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ABSTRACT

Denoising diffusion models have recently marked a milestone in high-quality im-
age generation. One may thus wonder if they are suitable for neural image com-
pression. This paper outlines an end-to-end optimized image compression frame-
work based on a conditional diffusion model, drawing on the transform-coding
paradigm. Besides the latent variables inherent to the diffusion process, this paper
introduces an additional discrete “content” latent variable to condition the denois-
ing process on. This variable is equipped with a hierarchical prior for entropy
coding. The remaining “texture” latent variables characterizing the diffusion pro-
cess are synthesized (either stochastically or deterministically) at decoding time.
We furthermore show that the performance can be tuned toward perceptual met-
rics of interest. Our extensive experiments involving five datasets and 16 image
perceptual quality assessment metrics show that our approach not only compares
favorably in terms of rate and perceptual distortion tradeoffs but also shows robust
performance under all metrics while other baselines show less consistent behavior.

1 INTRODUCTION

With visual media vastly dominating consumer internet traffic, developing new efficient codecs for
images and videos has become evermore crucial (Cisco, 2017). The past few years have shown
considerable progress on deep learning-based image codecs that have outperformed classical codecs
in terms of the inherent tradeoff between rate (expected file size) and distortion (quality loss) (Ballé
et al., 2018; Minnen et al., 2018; Minnen & Singh, 2020; Zhu et al., 2021; Yang et al., 2020; Cheng
et al., 2020; Yang et al., 2022b). Recent research promises even more compression gains upon
optimizing for perceptual quality, i.e., increasing the tolerance for imperceivable distortion for the
benefit of lower rates (Blau & Michaeli, 2019). For example, recent works involving adversarial
losses (Agustsson et al., 2019; Mentzer et al., 2020) show good perceptual quality at low bitrates.

Most state-of-the-art learned codecs currently rely on the transform coding paradigm and involve
hierarchical “compressive” variational autoencoders (Ballé et al., 2018; Minnen et al., 2018; Min-
nen & Singh, 2020). These models simultaneously transform the data into a lower dimensional
latent space and use a learned prior model for entropy-coding the latent representations into short
bit strings. Using either Gaussian or Laplacian decoders, these models directly optimize for low
MSE/MAE distortion performance. Given the increasing focus on perceptual performance over dis-
tortion, and given the fact that VAEs suffer from mode averaging behavior inducing blurriness (Zhao
et al., 2017), one may wonder if better perceptual results can be expected by replacing the Gaussian
decoder with a more expressive conditional generative model.

This paper proposes to relax the typical requirement of Gaussian (or Laplacian) decoders in com-
pression setups and proposes a more expressive generative model instead: a conditional diffu-
sion model. Diffusion models have achieved remarkable results on high quality image generation
tasks (Ho et al., 2020; Song et al., 2021b;a). By hybridizing hierarchical compressive VAEs (Ballé
et al., 2018) with conditional diffusion models, we create a novel deep generative model with promis-
ing properties for perceptual image compression. This approach is related to but distinct from the
recently proposed Diff-AEs (Preechakul et al., 2022), which are neither variational (as needed for
entropy coding) nor tailored to the demands of image compression.

We evaluate our new compression model on five datasets and investigate a total of 16 different
metrics, ranging from distortion metrics, perceptual reference metrics, and no-reference perceptual
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metrics. We find that the approach is comparable with the best available compression models while
showing more consistent behavior across the different tasks. We also show that making the decoder
more stochastic vs. deterministic will decrease oversmoothing while degrading distortion, showing
once more that perceptual quality is distinct from good reconstruction (Blau & Michaeli, 2019).

In sum, our contributions are as follows:

• We propose the first transform-coding-based lossy compression scheme using diffusion
models. The approach uses a VAE-style encoder to map images onto a content latent vari-
able; this latent variable is then fed as context into a diffusion model for reconstructing the
data. The approach can be modified to enhance several perceptual metrics of interest.

• We derive our model’s loss function systematically from a variational lower bound to the
data log-likelihood. The resulting distortion term is distinct from traditional VAEs and is
better suited for modeling the residual noise than a conditional Gaussian distribution.

• We provided substantial empirical evidence that the approach is compatible with and, in
some cases, better than the state of the art. To this end, we considered five test sets, three
state-of-the-art baselines, and 16 image quality assessment metrics (classical and neural).

2 RELATED WORK

We discuss related works on Lossy Compression, Compression For Realism and Diffusion Models.

Lossy Image Compression The widely-established classical codecs such as JPEG (Wallace,
1991), BPG (Bellard, 2018), WEBP (Google, 2022) have recently been challenged by end-to-end
learned codecs (Ballé et al., 2018; Minnen et al., 2018; Minnen & Singh, 2020; Yang et al., 2020;
Cheng et al., 2020; Zhu et al., 2021). These methods typically draw on the non-linear transform
coding paradigm as realized by hierarchical VAEs. Usually, neural codecs are optimized to simulta-
neously minimize rate and distortion metrics, such as mean squared error or structural similarity.

Compression For Realism In contrast to neural compression approaches targeting traditional
metrics, some recent works have explored compression models to enhance realism (Agustsson
et al., 2019; Mentzer et al., 2020; Tschannen et al., 2018). A theoretical background for these
approaches was provided by Blau & Michaeli (2019); Zhang et al. (2021), who considered opti-
mizing the autoencoder-based compression model with additional distortion terms based on neural
metrics (e.g. LPIPS (Zhang et al., 2018a)) or adversarial losses (Goodfellow et al., 2014; Rippel &
Bourdev, 2017). Since GAN training introduces a variety of instabilities, successful deployment of
these methods requires a variety of design choices.

Diffusion Models Probabilistic diffusion models showed impressive performance on image gen-
eration tasks, with perceptual qualities comparable to those of highly-tuned GANs while maintain-
ing stable training (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021b; Song & Ermon, 2019;
Kingma et al., 2021; Yang et al., 2022a; Ho et al., 2022; Saharia et al., 2022; Preechakul et al., 2022).
Popular recent diffusion models include Dall-E2 (Ramesh et al., 2022) and Stable-Diffusion (Rom-
bach et al., 2022). Some works also proposed diffusion models for compression. Hoogeboom et al.
(2021) evaluated an autoregressive diffusion model (ADM) on a lossless compression task. Besides
the difference between lossy and lossless compression, the model is only tested on low-resolution
CIFAR-10 (Krizhevsky et al., 2009) dataset. In concurrent work, Theis et al. (2022) proposed a
diffusion model for lossy compression, using a generic unconditional diffusion model that does not
require learning a discrete representation. While conceptually attractive, the paper considers images
of comparatively low resolution since ”relative entropy coding” (Flamich et al., 2020) is substan-
tially slower than transform coding (Yang et al., 2022b; Ballé et al., 2020).

3 METHOD

We review diffusion models and neural compression methods and then discuss our model design.
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Figure 1: Overview of our proposed compression architecture. A discrete “content” latent variable
ẑ contains information about the image. Upon decoding, this variable us used for conditioning a
denoising diffusion process. The involved ”texture” latent variables x̄1:N are synthesized on the fly.

3.1 BACKGROUND

Denoising diffusion models are hierarchical latent variable models that generate data by a se-
quence of iterative stochastic denoising steps (Ho et al., 2020; Song et al., 2021a; Song & Ermon,
2019; Sohl-Dickstein et al., 2015). The model describes a joint distribution over data x0 and latent
variables x1:N such that pθ(x0) =

∫
pθ(x0:N )dx1:N . While a diffusion process (denoted by q)

incrementally destroys structure, its reverse process pθ generates structure. Both processes involve
Markovian dynamics between a sequence of transitional steps (denoted by n), where

q(xn|xn−1) = N (xn|
√

1− βnxn−1, βnI); pθ(xn−1|xn) = N (xn−1|Mθ(xn, n), γnI). (1)
The variance schedule βn ∈ (0, 1) can be either fixed or learned; besides it, the diffusion process is
parameter-free. The denoising process predicts the posterior mean from the diffusion process and is
parameterized by a neural network Mθ(xn, n). The covariance γn is a fixed hyperparameter.

A convenient choice to train the model is through the noise-parameterization (Ho et al., 2020), where
one seeks to predict the noise used to generate a particular image:

L(θ,x0) = En,ϵ||ϵ− ϵθ(xn(x0), n)||2. (2)
Once the model is trained, data can be generated by following ancestral sampling similar to Langevin
dynamics (Ho et al., 2020; Song & Ermon, 2019). In subsequent work, Song et al. (2021a) proposed
an iterative deterministic mapping at training time that only injects noise in the initial draw from the
prior. As we describe in Section 3.2, we adopt this deterministic scheme for image decoding.

Neural image compression seeks to outperform traditional image codecs by machine-learned
models. Our approach draws on the transform-coding-based neural image compression approach
(Theis et al., 2017; Ballé et al., 2018; Minnen et al., 2018; Minnen & Singh, 2020), where the data
are non-linearly transformed into a latent space, and subsequently discretized and entropy-coded.
The approach shows a strong formal resemblance to VAEs and shall be reviewed in this terminology.

Let z be a continuous latent variable and ẑ = ⌊z⌉ the corresponding rounded, integer vector. The
VAE-based compression approach consists of a stochastic encoder e(z|x), a continuous prior p(z)
along with its discretization P (ẑ), and a decoder p(x|z). The model is trained using the ELBO,

L(λ,x) = Ez∼e(z|x)[− log p(x|z)− λ log p(z)]. (3)
While the first term controls the distortion, the second term controls the bitrate (upon encoding ẑ
under the prior). e(z|x0) = U(Encϕ(x0) − 1

2 ,Encϕ(x0) +
1
2 ) is a boxed-shaped distribution that

simulates the rounding operation at training time. Once the VAE is trained, we en- and de-code data
using only the deterministic components as ẑ = ⌊Enc(x)⌉ and x̂ = Dec(ẑ). We furthermore use the
learned prior P (ẑ) for entropy coding, e.g., using an arithmetic coder (Yang et al., 2022b).

While VAE-based approaches have used simplistic (e.g., Gaussian) decoders, we can get signifi-
cantly better results when defining the decoder p(x|z) as a conditional diffusion model.

3.2 CONDITIONAL DIFFUSION MODEL FOR COMPRESSION

The basis of our compression approach is a new latent variable model: the diffusion variational
autoencoder. This model has a “semantic” latent variable z for encoding the image content, and a
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set of “texture” latent variables x1:N describing residual information,

p(x0:N , z) = p(x0:N |z)p(z). (4)

As detailed below, the decoder will follow a denoising process conditioned on z. Drawing on meth-
ods described in Section 3.1, we use a neural encoder e(z|x0) to encode the image. The prior p(z)
is a two-level hierarchical prior (commonly used in learned image compression) and is used for
entropy coding z after quantization (Ballé et al., 2018). Next, we discuss the novel decoder model.

Decoder We construct the conditional denoising diffusion model in a similar way to the non-
variational diffusion autoencoder of Preechakul et al. (2022). Decoding x0 involves in the following
conditional generative process similar to equation 1:

pθ(x0:T |z) = p(xN )
∏

pθ(xn−1|xn, z) = p(xN )
∏
N (xn−1|Mθ(xn, z, n), γnI). (5)

Above, xN is the initial texture latent variable. Our compression approach only compresses z and
generates x1:N at decoding time. The generative process of the model is defined by the DDIM model
Song et al. (2021a), where we iterative generate/decode the latent variables xn as

xn−1 =
√
αn−1

(
xn −

√
1− αnϵθ(xn, n, z)√

αn

)
+
√

1− αn−1ϵθ(xn, n, z). (6)

In analogy to (Ho et al., 2020), ϵθ is a neural network that predicts the direction of this iterative
process and αn is the cumulative product of the variances defined in DDIM. The crucial difference
is that this process is now conditioned on z. n denotes the step of the process.

Since most of the image content is encoded in z, the top-level texture variable xN should not con-
tribute much information. At inference time, we therefore set xN = 0 (the point with the highest
density under the prior). In our ablations, we compare against stochastic decoding, where we ran-
domize xN and/or add stochastic noise to the decoding process (with or without fixed random seed).

Optimization Objective We now derive a variational lower bound to data log-likelihood for train-
ing our model. We later discuss how we relax this bound and derive a novel rate-distortion objective.

We note that our encoder distribution e(z|x0) is box-shaped and has zero entropy. Defining λ = 1,
our variational model minimizes a variational upper bound to the negative data log-likelihood:

− log p(x0) ≤ Ez∼e(z|x0)[− log p(x0|z)− λ log p(z)]

≤ Ez∼e(z|x0)

[
Ex1:N∼q(x1:N |x0)

[
− log

p(x0:N |z)
q(x1:N |x0)

]
− λ log p(z)

]
(7)

≡ Ez∼e(z|x0)[− log plower(x0|z)− λ log p(z)]. (8)

We thereby defined log plower(x0|z) = Ex1:N∼q(x1:N |x0)

[
log p(x0:N |z)

q(x1:N |x0)

]
as the variational lower

bound to the diffusion model’s conditional data likelihood. We note that log plower(x0|z) generally
neither has a closed-form solution, nor does it have to be a normalized probability distribution.
However, the notation is still useful due to its close analogy to Gaussian decoders.

We realize that − log plower(x0|z) measures image distortion, i.e., the model’s ability to reconstruct
the image based on z. In contrast, log p(z) measures the number of bits needed to compress z under
the prior. By allowing λ to deviate from 1, we hence identify Eq. 7 as a generalized rate-distortion
objective (Yang et al., 2022b). Changing λ results in different models on the rate-distortion curve.

For simplicity, we adopt the denoising score matching loss of Ho et al. (2020),

− log plower(x0|z) ≡ Ex0,n,ϵ||ϵ− ϵθ(xn(x0), z, i
n
Ntrain

)||ℓℓ, ℓ = 1 or ℓ = 2. (9)

Instead of conditioning on n, we condition the model on the pseudo-continuous variable inN = n/N
which yields better perceptual results and offers additional flexibility in choosing the number of
denoising steps for decoding (e.g., we can use a Ntest smaller than Ntrain). This pseudo-continuous
scheme has a related continuous version (Kingma et al., 2021).

Algorithm 1 provides details on training and encoding/decoding. We find that the ℓ1 loss leads to
better perceptual qualities and shows fewer color artifacts than the ℓ2 loss. Similar results were also
reported in diffusion model for super-resolution task (Saharia et al., 2022).
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Optional Perceptual Distortion While Eq. 7 already describes a viable loss function for our
conditional diffusion compression model, we can influence the perceptual quality of the compressed
images by introducing additional loss functions similar to (Mentzer et al., 2020).

First, we note that the decoded data point can be understood as a function of the higher-level latent
xn, the latent code z, and the iteration n, such that x̄0(xn, z, n) =

xn−
√
1−αnϵθ(xn,z,i

n
N )√

αn
. When

minimizing a perceptual metric d(·, ·) in image space, we can therefore add a new term to the loss:

Lperceptual = Ex0,ϵ,n,z∼e(z|x0)[d(x̄0(xn, z, n),x0)]. (10)

L = ρLperceptual − (1− ρ)Ez∼e(z|x0)[log plower(x0|z)−
λ

1− ρ
log p(z)]. (11)

This loss term is weighted by an additional Lagrange multiplier ρ ∈ [0, 1), resulting in a three-way
tradeoff that can be analogous (but different) to Rate-Distortion-Perception trade-off (Yang et al.,
2022b; Blau & Michaeli, 2019). We emphasize that our model is actually solely optimized with two
special distortion terms, which both have some technical distinction to the “perception” defined by
Blau & Michaeli (2019). In this paper, we choose the widely adopted LPIPS (Zhang et al., 2018a)
as the perceptual loss function.

Architecture The design of the denoising module follows a similar U-Net architecture used in
DDIM (Song et al., 2021a) and DDPM (Ho et al., 2020) projects. Each U-Net unit includes two
ResNet blocks (He et al., 2016), one Attention block and one convolutional up/downsampling block.
We use six U-Net units for both downsampling and upsampling process. The channel dimension
for each downsampling unit is 64 × j, where j is the index of the layer range from 1 to 6; the
upsampling units follow the reverse order. Each encoder module consists of one ResNet blocks and
one convolutional downsampling block. For conditioning with embedding, we use ResNet blocks
and transposed convolution to upscale z to the same spatial dimension as the inputs of the beginning
four U-Net downsampling units, so that we can perform conditioning by concatenating the the output
of the embedder and the input of the corresponding U-Net unit. See Appendix A and Figure 5 for
more details.

Algorithm 1: Training (Left); Encoding and Decoding (Right).
while not converged do

Sample x0 ∼ dataset;
n ∼ U(0, 1, 2, .., Ntrain);
ϵ ∼ N (0, I);
x̄n =

√
αnx0 +

√
1− αnϵ;

ẑ ∼ U(Encϕ(x0)− 1
2 ,Encϕ(x0) +

1
2 );

x̄0 = x̄n−
√
1−αnϵθ√
αn

;
LD = |ϵ− ϵθ(x̄n, i

n
Ntrain

ẑ)|;
L = (1− ρ)LD + ρd(x̄0,x0)−λ log2 P (ẑ) ;
(θ, ϕ) = (θ, ϕ)−∇θ,ϕL

end

Given Ntest;
ẑ = ⌊Encϕ(x0)⌉;
ẑ

P (ẑ)←−→ binary file;
x̄N = 0;
for n=Ntest to 1 do

ϵθ = ϵθ(x̄n, i
n
Ntest

, ẑ);

x̄0 = x̄n−
√
1−αnϵθ√
αn

;
x̄n−1 =

√
αn−1x̄0 +

√
1− αn−1ϵθ;

end
x̂0 = x̄0;
return x̂0

4 EXPERIMENTS

We conducted a large-scale compression evaluation involving 16 image quality metrics and 5 test
datasets. Besides metrics measuring differences between compressed and raw images (“full refer-
ence metrics”), we also considered “no-reference metrics” that evaluate quality without referring to
any particular instance. While some of these metrics are fixed, others are learned from data. We will
refer to our approach as “Conditional Diffusion Compression” (CDC) in the following.

Metrics We selected 16 metrics from multiple categories: full-reference metrics, no-reference
metrics, learned metrics, and not-learned metrics. We list these metrics and their corresponding
categories in Table 1. Some more recently proposed learned metrics (Zhang et al., 2018a; Prashnani
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PIEAPP(Prashnani et al., 2018) Full Reference Learned Perceptual Distortion
LPIPS(Zhang et al., 2018a) Full Reference Learned Perceptual Distortion
DISTS(Ding et al., 2020) Full Reference Learned Perceptual Distortion

CKDN(Zheng et al., 2021) Full Reference Learned Perceptual Distortion
FSIM(Zhang et al., 2011) Full Reference Not Learned Distortion
SSIM(Wang et al., 2004) Full Reference Not Learned Distortion

MS-SSIM(Wang et al., 2003) Full Reference Not Learned Distortion
CW-SSIM(Sampat et al., 2009) Full Reference Not Learned Distortion

PSNR Full Reference Not Learned Distortion
GMSD(Xue et al., 2013) Full Reference Not Learned Distortion

NLPD(Laparra et al., 2016) Full Reference Not Learned Distortion
VSI(Zhang et al., 2014) Full Reference Not Learned Distortion

MAD(Larson & Chandler, 2010) Full Reference Not Learned Distortion
MUSIQ(Ke et al., 2021) No-Reference Learned Perception

DBCNN(Zhang et al., 2018b) No-Reference Learned Perception
FID(Heusel et al., 2017) No-Reference Learned Perception

Table 1: A list of the used evaluation metrics

et al., 2018; Ding et al., 2020; Zheng et al., 2021) are believed to capture perceptual similarity better
than other non-learned methods. We denote perceptual full reference metrics as perceptual distor-
tions. We consider FID (Heusel et al., 2017) as a no-reference metric since distances are measured
on a distribution level and not per instance. For small test sets (= 100 images), we calculate FID
by segmenting images into non-overlapping 256x256 resolution patches. Note that full reference
metrics are considered more important than no-reference metrics since data compression ultimately
amounts to transmitting information about a particular image.

Test Data To support our compression quality assessment, we consider following datasets with
necessary preprocessing: 1. Kodak (Franzen, 2013): The data consists of 24 high-quality images
at 768x512 (512x768) resolution. We do not evaluate the FID score of the dataset as 24 images
only yield 144 image patches. 2. Tecnick (Asuni & Giachetti, 2014): We use 100 natural images
with 600x600 resolutions. As our model currently only supports resolution (width and height) as
multiples of 64px, we downsample these images to 512x512 resolution. 3. DIV2K (Agustsson &
Timofte, 2017): The validation set of this dataset contains 100 high-quality images. We resize the
images with the shorter dimension being equal to 768px. Then, each image is center-cropped to a
768x768 squared shape. 4. COCO2017 (Lin et al., 2014): For this dataset, we extract all test images
with resolutions higher than 512x512 and resize them to 384x384 resolution to remove compression
artifacts. The resulting dataset consists of 2695 images. 5. ArtBench (Liao et al., 2022): We use
this dataset to conduct an out-of-distribution test, as it comprises 60000 images of artwork from 10
different artistic styles. We randomly select 1800 256x256 images from the surrealism style.

Model Training We use the Vimeo-90k (Xue et al., 2019) dataset to train our model, consisting of
90,000 clips of 7-frame sequences at 448x256 resolution collected from vimeo.com. This dataset is
widely used for video compression research. We randomly select one frame from each clip and crop
the frame randomly to 256x256 resolution in each epoch. At the beginning of training, we warm-up
the model by setting λ = 10−4 and keep it running for around 500,000 steps. Then, we increase λ
to {0.0128, 0.0256, 0.0512}, respectively, and keep the model running for another 1,000,000 steps
until the model converges. For the models with ρ ̸= 0, we fine-tune the pretrained model with ρ = 0
for another 500,000 steps. We use batch size=4 and the Adam (Kingma & Ba, 2014) optimizer in
all cases. The learning rate is initialized as lr = 5× 10−5 and then declines by 20% every 100,000
steps until lr = 2× 10−5.

4.1 BASELINE COMPARISONS

Baselines and Model Variants We tested two variants of our CDC model: one with ρ = 0 and
one ρ = 0.9, respectively. The former version is the diffusion model with an additive perceptual
reconstruction term (LPIPS). We used 500 iteration steps to decode the images, as more steps only
yielded marginal improvement.

We compare our method with two state-of-the-art neural compression models: 1. HiFiC (Mentzer
et al., 2020) is a learned compression for perceptual image compression. The model is optimized by
an adversarial network and employs additional perceptual and traditional distortion losses (LPIPS
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Figure 2: Tradeoffs between bitrate (x-axes, in bpp) and different perceptual metrics (y-axes) for
various compression models tested on COCO2017. Arrows in the title indicate whether high (↑)
or low (↓) values indicate a better perception/distortion quality. CDC (proposed) with or without
finetuning to LPIPS (ρ = 0 or ρ = 0.9) shows competitive performance in various metrics.

and MSE). 2. MS-GMM (Cheng et al., 2020) is currently state-of-the-art in terms of rate-distortion
performance (PSNR). It is based on the MSE-trained Mean-Scale Hyperprior (MS-Hyper) archi-
tecture (Minnen et al., 2018), but improves transform coding with an attention module and also
employs an improved entropy model. 3. We also attach the results from HEVC based BPG codec
as a reference.

Figure 2 shows the tradeoff between bitrates and perceptual metrics. Baseline models have dashed
lines, and proposed ones (CDC) have solid lines. We will discuss subfigures according to their
metric types, indicated by the frame color.

• Learned full reference metrics (red frames). The first group includes PIEAPP, DISTS,
CKDN(DR-IQA), and CKDN. We generally find that models trained with perceptual losses per-
form better here than models trained to minimize distortion. Our CDC(ρ = 0.9) model shows the
best PIEAPP and DISTS scores. CDC(ρ = 0) also shows slightly better results than MS-GMM
upon the above two metrics, while CDC(ρ = 0) is slightly worse in LPIPS at low bitrates. HiFiC
performs best on LPIPS as this model was optimized for this metric. For CKDN(DR-IQA), our
CDC(ρ = 0) model shows the best performance.

• Classical rate-distorion metrics (green frames). For the following nine traditional R-D met-
rics, we generally find models optimized for R-D tradeoffs to work well, such as MS-GMM
(Cheng et al., 2020). CDC(ρ = 0) shows comparable performance with MS-GMM and shows
better performance over all remaining baselines. By contrast, the learned perceptual term for
CDC(ρ = 0.9) seems to rather harm performance here.

• No-reference metrics (blue frames). The remaining three metrics evaluate the rate-perception
performance without reference to a specific image. MS-GMM shows slightly better performance
on two no-reference metrics (MUSIQ, DBCNN), but our CDC(ρ = 0.9) method is not far
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(a) Ground Truth (b) CDC(ρ = 0.9) (bpp=0.205) (c) HiFiC (bpp=0.211)

(d) Ground Truth (e) CDC(ρ = 0) (bpp=0.228) (f) MS-GMM (bpp=0.294)

Figure 3: Qualitative comparison of the compressed images from Kodak dataset. 1st row: our model
more accurately retains the blue colors in the English letters and also preserve more texture pattern
around the letters. HiFiC tends to sharpen the image but it comes with information loss (the color
and shape of the English letters). 2nd row: The low contrast texture (the curtain inside the window)
is somewhat more consistent with the ground truth with our compression method.

behind. On the widely-use FID score, CDC(ρ = 0) shows better perception over MS-GMM,
and CDC(ρ = 0.9) is only marginally worse than HiFiC.

Overall, our CDC model without perceptual loss shows surprisingly good aggregate performance,
despite the fact that it was not tuned towards any given metric. In contrast, the established HiFiC
perceptual compression model seems to perform favorably on some perceptual metrics but is left
behind on traditional metrics.

We also provide qualitative comparison of the compressed images in Figure 3. Results on all four
other datasets are mostly consistent and are provided in the Appendix B, among which we show an
out-of-distribution (OOD) test on ArtBench datasets (Figure 6). By benchmarking rate-distortion on
these artwork data, we can report the robustness of the compression models that are optimized for
natural images and perceptual quality, because perceptual quality is less important than traditional
metrics for these unnatural contents. The results show that our CDC (ρ = 0.9) model performs
better than HiFiC under such contingency.

4.2 STOCHASTIC DECODING

Our model allows both stochastic and deterministic decoding by varying the noise level in the image
generative process at decompression time. Since stochastic decoding is unintuitive and typically not
desirable, one can make the decoding process still reproducible by using a fixed random seed.

To analyze the difference between stochastic and deterministic decoding, we consider both the
DDIM (Song et al., 2021a) and DDPM (Ho et al., 2020) sampling schemes. DDIM sampling starts
from a white noise distribution x̄0 ∼ N (0, γ2I) while making the iterative decoding process de-
terministic. In contrast, DDPM also involves a stochastic decoding process with noise perturbation
at every decoding step. Figure 4 compares the compression performance of deterministic decoding
and the two stochastic decoding schemes by evaluating three perceptual and three traditional metrics.
The top plots show that DDIM and DDPM both show improved perceptual distortion performance
over the deterministic variants but degrade in terms of traditional distortion metrics. By varying the
noise parameter γ, DDPM shows approximately invariant scores on almost all the metrics. It also
appears that the value γ = 0.8 yields the best results for DDIM in terms of both perceptual distortion
and visualization quality.
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Figure 4: Quantitative (top figure) and qualitative (bottom figure) comparison of deterministic and
stochastic decoding methods. Deterministic decoding typically results in a smoother image recon-
struction. By increasing the noise γ used upon decoding the images, we observe more and more
detail and rugged texture on the face of the sculpture. Qualitatively, DDIM (γ = 0.8) seems to show
the best agreement with the ground truth image.

5 CONCLUSION & DISCUSSION

This paper proposes a lossy image compression framework inspired by the conditional diffusion
model and transform-coding-based neural image compression. Our approach uses a deterministic
denoising decoder to iteratively reconstruct the compressed images encoded by an ordinary neural
encoder. We train the model with a loss term that combines denoising score matching and rate-
distortion autoencoders in an end-to-end manner. We conduct quantitative and qualitative exper-
iments to compare our method against several state-of-the-art neural and classical codecs. Our
approach yields competitive rate-distortion(perception) performance against all baseline models.

Iterative decoding can be slow compared to a normal decoder. Whether or not this is relevant de-
pends on the application, such as the available bandwidth for transmitting data. However, we can
also trade-off decoding speed against image quality by varying the decoding steps or using recent
ideas for accelerating diffusion models (Salimans & Ho, 2022).
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Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay Pushparaja. Compressai: a py-
torch library and evaluation platform for end-to-end compression research. arXiv preprint
arXiv:2011.03029, 2020.

Fabrice Bellard. Bpg image format. 2018. URL https://bellard.org/bpg/.

Yochai Blau and Tomer Michaeli. Rethinking lossy compression: The rate-distortion-perception
tradeoff. In International Conference on Machine Learning, pp. 675–685. PMLR, 2019.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression with
discretized gaussian mixture likelihoods and attention modules. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7939–7948, 2020.

Cisco. Visual network index cisco. forecast and methodology. White Paper, 2017.

Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality assessment: Unifying
structure and texture similarity. IEEE transactions on pattern analysis and machine intelligence,
2020.
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A ARCHITECTURES

Figure 5: Visualization of our model architecture

Figure 5 describes our design choice of the model. We list the additional detailed specifications that
we did not clarify in the main paper as follow:

• The hyper prior structure share the same design as Minnen et al. (2018), where the only
difference is that the channel number of the hyper latent y is set as 256.

• We use 3x3 convolution for almost all the rest convolutional layers. The only exceptions are
the 1st conv-layer of the first DU component and the 1st layer of the 1st ENC component,
where we use 7x7 convolution for wider receptive field.

• inN is embeded by multiple linear layers, which expand the 1-dimensional number to the
sample channel size as the corresponding upsampling/downsampling units.

B ADDITIONAL RATE-DISTORTION(PERCEPTION) RESULTS
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Figure 6: Rate-Distortion(Perception) for ArtBench(surrealism) dataset. This dataset, which chal-
lenges the model that prefers perceptual quality, is the only out-of-distribution dataset we conducted
in this experiment. HiFiC shows worse or partially worse performance than CDC(ρ = 0.9) in al-
most all of conventional distortion metrics. By contrast, in other natural image datasets (Figure 2
7 8 9 green frames) , HiFiC almost always yields better Rate-Distortion(not-learned) performance
than CDC(ρ = 0.9).
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Figure 7: Rate-Distortion(Perception) for DIV2k dataset
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Figure 8: Rate-Distortion(Perception) for Tecnick dataset
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Figure 9: Rate-Distortion(Perception) for Kodak dataset
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C PRETRAINED BASELINES

We refer to Bégaint et al. (2020) for pretrained MS-Hyper and MS-GMM models. For HiFiC model,
we use the model implemented by a 3rd party researchers1. Both models were sufficiently trained
on natural image datasets (Xue et al., 2019; Kuznetsova et al., 2020).

1https://github.com/Justin-Tan/high-fidelity-generative-compression/tree/7d4e9e785932c039df7fb436159600ed8b474a83
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