
EmoSpeech: Guiding FastSpeech2 Towards Emotional Text to Speech

Anonymous submission to SSW 2023

Abstract
State-of-the-art speech synthesis models try to get as close as
possible to the human voice. Hence, the modeling of emo-
tions is an essential part of Text-To-Speech (TTS) research.
In our work, we selected FastSpeech2 as the starting point
and proposed a series of modifications for synthesizing emo-
tional speech. According to automatic and human evaluation,
our model, EmoSpeech, surpasses existing models in terms of
both MOS score and emotion recognition accuracy in gener-
ated speech. We provided a detailed ablation study for every
extension to FastSpeech2 architecture that forms EmoSpeech.
Crucial factor when generating speech with emotions, is to con-
sider the uneven distribution of emotions in the text. Our model
includes an additional mechanism that effectively handles this
issue by allowing emotions to contribute to each phoneme with
varying levels of intensity. The human assessment indicates that
proposed modifications generate audio with higher MOS and
emotional expressiveness.
Index Terms: text to speech, emotional text to speech, fast
speech

1. Introduction
Over the past few years, the field of Text to Speech (TTS)
achieved significant progress in terms of the quality of syn-
thesized speech [1, 2, 3, 4]. At the same time, most mod-
els with state-of-the-art performance are based on Normaliz-
ing Flows [1, 2, 3, 4], and therefore suffer from slower gen-
eration speed than models based on the Transformer [5] ar-
chitecture [6, 7]. Moreover, such models often require more
time and data for training [2]. It can often become a limita-
tion for using models in high-load product environments, e.g.,
when fine-tuning for every user is needed. One attempt to over-
come inference speed limitations is FastSpeech2 [6]. Even
though FastSpeech2 loses to the latest models that use Nor-
malizing Flows [1, 2, 3, 4], according to quality metrics, i.e.,
Mean Opinion Score (MOS), it surpasses others in terms of in-
ference speed. Our work mainly focuses on providing a solution
for high-load environments, such as large social networks. We
choose FastSpeech2 [6] architecture as a starting point.

While estimating the quality of generated speech, we often
consider how realistic it sounds. To produce realistic speech,
TTS models have to take into account many factors absent from
simple text input, such as prosody, stress, rhythm, intonation,
and emotion. Emotional speech is easier to perceive and en-
riches the meaning of the spoken text, making it an attractive
option for a wide range of applications. Recently, research
into speech synthesis models that make it possible to convey
emotion began attracting more attention [8, 9, 10, 11, 12, 13].
These models are traditionally represented by Global Style To-

kens (GST) [14], which are based on Tacotron2 [15]. Like many
other similar approaches, GST makes it possible to learn an em-
bedding vector with good expressiveness. When it comes to
conditioning the encoded text sequence, the same embedding
vector is usually added to each text token. This ignores that,
given the relationship between emotion, intonation and stress,
and the fact that the latter two have a different effect on each
token in a textual sequence, an emotion embedding may also
have a different impact on each token in a sequence. We raise
the question of the uneven distribution of emotions across the
text sequence and analyze it later in this paper.

The main contributions of this work are as follows:
• We propose an extension of the FastSpeech2 model architec-

ture with several known and new modules that make it possi-
ble to synthesize speech with a desired emotion.

• The proposed model outperforms an existing implementation
of FastSpeech2 extended for Emotional Speech Synthesis 1,
both in terms of MOS and emotion recognition accuracy in
generated speech, all without bringing inference speed la-
tency.

• We propose a conditioning mechanism that makes it possible
to account for the relationship between speech intonation and
the strength of the emotion that falls on each token in the
sequence, and show that EmoSpeech pays different attention
to each part of the sentence depending on the given emotion.

This paper is organized as follows. In Section 2, we talk
about prior research related to our work. Section 3 briefly de-
scribes the FastSpeech2 architecture, the architectural exten-
sions that improve emotion transfer and form EmoSpeech, and
the loss functions that are used for training and help prevent
quality degradation. Then, we explain the experimental setup,
report our results and show them in Section 4. Lastly, the con-
clusion and discussion are covered in Section 5.

2. Related Work
At a higher level, ETTS methods can be broadly classified into
three distinct categories based on the nature of their condition-
ing data. These categories include models that use:

1. Categorical labels to represent one or more emotions [16, 17,
9, 12, 11].

2. Referenced speech with the desired emotional state [8, 18,
19].

3. Textual descriptions of the target emotional state as a form of
conditioning data [20, 21].

When working with a labelled dataset, the first approach is tra-

1https://github.com/keonlee9420/
Expressive-FastSpeech2



ditionally used, as it helps implement conditioning simply by
introducing an embedding lookup table. The second approach
is originally represented by Global Style Tokens (GST) [14].
GST aims to learn an embedding vector for each emotion from
reference speech and text and introduce a global style token to
obtain utterance-level embeddings. The advantage of GST is
that style tokens can be learned in an unsupervised setup, and
input text can be used for conditioning during inference. The
third approach is the most flexible and could satisfy almost ev-
ery need of emotional speech synthesis. However, training such
a model requires larger datasets that contain rich text descrip-
tions. This approach may be redundant when we need to syn-
thesize speech with emotions from a limited set. Since our main
focus in this work is to provide a model for a fast ETTS capa-
ble of synthesizing speech in a high-load product environment
when given a small fixed set of speakers and emotions, we take
the first approach.

The traditional approach to synthesizing emotional speech
given a categorical label is presented in [17]. Originally, it
was built on top of Tacotron2 [15] The authors of [17] sug-
gested concatenating a categorical label with the pre-net out-
put and then adding a layer to project the vector to match the
size of the attention RNN input and the first layer of the RNN
decoder of Tacotron2. Later, this approach was adopted for
FastSpeech2 [6] in Expressive FastSpeech2 [16], where condi-
tioning works similarly to multi-speaker conditioning through
adding emotion embedding to the encoder output. Expressive
FastSpeech2 implementation is the most relevant work for us,
as it also uses FastSpeech2 and suits our inference speed con-
straints.

The choice of FastSpeech2 as a starting point for further
model modification for expressive synthesis [16], zero-shot
speech synthesis case [22], better quality in multi-speaker sce-
nario [23] etc., is not novel. One of the most successful modi-
fications is AdaSpeech [24] for custom voice synthesis, as well
as GANSpeech [23] for multi-speaker synthesis.

The main concept introduced in AdaSpeech is Conditional
Layer Norm (CLN). The idea of CLN is to extend well-known
LayerNorm [25], but with a condition on speaker embedding
for calculating scale and bias. Specifically, CLN takes the form
of:

y = f(c) · x−mean

var
+ f(c), (1)

where f is a linear layer, x is a normalized hidden and c is
a conditioning embedding. In AdaSpeech, all layer normal-
izations in the encoder were substituted with CLN. Later, in
AdaSpeech4 [22], which was designed for zero-shot scenarios,
it was suggested to integrate CLN in both the encoder and de-
coder for better performance.

Quality degradation is one problem that appears in
FastSpeech2-like models after extensive conditioning. It is ad-
dressed in GANSpeech [23], where it occurs while training
FastSpeech2 in a multi-speaker setup. In [23], the authors
aimed to improve audio quality by using 2 phases of training.
During the first phase, FastSpeech2 is trained using a classic
reconstruction loss. In the second phase, the JCU discrimina-
tor without a hierarchically-nested structure from VocGAN [26]
is applied for adversarial training. JCU discriminators consist
of conditional and unconditional parts. The unconditional part
of the discriminator processes the mel spectrogram x as it is,
and the second processes x within the conditioning vector c.
FastSpeech2 (G) and the JCU discriminator (D) were then opti-

mized by using the least squares objective:

Ladv(D) =
1

2
Ec

[
D(x̂)2 +D(x̂, c)2

]
+

1

2
E(x,c)

[
(D(x)− 1)2 + (D(x, c)− 1)2

]
Ladv(G) =

1

2
Ec

[
(D(x̂)− 1)2 + (D(x̂, s)− 1)2

]
.

In [23], the authors also apply feature matching loss to improve
model quality and stability by computing the L1 loss between
JCU discriminator feature maps of real and generated mel spec-
trograms:

Lfm(G,D) = Ex,c[El(Dl(x̂, c)−Dl(x, c))],

where Dl is the output from the JCU discriminator layer l.
GANSpeech is then trained with:

Ltotal = Lrec + Ladv(D) + Ladv(G) + αfm · Lfm (2)

3. Model Description
In this paper, we propose the EmoSpeech model, which is an
extension of FastSpeech2 for emotional speech synthesis. In the
following sections, we briefly describe FastSpeech2 and each
component that forms EmoSpeech.

3.1. FastSpeech2

FastSpeech2 is a non-autoregressive acoustic model for fast and
high-quality speech synthesis. The model takes a sequence of
tokens as input and generates mel spectrograms, which are later
upsampled to a waveform by a vocoder. The key components of
FastSpeech2 are the encoder, variance adapter, and decoder [6].
The intuition behind each block is that the encoder extracts fea-
tures from textual information about what would be said, the
variance adaptor adds acoustic and duration information to the
input sequence, and the decoder generates features from all of
this for the mel spectrogram features. The encoder and de-
coder are a feed-forward transformer block, which is a stack
of multi-head self-attention layers and 1D-convolution. An en-
coder converts a token embedding sequence into the token’s
hidden representation h ∈ Rn×hid, where n, hid are the se-
quence length and hidden dimension, respectively. The variance
adaptor consists of 3 predictors followed by a length regulator.
Predictors take h ∈ Rn×hid and output the pitch, energy, and
durations (p, e,d) for each token. Then, the length regulators
upsample h ∈ Rn×hid, accumulated with p, e ∈ Rn accord-
ing to d ∈ Rn. Token duration is measured by the number of
mel spectrogram bars, which is why length regulator output is
h ∈ Rm×hid, where m =

∑n
i=0 di. After that, the upsampled

hidden are passed through a decoder, and the hidden dimension
is reflected in mel channels using a linear layer. The final output
is a predicted mel spectrogram y ∈ Rm×c. The model learns to
generate a mel spectrogram from the input text sequence using
reconstruction loss:

Lrec = ||y − ŷ||+ ||d− d̂||2 + ||e− ê||2 + ||p− p̂||2,

where ŷ, d̂, ê, p̂ are the predicted mel spectrogram, duration,
pitch, and energy.

3.2. Conditioning Embedding

We use embedding lookup tables to construct EmoSpeech
from FastSpeech2 for naive speaker and emotion condition-
ing. Specifically, we form the conditioning vector c by stack-
ing the speaker and emotion embeddings. As a starting point



0 20 40 60 80 100

At
te

nt
io

n 
W

ei
gh

ts

Angry Sad Surprise

(a) Speaker 1

0 20 40 60 80 100

At
te

nt
io

n 
W

ei
gh

ts

Angry Sad Surprise

(b) Speaker 2

0 20 40 60 80 100

At
te

nt
io

n 
W

ei
gh

ts

Angry Sad Surprise

(c) Speaker 3

0 20 40 60 80 100

At
te

nt
io

n 
W

ei
gh

ts

Angry Sad Surprise

(d) Speaker 4

Figure 1: Averaged attention weights distribution over normalized sentence lengths. Note that the ”surprise” emotion tends to have
more weight at the end of the sentence, other emotions also follow an intuitive distribution. See section 4.3 for more details.

of our modifications, we add a conditioning vector c to the en-
coder output before feeding it to the variance adaptor. Similarly
to [16], we expand the embedding on a sequence length dimen-
sion.

3.3. Egemap Predictor

By design, the variance adaptor of FastSpeech2 could be ex-
tended by adding additional predictors [6]. For EmoSpeech, we
add Egemap predictor (EMP) to the variance adaptor that pre-
dicts k features from the Extended Geneva Minimalistic Acous-
tic Parameter Set (eGeMAPS) [27]. In total, eGeMAPS consists
of 88 features and is widely used for speech emotion recogni-
tion [28, 29]. However, we found that the extracted features
are highly correlated and using only part of them simplifies the
model without drop in quality. We describe the number of se-
lected features in section 4. The idea behind EMP is to add to
the utterance more information from the low-level speech de-
scriptors that highly correlate with the target emotion. EMP has
the same architecture as pitch and energy predictors – we follow
the setup from [6], but unlike pitch and energy predictors, the
egemap predictor operates on the utterance level rather than on
the token level.

3.4. Conditional Layer Norm

Following the early success of AdaSpeech4 [22] in applying the
Conditional Layer Norm (CLN) for zero-shot speech synthesis,
we adopt CLN for emotional speech synthesis. We also found
it beneficial to apply it instead of the traditional Layer Norm in
the encoder and decoder blocks of EmoSpeech. CLN takes the
same form as in Equation 1. For conditioning the embedding c,,
we stack speaker and emotion embeddings that are taken from
the embedding lookup tables.

3.5. Conditional Cross Attention

Expressive intonation is one of the characteristics of emotional
speech. And if we listen to such speech, we can notice that
sometimes the speaker puts a lot of emphasis on some parts of
the sentence, which makes the emotion clearly distinguishable,
while the rest of the sentence may sound very neutral. At the
same time, the traditional approach in emotional speech syn-
thesis is to add emotion embeddings to each text token with
the same weight [9, 17]. In this work, we introduce a Condi-
tional Cross-Attention (CCA) block to the encoder and decoder,

which goal is to reweight tokens according to the given emo-
tion. Specifically, we add CCA to the encoder and decoder so
that each FFT layer (following the notation in [30]) consists of
Self-Attention, Conditional Cross-Attention and position-wise
feed forward.

We stack speaker and emotion embedding for the utter-
ance and give this conditioning vector a notation c ∈ Rhid

and notate Self-Attention output as h ∈ Rn×hid. CCA uti-
lize Wq,Wk,Wv matrices from Self-Attention layer and forms:
Q = Wq · h,K = Wk · c, V = Wv · c. Then we reweight the
hiddens:

w = softmax(
Q ·KT

√
d

, dim = 1) (3)

cca = w · V
Roughly, this operation can be seen as adding a special emo-
tion token for every layer. Similarly to the multi-head self-
attention mechanism, we add multi-head logic to conditional
cross-attention in our implementation. Note that CCA is a sub-
stitution for a naive addition of conditioning embedding c ex-
pand on a sequence length dimension to the encoder output
before feeding it to the variance adaptor. This is why we no
longer make this addition in EmoSpeech after the modification.
Section 4 shows the density distribution of attention weights w
across the text utterance for different emotions.

3.6. Adversarial Training

Although the above methods help us improve the transmission
of emotionality and natural intonation, numerous artifacts can
still be heard in the generated speech. The quality degradation
might occur while generalizing FastSpeech2 for a multi-speaker
setup, as was mentioned in GANSpeech [23]. To boost the
quality of generated speech, we utilize the same technique as
in [23] and apply adversarial training for EmoSpeech, as the
conditional architecture of JCU discriminator [26] suits our
multi-speaker and multi-emotional setup. We used the same
architectural setup and training objective as in [23]. However,
we trained the discriminator along with the EmoSpeech during
a single training phase. For the conditioning discriminator, we
use the same conditioning embedding c, which is a stack of
speaker and emotion embeddings.

Overall, EmoSpeech is trained with the same objective as
in Equation 2, where αfm =

Lsg
rec

Lfm
is added for training



stabilization [23], Lsg
rec notates stop gradient for Lrec. We also

add an MSE for predicting eGeMAPS features to Lrec.

4. Experiments and Results
In this section, we describe the data and its preprocessing, train-
ing, and evaluation details, setup of conducted experiments, and
analyze the results.

4.1. Datasets and Data Preprocessing

Dataset. In this paper, we focus on providing a lightweight so-
lution for speech synthesis with a fixed set of emotions and mul-
tiple speakers. For our experiments, we use the English subset
of the ESD [31] dataset. ESD is a well-known dataset for ETTS
that contains audios of 10 speakers and 5 emotions each: Neu-
tral, Angry, Happy, Sad, and Surprised. Each audio sample has
a text annotation and corresponds to a single emotion label. We
split the dataset into training and test according to the instruc-
tions in the original dataset.

Data preprocessing. Since EmoSpeech training requires
not only audio along with the text transcript, but also phonemes,
mel spectrograms, durations, pitch, and other acoustic features,
we apply the following preprocessing:

1. Extract phonemes, punctuation, and silence tokens from text
annotations using the grapheme-to-phoneme (GTP) model
from the Montreal-forced-aligner (MFA) [32] toolkit.

2. Extract durations of extracted phonemes using MFA [32].
3. Extract pitch from ground truth mel spectrograms using

pyworld2 library.
4. Extract energies normalizing spectrograms by frequency di-

mension.
5. Extract eGeMAPS features using opensmile toolkit [33].
Pitch, energies, and eGeMAPS features are normalized and the
first 2 are averaged frame-wise according to the phoneme dura-
tions. As for eGeMAPS features, we extract a single value for
the audio sample.

eGeMAPS feature selection. Originally, eGeMAPS is a
standard acoustic parameter set that consists of 88 low-level fea-
ture descriptors and is used for various areas of automatic voice
analysis. To find what features are the most relevant for emo-
tion transmission, we fitted CatBoost classifier [34] for emotion
classification task and ranked all features in descending order
of importance. Then we trained multiple models starting from
no features at all and adding them one by one. We noticed that
starting from using the third feature, the model begins degrada-
tion in terms of MOS. Therefore, in all experiments, we used
only 2 first features.

4.2. Model Configuration and Training Details

Model configuration. The EmoSpeech architecture is based on
FastSpeech2 [6] and is configured using the same hyperparame-
ters, except phoneme embedding, encoder, and decoder hidden
dimensions are set to 512; encoder and decoder Conv1D fil-
ter sizes are 512; encoder and decoder include 6 layers each.
The hidden dimension of speaker and emotion embedding is
256. All layer normalizations in the encoder and decoder are
replaced by CLN. The Egemap predictors follow the same ar-
chitecture as the rest of the predictors in the Variance Adaptor
block: 2 1D convolutions with kernel size 3, stride 1, followed

2https://github.com/JeremyCCHsu/
Python-Wrapper-for-World-Vocoder

Table 1: The description of the used notation for sequential
model modifications according to section 3.6 along with total
model size.

ID Model # parameters

#1 FastSpeech2 [6] + EMP 47.1M
#2 #1 + CLN 53.4M
#3 #2 + CCA 53.4M

#4 #3 + JCU (EmoSpeech) 53.4M

by ReLU activation and dropout 0.5. For JCU Discriminator we
follow the same architectural setup as in GANSpeech [23] in-
cluding parameters for training configuration. We used iSTFT-
Net [35] vocoder trained on ESD dataset to synthesize audio
from generated mel spectrograms [35]. For training configu-
ration, we followed implementation3 and parameters described
in [35]. The Mel spectrogram was extracted from a waveform
with a filter length of 48 ms, a hop length of 12 ms, and 80 mel
channels.

Training and inference details. We trained the model us-
ing 4 Nvidia A100 GPUs with a total batch size of 256 for
50000 steps, for the optimizer, scheduler, and related param-
eters we follow the setup in FastSpeech2 [6]. The JCU Dis-
criminator was trained together with EmoSpeech using Adam
optimizer [36] with a learning rate of 0.0001 with (β1, β2) =
(0.5, 0.9).

4.3. Experiments and Results

Baseline model. As an implementation of Expressive Fast-
Speech2 [17, 16] is based on FastSpeech2 and makes it possible
to synthesize speech with a given emotion in very naive form by
adding their embeddings to the encoder output before feeding it
to the variance adaptor, we choose it as a baseline model.

Evaluation setup. We construct EmoSpeech starting from
FastSpeech2 and modifying it by sequentially adding the com-
ponents described in section 3.6. We assign special IDs for
each combination of modifications to simplify references, ta-
ble 1 provides information about them and total model sizes.
Although the size of EmoSpeech increased with the added mod-
ifications by 15% compared with the same configured Expres-
sive FastSpeech2, we did not notice any notable increase in the
inference speed.

For all trained models we conduct both automatic, for
proper selection of hyperparameters and quality control in the
early stage, and human evaluations, to collect detailed feedback
with the help of annotators.

Table 2: The MOS and NISQA [37] scores on ESD dataset [31].
Original stands for ground truth audios and reconstructed are
audios reconstructed from ground truth mel spectrograms.

ID Model MOS (↑) NISQA (↑)

- Original 4.7± 0.49 4.17± 0.57
- Reconstructed 4.54± 0.58 4.11± 0.58

- Expressive FastSpeech2 [16] 3.74± 0.65 3.77± 0.74
#1 FastSpeech2 [6] + EMP 4.06± 0.65 3.71± 0.76
#2 #1 + CLN 4.25± 0.6 3.93± 0.66
#3 #2 + CCA 4.33± 0.6 3.95± 0.66

#4 #3 + JCU (EmoSpeech) 4.37± 0.62 4.1± 0.58

3https://github.com/rishikksh20/
iSTFTNet-pytorch



Table 3: Accuracy of emotions classified using human feedback. Overall, is an average of all emotions. Original stands for ground
truth audios and reconstructed are audios reconstructed from ground truth mel spectrograms.

ID Model Overall Neutral Angry Happy Sad Surprise

Original 0.89 0.69 0.92 0.97 0.96 0.91
Reconstructed 0.86 0.59 1 0.92 0.94 0.87

Expressive FastSpeech2 0.78 0.42 0.96 0.8 0.76 0.96
#1 FastSpeech2 + EMP 0.78 0.45 0.94 0.68 0.81 1
#2 #1 + CLN 0.82 0.48 0.92 0.88 0.82 1
#3 #2 + CCA 0.85 0.55 0.96 0.91 0.83 1

#4 #3 + JCU (EmoSpeech) 0.83 0.56 0.94 0.8 0.83 1

Automatic evaluation. For automatic evaluation, we used
the NISQA library 4 [37]. In our work, we used the NISQA-TTS
model and predicts naturalness score on a 5-point scale accord-
ing to human MOS. The NISQA-TTS model was chosen as we
focus on the realistic transmission of emotions that correlates
with the naturalness of generated speech. The final results are
represented in Table 2. The EmoSpeech model outperforms the
baseline and all intermediate modifications and shows similar
quality to reconstructed audio tracks.

Human evaluation. For human evaluation, we used 25 au-
dios from 5 speakers in 5 emotions randomly selected from the
test set. We asked 20 annotators to solve 3 tasks.

The first task was to measure whether emotion was trans-
mitted correctly. We asked the annotators to select the emotion
they hear in the audio: neutral or no emotion is recognized,
anger, happiness, sadness, or surprise. We computed an accu-
racy score for each emotion and overall quality by averaging all
values. The reported results are shown in Table 3.

All modifications successfully coped with the Surprise
emotion, moreover, models managed to add emotion even
where it was not heard in the original audio. Modification #3
has the highest accuracy across all emotions, with a slight qual-
ity increase from the EmoSpeech model. Accuracy drop after
adversarial training is expected behavior as adversarial training
was added to prevent synthesis quality degradation, its slightly
smooth sharp intonation picks in the generated mel spectro-
grams. It can also be seen that the baseline model has the high-
est accuracy score for the anger emotion. For that model, the
annotators mentioned that artifacts that appeared in the gener-
ated audio brought more anger to the sound, and therefore more
samples were marked with the anger emotion.

Secondly, we evaluate audio quality using the Mean Opin-
ion Score (MOS). We asked annotators to evaluate sound qual-
ity on a 5-point scale given additional instruction:
• 5 for excellent – no artifacts in the audio;
• 4 for good – some artifacts are heard, but they do not influ-

ence audio perception;
• 3 for fair – a lot of artifacts in the audio;
• 2 for bad – many artifacts in the audio, it is difficult to under-

stand speech;
• 1 for poor – very noisy, almost impossible to listen to.
The results are shown in Table 2. Same as for the NISQA evalu-
ation, the EmoSpeech model outperforms all intermediate mod-
ifications and baseline and shows synthesis quality close to the
reconstructed audios.

Lastly, to measure naturalness, we conduct a pairwise au-
dio comparison of the baseline model with each of our mod-

4https://github.com/gabrielmittag/NISQA

#4

#3

#2

#1

45

43

36

38

22

23

30

28

33

34

34

34

Ours No preference Expressive FastSpeech2

Figure 2: Pairwise comparison of generated audio naturalness
given a target emotion. The numbers indicate the percentage of
responses in which annotators choose this model against other.
Note that preference increases with adding modifications de-
scribed in Table 3. See section 4.3 for more details.

ifications. We asked the annotators whether they would rather
choose the first or the second audio, given a target emotion. The
results of the pairwise comparisons are shown in Figure 2. The
EmoSpeech model is preferred by 10% more annotators than
the baseline model.

Analyzing attention weights in the CCA layer. The intu-
ition behind Conditional Cross Attention (CCA) is that differ-
ent tokens of the text sequence have different effects on emo-
tional intensity. To show emotion distribution over sentences,
we grouped all audios in a dataset by speakers, collected atten-
tion weights (Equation 3) from all layers, normalized sentence
length, and plotted averaged attention weight distribution over
the sentence. The result distribution for four speakers can be
seen in (Figure 1). Higher attention weight means higher token
importance for target emotion expressiveness. For the emotion
”surprise”, which often correlates with interrogative intonation,
the importance of tokens increases at the end of a sentence;
”sad” tends to go down and has several spikes in the middle;
”angry” has different trends for every speaker.

5. Conclusion
In this paper, we developed EmoSpeech – an extension of the
FastSpeech2 [6] model for Emotional Text-to-Speech Synthe-
sis. We proposed multiple modifications for conditioning on a
given emotion and stabilizing training while keeping the model
as fast as the original FastSpeech2. Experiments showed that
all our modifications enhance model quality and outperform the
previous extensions of FastSpeech2 for ETTS, Extensive Fast-
Speech2 [16].

One of the key features of EmoSpeech is the conditional
cross-attention mechanism, which takes into account the uneven
distribution of emotion across a sentence. We demonstrated that



for different emotions, the model selected different phonemes
to accent, and therefore, our model sounds more natural than
the baseline. Our source code and generated samples could be
accessed via the link5.

6. References
[1] J. Kim, S. Kim, J. Kong, and S. Yoon, “Glow-tts: A generative

flow for text-to-speech via monotonic alignment search,” 2020.

[2] J. Kim, J. Kong, and J. Son, “Conditional variational autoencoder
with adversarial learning for end-to-end text-to-speech,” 2021.

[3] V. Popov, I. Vovk, V. Gogoryan, T. Sadekova, and M. Kudinov,
“Grad-tts: A diffusion probabilistic model for text-to-speech,”
2021.

[4] X. Tan, J. Chen, H. Liu, J. Cong, C. Zhang, Y. Liu, X. Wang,
Y. Leng, Y. Yi, L. He, F. Soong, T. Qin, S. Zhao, and T.-Y. Liu,
“Naturalspeech: End-to-end text to speech synthesis with human-
level quality,” 2022.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
2017.

[6] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,
“Fastspeech 2: Fast and high-quality end-to-end text to speech,”
2022.

[7] N. Li, S. Liu, Y. Liu, S. Zhao, M. Liu, and M. Zhou, “Neural
speech synthesis with transformer network,” 2019.

[8] P. fei Wu, Z. hua Ling, L. juan Liu, Y. Jiang, H. chuan Wu, and
L. rong Dai, “End-to-end emotional speech synthesis using style
tokens and semi-supervised training,” 2019.

[9] T. Li, S. Yang, L. Xue, and L. Xie, “Controllable emotion transfer
for end-to-end speech synthesis,” CoRR, vol. abs/2011.08679,
2020. [Online]. Available: https://arxiv.org/abs/2011.08679

[10] B. Schnell and P. N. Garner, “Improving Emotional TTS with an
Emotion Intensity Input from Unsupervised Extraction,” in Proc.
11th ISCA Speech Synthesis Workshop (SSW 11), 2021, pp. 60–65.

[11] K. Zhou, B. Sisman, R. Rana, B. W. Schuller, and H. Li, “Speech
synthesis with mixed emotions,” 2022.

[12] Y. Guo, C. Du, X. Chen, and K. Yu, “Emodiff: Intensity control-
lable emotional text-to-speech with soft-label guidance,” 2023.

[13] G. Zhang, Y. Qin, W. Zhang, J. Wu, M. Li, Y. Gai, F. Jiang, and
T. Lee, “iemotts: Toward robust cross-speaker emotion transfer
and control for speech synthesis based on disentanglement be-
tween prosody and timbre,” 2023.

[14] Y. Wang, D. Stanton, Y. Zhang, R. J. Skerry-Ryan, E. Battenberg,
J. Shor, Y. Xiao, F. Ren, Y. Jia, and R. A. Saurous, “Style tokens:
Unsupervised style modeling, control and transfer in end-to-end
speech synthesis,” CoRR, vol. abs/1803.09017, 2018. [Online].
Available: http://arxiv.org/abs/1803.09017

[15] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
Z. Chen, Y. Zhang, Y. Wang, R. Skerry-Ryan, R. A. Saurous,
Y. Agiomyrgiannakis, and Y. Wu, “Natural tts synthesis by condi-
tioning wavenet on mel spectrogram predictions,” 2018.

[16] K. Lee, “Expressive-fastspeech2,” https://github.com/
keonlee9420/Expressive-FastSpeech2, 2021.

[17] Y. Lee, A. Rabiee, and S.-Y. Lee, “Emotional end-to-end neural
speech synthesizer,” 2017.

[18] X. Cai, D. Dai, Z. Wu, X. Li, J. Li, and H. Meng. [Online].
Available: https://arxiv.org/abs/2010.13350

[19] Y. Wang, D. Stanton, Y. Zhang, R. Skerry-Ryan, E. Battenberg,
J. Shor, Y. Xiao, F. Ren, Y. Jia, and R. A. Saurous, “Style tokens:
Unsupervised style modeling, control and transfer in end-to-end
speech synthesis,” 2018.

5https://zenodo.org/record/7903317#
.ZFarhOxBydY

[20] D. Yang, S. Liu, R. Huang, G. Lei, C. Weng, H. Meng, and D. Yu,
“Instructtts: Modelling expressive tts in discrete latent space with
natural language style prompt,” 2023.

[21] Z. Guo, Y. Leng, Y. Wu, S. Zhao, and X. Tan, “Prompttts: Con-
trollable text-to-speech with text descriptions,” 2022.

[22] Y. Wu, X. Tan, B. Li, L. He, S. Zhao, R. Song, T. Qin, and T.-Y.
Liu, “Adaspeech 4: Adaptive text to speech in zero-shot scenar-
ios,” 2022.

[23] J. Yang, J.-S. Bae, T. Bak, Y. Kim, and H.-Y. Cho, “Ganspeech:
Adversarial training for high-fidelity multi-speaker speech syn-
thesis,” 2021.

[24] M. Chen, X. Tan, B. Li, Y. Liu, T. Qin, S. Zhao, and T.-Y. Liu,
“Adaspeech: Adaptive text to speech for custom voice,” 2021.

[25] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
2016.

[26] J. Yang, J. Lee, Y. Kim, H. Cho, and I. Kim, “Vocgan: A high-
fidelity real-time vocoder with a hierarchically-nested adversarial
network,” 2020.

[27] F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. André,
C. Busso, L. Y. Devillers, J. Epps, P. Laukka, S. S. Narayanan,
and K. P. Truong, “The geneva minimalistic acoustic parameter
set (gemaps) for voice research and affective computing,” IEEE
Transactions on Affective Computing, vol. 7, no. 2, pp. 190–202,
2016.

[28] S. Latif, J. Qadir, and M. Bilal, “Unsupervised adversarial domain
adaptation for cross-lingual speech emotion recognition,” 2020.

[29] M. Schmitt, N. Cummins, and B. Schuller, “Continuous emotion
recognition in speech - do we need recurrence?” in Interspeech,
2019.

[30] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu,
“Fastspeech: Fast, robust and controllable text to speech,” 2019.

[31] “Emotional voice conversion: Theory, databases and esd,” Speech
Communication, vol. 137, pp. 1–18, 2022.

[32] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Son-
deregger, Montreal Forced Aligner: Trainable Text-Speech Align-
ment Using Kaldi, Aug 2017.

[33] F. Eyben, M. Wöllmer, and B. Schuller, “opensmile – the munich
versatile and fast open-source audio feature extractor,” 01 2010,
pp. 1459–1462.

[34] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and
A. Gulin, “Catboost: unbiased boosting with categorical features,”
2019.

[35] T. Kaneko, K. Tanaka, H. Kameoka, and S. Seki, “istftnet: Fast
and lightweight mel-spectrogram vocoder incorporating inverse
short-time fourier transform,” 2022.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2017.

[37] G. Mittag and S. Möller, “Deep learning based as-
sessment of synthetic speech naturalness,” in Inter-
speech 2020. ISCA, oct 2020. [Online]. Available:
https://doi.org/10.21437%2Finterspeech.2020-2382


	 Introduction
	 Related Work
	 Model Description
	 FastSpeech2
	 Conditioning Embedding
	 Egemap Predictor
	 Conditional Layer Norm
	 Conditional Cross Attention
	 Adversarial Training

	 Experiments and Results
	 Datasets and Data Preprocessing
	 Model Configuration and Training Details
	 Experiments and Results

	 Conclusion
	 References

