection technique [5] that is highly effective. It is based248

on data and class label augmentation and supervised contrastive learning [65]. Its rotation data249

augmentations create distributional shifted samples to act as negative data for the original samples for250

contrastive learning. We will discuss the details about CSI in Appendix D.251

4.2 Training Details and Evaluation Metrics252

Training Details. For backbone structure, we follow [21, 29, 4]. AlexNet-like architecture [66] is253

used for MNIST and ResNet-18 [67] is used for CIFAR-10. For CIFAR-100 and Tiny-ImageNet,254

ResNet-18 is also used as CIFAR-10, but the number of channels are doubled to fit more classes. All255

the methods use the same backbone architecture except for OWM and HyperNet, for which we use256

their original architectures. OWM uses AlexNet. It is not obvious how to apply the technique to the257

ResNet structure. HyperNet uses a fully-connected network and ResNet-32 for MNIST and other258

datasets, respectively. We are unable to change the structure due to model initialization arguments259

unexplained in the original paper. For the replay methods, we use memory buffer 200 for MNIST and260

CIFAR-10 and 2000 for CIFAR-100 and Tiny-ImageNet as in [24, 29]. We use the hyper-parameters261

suggested by the authors. If we could not reproduce the result, we use 10% of the training data as a262

validation set to grid-search for good hyper-parameters. For our proposed methods, we report the263

hyper-parameters in Appendix F. All the results are averages over 5 runs with random seeds.264

Evaluation Metrics.265

4iTAML [56] is not included as it requires a batch of test data from the same task to predict the task-id.
When each batch has only one test sample, which is our setting, it is very weak. For example, iTAML CIL
accuracy is only 33.5% on C100-10T. Expert Gate (EG) [51] is also very weak. For example, its CIL accuracy
is only 43.2 on M-5T. Both iTAML and EG are much weaker than many baselines.

6

(1). Average classification accuracy over all classes after learning the last task. The final class266

prediction depends on implementation (see Prediction Methods below).267

(2). Average AUC (Area Under the ROC Curve) over all task models for the evaluation of OOD268

detection. AUC is the main measure used in OOD detection papers. Using this measure, we show269

that a better OOD detection method will result in a better CIL performance. Let AUCk be the AUC270

score of task k. It is computed by using only the model (or classes) of task k to score the test data of271

task k as the in-distribution (IND) data and the test data from other tasks as the out-of-distribution272

(OOD) data. The average AUC score is: AUC =
∑

k AUCk/n, where n is the number of tasks.273

Note that we don’t study forgetting rate because to show that better WIP and TP (or OOD detection)274

result in better CIL performance (Sec.4.3), we use existing systems and perform only post-processing275

using ODIN, which does not affect the original training and thus does not change their forgetting276

(CF) profile. It is not straightforward to change their existing training algorithms to include a new277

OOD detection method that needs training, e.g., CSI, except for the TIL (task incremental learning)278

methods, e.g., HAT and Sup. For these two TIL methods, we can simply switch their methods for279

learning each task with CSI (see Sec.4.4). HAT and Sup have little or no forgetting.280

Prediction Methods: The theoretical results in Sec. 3 states that we use Eq. 2 to perform the final281

prediction. The first probability (for WIP) in Eq. 2 is easy to get as we can simply use the softmax282

values of the classes in each task. However, the second probability in Eq. 2 (for TP) is trickier as283

each task is learned without the data of other tasks. There can be many options.284

We take the following approaches for prediction (which are a special case of Eq. 2, see below):285

(1). For those approaches that use a single classification head to include all classes learned so far, we286

predict as follows (which is also the approach taken by the existing papers.)287

ŷ = argmax f(x) (8)

where f(x) is the logit output of the network.288

(2). For multi-head methods (e.g., HAT, HyperNet, and Sup), which use one head for each task, we289

use the concatenated output as290

ŷ = argmax
⊕
i

f(x)i (9)

where
⊕

indicate concatenation and f(x)i is the output of task i.5291

These methods (in fact, they are the same method used in two different settings) is a special case of292

Eq. 2 if we define OODi as σ(max f(x)i), where σ is the sigmoid. Hence, the theoretical results in293

Sec. 3 are still applicable. We present a detailed explanation about this prediction method and some294

other options in Appendix C. These two approaches work quite well.295

4.3 Better OOD Detection Produces Better CIL Performance296

The key theoretical result in Sec. 3 is that better OOD detection will produce better CIL performance.297

Recall our considered methods ODIN and CSI can perform both WIP and OOD detection.298

Applying ODIN: We first train the baseline models using their original algorithms, and then apply299

temperature scaling and input noise of ODIN at testing for each task (no training data needed). More300

precisely, the output of class j in task i changes by temperature scaling factor τi of task i as301

s(x; τi)j = ef(x)ij/τj/
∑
j

ef(x)ij/τi (10)

and the input changes by the noise factor ϵi as302

x̃ = x− ϵisign(−∇x log s(x; τi)ŷ) (11)

5Sup paper proposed an one-shot task-id prediction assuming that the test instances come in a batch and all
belong to the same task like iTAML. We assume a single test instance per batch. its task-id prediction results in
accuracy of 50.2 on C10-5T, which is much lower than 62.6 by using Eq. 9. The task-id prediction of HyperNet
also does not work well. The accuracy by id prediction is 49.34 on C10-5T while it is 53.4 using Eq. 9. PR uses
entropy to find task-id, and then performs within-task IND prediction. Among many variations of PR, we use
the variations that perform the best at each dataset with memory free and single sample per batch at testing (i.e.,
no PR-BW).

7

where ŷ is the class with maximum output value in task i. This is a positive adversarial example303

inspired by [68]. The values τi and ϵi are hyper-parameters and we use the same values for all tasks304

except for PASS, for which we had to use a validation set to tune τi (see Appendix B).305

Table 1: Performance comparison based
on C100-10T between the original output
and output post-processed with OOD de-
tection technique ODIN. Note that ODIN
is not applicable to iCaRL and Mnemonics
as they are not based on softmax but some
distance functions. The results for other
datasets are reported in Appendix B.

Method OOD AUC CIL

OWM Original 71.31 28.91
ODIN 70.06 28.88

MUC Original 72.69 30.42
ODIN 72.53 29.79

PASS Original 69.89 33.00
ODIN 69.60 31.00

LwF Original 88.30 45.26
ODIN 87.11 51.82

BiC Original 87.89 52.92
ODIN 86.73 48.65

DER++ Original 85.99 53.71
ODIN 88.21 55.29

HAT Original 77.72 41.06
ODIN 77.80 41.21

HyperNet Original 71.82 30.23
ODIN 72.32 30.83

Sup Original 79.16 44.58
ODIN 80.58 46.74

Tab. 1 shows the results on C100-10T. The CIL results306

clearly show that the CIL performance increases if the307

AUC increases with ODIN. For instance, the CIL of308

DER++ and Sup improves from 53.71 to 55.29 and 44.58309

to 46.74, respectively, as the AUC increases from 85.99310

to 88.21 and 79.16 to 80.58. It shows that when this311

method is incorporated into each task model in exist-312

ing trained CIL network, the CIL performance of the313

original method improves. We note that ODIN does not314

always improve the average AUC. For those experienced315

a decrease in AUC, the CIL performance also decreases316

except LwF. The inconsistency of LwF is due to its se-317

vere classification bias towards later tasks as discussed318

in BiC [27]. The temperature scaling in ODIN has a319

similar effect as the bias correction in BiC, and the CIL320

of LwF becomes close to that of BiC after the correction.321

Regardless of whether ODIN improves AUC or not, the322

positive correlation between AUC and CIL (except LwF)323

verifies the efficacy of Theorem 3, indicating better OOD324

detection results in better CIL performances.325

Applying CSI: We now apply the OOD detection326

method CSI. Due to its sophisticated data augmentation,327

supervised constrative learning and results ensemble, it328

is hard to apply CSI to other baselines without funda-329

mentally change them except HAT and Sup (SupSup) as330

these methods are parameter isolation-based TIL meth-331

ods. We can simply replace their model for training332

each task with CSI wholesale (the full detail is given Ap-333

pendix D). As mentioned earlier, both HAT and SupSup334

as TIL methods have almost no forgetting.335

Table 2 reports the results of using CSI and ODIN, where ODIN is a weaker OOD detection method336

than CSI. Both HAT and Sup improve greatly as the systems are equipped with a better OOD detection337

method CSI.338

In summary, these experiment results empirically demonstrate the efficacy of Theorem 3, i.e., the CIL339

performance can be improved if a better OOD detection method is used.340

Table 2: Average CIL and AUC of HAT and Sup with OOD detection methods ODIN and CSI. ODIN
is a traditional OOD detection method while CSI is a recent OOD detection method known to be
better than ODIN. As CL methods produce better OOD detection performance by CSI, their CIL
performances are better than the ODIN counterparts.

CL OOD C10-5T C100-10T C100-20T T-5T T-10T
AUC CIL AUC CIL AUC CIL AUC CIL AUC CIL

HAT ODIN 82.5 62.6 77.8 41.2 75.4 25.8 72.3 38.6 71.8 30.0
CSI 91.2 87.8 84.5 63.3 86.5 54.6 76.5 45.7 78.5 47.1

Sup ODIN 82.4 62.6 80.6 46.7 81.6 36.4 74.0 41.1 74.6 36.5
CSI 91.6 86.0 86.8 65.1 88.3 60.2 77.1 48.9 79.4 45.7

4.4 Full Comparison of HAT+CSI and Sup+CSI with Baselines341

We now make a full comparison of the two strong systems (HAT+CSI and Sup+CSI) designed based342

on the theoretical results. These combinations are particularly attractive because both HAT and Sup343

are TIL systems and have little or no CF. Then a strong OOD method (that can also perform WIP344

8

Table 3: Average accuracy after all tasks are learned. Memory free methods are italicized. † indicates
that in their original papers, PASS and Mnemonics are pre-trained with the first half of the classes.
Their results with pre-train are 50.1 and 53.5 on C100-10T, respectively, which are still much lower
than the proposed HAT+CSI and Sup+CSI without pre-training. We do not use pre-training in our
experiment for fairness. ∗ indicates that iCaRL and Mnemonics report average incremental accuracy
in their original papers. We report average accuracy over all classes after all tasks are learned.

Method M-5T C10-5T C100-10T C100-20T T-5T T-10T

OWM 95.8±0.13 51.8±0.05 28.9±0.60 24.1±0.26 10.0±0.55 8.6±0.42
MUC 74.9±0.46 52.9±1.03 30.4±1.18 14.2±0.30 33.6±0.19 17.4±0.17
PASS† 76.6±1.67 47.3±0.98 33.0±0.58 25.0±0.69 28.4±0.51 19.1±0.46
LwF.R 85.5±3.11 54.7±1.18 45.3±0.75 44.3±0.46 32.2±0.50 24.3±0.26
iCaRL∗ 96.0±0.43 63.4±1.11 51.4±0.99 47.8±0.48 37.0±0.41 28.3±0.18
Mnemonics†∗ 96.3±0.36 64.1±1.47 51.0±0.34 47.6±0.74 37.1±0.46 28.5±0.72
BiC 94.1±0.65 61.4±1.74 52.9±0.64 48.9±0.54 41.7±0.74 33.8±0.40
DER++ 95.3±0.69 66.0±1.20 53.7±1.30 46.6±1.44 35.8±0.77 30.5±0.47
Co2L 65.6
CCG 97.3 70.1
HAT 81.9±3.74 62.7±1.45 41.1±0.93 25.6±0.51 38.5±1.85 29.8±0.65
HyperNet 56.6±4.85 53.4±2.19 30.2±1.54 18.7±1.10 7.9±0.69 5.3±0.50
Sup 70.1±1.51 62.4±1.45 44.6±0.44 34.7±0.30 41.8±1.50 36.5±0.36
PR-Ent 74.1 61.9 45.2
HAT+CSI 94.4±0.26 87.8±0.71 63.3±1.00 54.6±0.92 45.7±0.26 47.1±0.18
Sup+CSI 80.7±2.71 86.0±0.41 65.1±0.39 60.2±0.51 48.9±0.25 45.7±0.76
HAT+CSI+c 96.9±0.30 88.0±0.48 65.2±0.71 58.0±0.45 51.7±0.37 47.6±0.32
Sup+CSI+c 81.0±2.30 87.3±0.37 65.2±0.37 60.5±0.64 49.2±0.28 46.2±0.53

(within-task IND prediction)) will result in a strong CIL method. Since HAT and Sup are memory345

free CL methods, HAT+CSI and Sup+CSI also do not need to save any previous task data. Tab. 3346

shows that HAT and Sup equipped with CSI outperform the baselines by large margins. DER++, the347

best replay method, achieves 66.0 and 53.7 on C10-5T and C100-10T, respectively, while HAT+CSI348

achieves 87.8 and 63.3 and Sup+CSI achieves 86.0 and 65.1. The large performance gap remains349

consistent in more challenging problems, T-5T and T-10T. We note that Sup works very poorly on350

M-5T, but Sup+CSI improved it drastically, although still very weak compared to HAT+CSI.351

Due to the definition of OOD in the prediction method and the fact that each task is trained separately352

in HAT and Sup, the outputs f(x)i from different tasks can be in different scales, which will result353

in incorrect predictions. To deal with the problem, we can calibrate the output as αif(x)i + βi and354

use OODi = σ(αif(x)i + βi). The optimal α∗
i and β∗

i for each task i can be found by optimization355

with a memory buffer to save a very small number of training examples from previous tasks like356

that in the replay-based methods. We refer the calibrated methods as HAT+CSI+c and Sup+CSI+c.357

They are trained by using the memory buffer of the same size as the replay methods (see Section 4.2).358

Tab. 3 shows that the calibration improves from their memory free versions, i.e., without calibration.359

We provide the details about how to train the calibration parameters αi and βi in Appendix E.360

5 Conclusion361

This paper proposed a principled guidance on solving the highly challenging continual learning362

problem, class incremental learning (CIL). It decomposed the CIL prediction into within-task in-363

distribution prediction (WIP) and task-id prediction (TP). It further theoretically demonstrated that364

TP is correlated to out-of-distribution (OOD) detection, and showed that CIL problem can be solved365

by WIP, TP and/or OOD detection. It also proved that a good performance in the three is necessary for366

a good CIL model. Experimental results verified the efficacy of the theoretical results. Furthermore,367

based on the theoretical guidance, several new CIL methods have been designed. They outperform368

the strong baselines by large margins.369

Limitations: There are many options to define WIP and TP (or OOD). This paper took a simple way.370

Although it performed well, in our future work, we will try to study how to optimize them.371

9

References372

[1] German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter.373

Continual lifelong learning with neural networks: A review. Neural Networks, 2019.374

[2] Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint375

arXiv:1904.07734, 2019.376

[3] Joan Serrà, Dídac Surís, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic377

forgetting with hard attention to the task. In ICML, 2018.378

[4] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Raste-379

gari, Jason Yosinski, and Ali Farhadi. Supermasks in superposition. In H. Larochelle, M. Ran-380

zato, R. Hadsell, M. F. Balcan, and H. Lin, editors, NeurIPS, 2020.381

[5] Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via382

contrastive learning on distributionally shifted instances. In NeurIPS, 2020.383

[6] Anastasia Pentina and Christoph Lampert. A pac-bayesian bound for lifelong learning. In384

International Conference on Machine Learning, pages 991–999. PMLR, 2014.385

[7] Ryo Karakida and Shotaro Akaho. Learning curves for continual learning in neural networks:386

Self-knowledge transfer and forgetting. In International Conference on Learning Representa-387

tions, 2022.388

[8] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,389

Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.390

Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of391

sciences, 114(13):3521–3526, 2017.392

[9] Zhizhong Li and Derek Hoiem. Learning Without Forgetting. In ECCV, pages 614–629.393

Springer, 2016.394

[10] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in deep395

neural networks. arXiv preprint arXiv:1607.00122, 2016.396

[11] Raffaello Camoriano, Giulia Pasquale, Carlo Ciliberto, Lorenzo Natale, Lorenzo Rosasco, and397

Giorgio Metta. Incremental robot learning of new objects with fixed update time. In ICRA,398

2017.399

[12] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic400

intelligence. In ICML, pages 3987–3995, 2017.401

[13] Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations402

for overcoming catastrophic forgetting. In NeurIPS, 2018.403

[14] Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-Barwinska,404

Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework405

for continual learning. arXiv preprint arXiv:1805.06370, 2018.406

[15] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In NeurIPS, 2018.407

[16] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek408

Alahari. End-to-end incremental learning. In ECCV, pages 233–248, 2018.409

[17] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa.410

Learning without memorizing. In CVPR, 2019.411

[18] Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee. Overcoming catastrophic forgetting412

with unlabeled data in the wild. In CVPR, 2019.413

[19] Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual414

learning with adaptive regularization. In NeurIPS, 2019.415

10

[20] Yu Liu, Sarah Parisot, Gregory Slabaugh, Xu Jia, Ales Leonardis, and Tinne Tuytelaars. More416

classifiers, less forgetting: A generic multi-classifier paradigm for incremental learning. In417

ECCV, pages 699–716. Springer International Publishing, 2020.418

[21] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation419

and self-supervision for incremental learning. In CVPR, 2021.420

[22] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,421

Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv422

preprint arXiv:1606.04671, 2016.423

[23] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient Episodic Memory for Continual Learn-424

ing. In NeurIPS, pages 6470–6479, 2017.425

[24] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and Christoph H Lampert. iCaRL: Incremental426

classifier and representation learning. In CVPR, pages 5533–5542, 2017.427

[25] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient428

lifelong learning with a-gem. In ICLR, 2019.429

[26] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified430

classifier incrementally via rebalancing. In CVPR, pages 831–839, 2019.431

[27] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.432

Large scale incremental learning. In CVPR, 2019.433

[28] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experi-434

ence replay for continual learning. In NeurIPS, 2019.435

[29] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark436

experience for general continual learning: a strong, simple baseline. In NeurIPS, 2020.437

[30] Jathushan Rajasegaran, Munawar Hayat, Salman Khan, Fahad Shahbaz Khan, Ling Shao, and438

Ming-Hsuan Yang. An adaptive random path selection approach for incremental learning, 2020.439

[31] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive aggregation networks for class-440

incremental learning. In CVPR, 2021.441

[32] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In ICCV,442

2021.443

[33] Alexander Gepperth and Cem Karaoguz. A bio-inspired incremental learning architecture for444

applied perceptual problems. Cognitive Computation, 8(5):924–934, 2016.445

[34] Nitin Kamra, Umang Gupta, and Yan Liu. Deep Generative Dual Memory Network for446

Continual Learning. arXiv preprint arXiv:1710.10368, 2017.447

[35] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep448

generative replay. In NIPS, pages 2994–3003, 2017.449

[36] Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer, Bogdan Raducanu, et al. Memory450

replay gans: Learning to generate new categories without forgetting. In NeurIPS, 2018.451

[37] Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in generative adversarial452

nets. arXiv preprint arXiv:1705.08395, 2017.453

[38] Ronald Kemker and Christopher Kanan. FearNet: Brain-Inspired Model for Incremental454

Learning. In ICLR, 2018.455

[39] Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Zhengwei Tao, Jinwen Ma, Dongyan Zhao,456

and Rui Yan. Overcoming catastrophic forgetting for continual learning via model adaptation.457

In ICLR, 2019.458

[40] Mohammad Rostami, Soheil Kolouri, and Praveen K. Pilly. Complementary learning for459

overcoming catastrophic forgetting using experience replay. In IJCAI, 2019.460

11

[41] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen, and Moin Nabi. Learning461

to remember: A synaptic plasticity driven framework for continual learning. In CVPR, pages462

11321–11329, 2019.463

[42] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continuous learning of context-dependent464

processing in neural networks. Nature Machine Intelligence, 2019.465

[43] Yiduo Guo, Wenpeng Hu, Dongyan Zhao, and Bing Liu. Adaptive orthogonal projection for466

batch and online continual learning. In Proceedings of AAAI-2022, 2022.467

[44] Arslan Chaudhry, Naeemullah Khan, Puneet K. Dokania, and Philip H. S. Torr. Continual468

learning in low-rank orthogonal subspaces, 2020.469

[45] Zixuan Ke, Bing Liu, and Xingchang Huang. Continual learning of a mixed sequence of similar470

and dissimilar tasks. In NeurIPS, 2020.471

[46] Arun Mallya and Svetlana Lazebnik. PackNet: Adding Multiple Tasks to a Single Network by472

Iterative Pruning. arXiv preprint arXiv:1711.05769, 2017.473

[47] Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-474

Song Chen. Compacting, picking and growing for unforgetting continual learning. In NeurIPS,475

volume 32, 2019.476

[48] Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe. Continual477

learning with hypernetworks. ICLR, 2020.478

[49] Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust479

continual learning with additive parameter decomposition. In ICLR, 2020.480

[50] Pravendra Singh, Vinay Kumar Verma, Pratik Mazumder, Lawrence Carin, and Piyush Rai.481

Calibrating cnns for lifelong learning. NeurIPS, 2020.482

[51] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning483

with a network of experts. In CVPR, 2017.484

[52] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for485

unsupervised visual representation learning. In CVPR, 2020.486

[53] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework487

for contrastive learning of visual representations. In ICML, 2020.488

[54] Saikiran Bulusu, Bhavya Kailkhura, Bo Li, Pramod K Varshney, and Dawn Song. Anomalous489

instance detection in deep learning: A survey. arXiv preprint arXiv:2003.06979, 2020.490

[55] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances in open set recogni-491

tion: A survey. IEEE transactions on pattern analysis and machine intelligence, 2020.492

[56] Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Mubarak493

Shah. itaml: An incremental task-agnostic meta-learning approach. In CVPR, 2020.494

[57] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita Cucchiara, and495

Ehteshami Bejnordi. Conditional channel gated networks for task-aware continual learning. In496

CVPR, pages 3931–3940, 2020.497

[58] Christian Henning, Maria Cervera, Francesco D’Angelo, Johannes Von Oswald, Regina Traber,498

Benjamin Ehret, Seijin Kobayashi, Benjamin F Grewe, and João Sacramento. Posterior meta-499

replay for continual learning. NeurIPS, 34, 2021.500

[59] Sebastian Lee, Sebastian Goldt, and Andrew Saxe. Continual learning in the teacher-student501

setup: Impact of task similarity. In International Conference on Machine Learning, pages502

6109–6119. PMLR, 2021.503

[60] Mehdi Abbana Bennani, Thang Doan, and Masashi Sugiyama. Generalisation guarantees for504

continual learning with orthogonal gradient descent. Lifelong Learning Workshop at the ICML,505

2020.506

12

[61] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training:507

Multi-class incremental learning without forgetting. In CVPR, 2020.508

[62] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution509

detection. Advances in Neural Information Processing Systems, 2020.510

[63] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for511

detecting out-of-distribution samples and adversarial attacks. Advances in neural information512

processing systems, 31, 2018.513

[64] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image514

detection in neural networks. In ICLR, 2018.515

[65] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron516

Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. arXiv preprint517

arXiv:2004.11362, 2020.518

[66] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep519

convolutional neural networks. In NIPS, 2012.520

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image521

recognition. In CVPR, 2016.522

[68] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-523

ial examples. ICLR, 2015.524

13

Checklist525

The checklist follows the references. Please read the checklist guidelines carefully for information on526

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or527

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing528

the appropriate section of your paper or providing a brief inline description. For example:529

• Did you include the license to the code and datasets? [Yes] See Section ??.530

• Did you include the license to the code and datasets? [No] The code and the data are531

proprietary.532

• Did you include the license to the code and datasets? [N/A]533

Please do not modify the questions and only use the provided macros for your answers. Note that the534

Checklist section does not count towards the page limit. In your paper, please delete this instructions535

block and only keep the Checklist section heading above along with the questions/answers below.536

1. For all authors...537

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s538

contributions and scope? [Yes]539

(b) Did you describe the limitations of your work? [Yes] See Conclusion540

(c) Did you discuss any potential negative societal impacts of your work? [No]541

(d) Have you read the ethics review guidelines and ensured that your paper conforms to542

them? [Yes]543

2. If you are including theoretical results...544

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Sec. 3.1.545

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix.546

3. If you ran experiments...547

(a) Did you include the code, data, and instructions needed to reproduce the main exper-548

imental results (either in the supplemental material or as a URL)? [Yes] Included in549

Supplementary Materials.550

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they551

were chosen)? [Yes] See Sec. 4.2 and Appendix.552

(c) Did you report error bars (e.g., with respect to the random seed after running experi-553

ments multiple times)? [Yes]554

(d) Did you include the total amount of compute and the type of resources used (e.g., type555

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix556

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...557

(a) If your work uses existing assets, did you cite the creators? [Yes] Cited the relevant558

repositories the attached codes.559

(b) Did you mention the license of the assets? [No]560

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]561

562

(d) Did you discuss whether and how consent was obtained from people whose data you’re563

using/curating? [N/A]564

(e) Did you discuss whether the data you are using/curating contains personally identifiable565

information or offensive content? [N/A]566

5. If you used crowdsourcing or conducted research with human subjects...567

(a) Did you include the full text of instructions given to participants and screenshots, if568

applicable? [N/A]569

(b) Did you describe any potential participant risks, with links to Institutional Review570

Board (IRB) approvals, if applicable? [N/A]571

(c) Did you include the estimated hourly wage paid to participants and the total amount572

spent on participant compensation? [N/A]573

14

	Introduction
	Related Work
	CIL by Within-Task IND Prediction and Task Prediction
	CIL Problem Decomposition
	CIL Improves as WIP and/or TP Improve
	Task Prediction (TP) to OOD Detection
	Necessary Conditions for Improving CIL

	New CIL Techniques and Experiments
	Datasets, CL Baselines and OOD Detection Methods
	Training Details and Evaluation Metrics
	Better OOD Detection Produces Better CIL Performance
	Full Comparison of HAT+CSI and Sup+CSI with Baselines

	Conclusion

