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Abstract

Electroencephalography (EEG) provides access to neuronal dynamics non-1

invasively with millisecond resolution, rendering it a viable method in neuroscience2

and healthcare. However, its utility is limited as current EEG technology does3

not generalize well across domains (i.e., sessions and subjects) without expensive4

supervised re-calibration. Contemporary methods cast this transfer learning (TL)5

problem as a multi-source/-target unsupervised domain adaptation (UDA) prob-6

lem and address it with deep learning or shallow, Riemannian geometry aware7

alignment methods. Both directions have, so far, failed to consistently close the8

performance gap to state-of-the-art domain-specific methods based on tangent9

space mapping (TSM) on the symmetric, positive definite (SPD) manifold. Here,10

we propose a machine learning framework that enables, for the first time, learn-11

ing domain-invariant TSM models in an end-to-end fashion. To achieve this, we12

propose a new building block for geometric deep learning, which we denote SPD13

domain-specific momentum batch normalization (SPDDSMBN). A SPDDSMBN14

layer can transform domain-specific SPD inputs into domain-invariant SPD outputs,15

and can be readily applied to multi-source/-target and online UDA scenarios. In16

extensive experiments with 6 diverse EEG brain-computer interface (BCI) datasets,17

we obtain state-of-the-art performance in inter-session and -subject TL with a18

simple, intrinsically interpretable network architecture, which we denote TSMNet.19

1 Introduction20

Electroencephalography (EEG) measures multi-channel electric brain activity from the human21

scalp with millisecond precision [1]. Transient modulations in the rhythmic brain activity can22

reveal cognitive processes [2], affective states [3] and a person’s health status [4]. Unfortunately,23

these modulations exhibit low signal-to-noise ratio (SNR), domain shifts (i.e., changes in the data24

distribution) and have low specificity, rendering statistical learning a challenging task - particularly in25

the context of brain-computer interfaces (BCI) [5] where the goal is to predict a target from a short26

segment of multi-channel EEG data in real-time.27

Under domain shifts, domain adaptation (DA), defined as learning a model from a source domain28

that performs well on a related target domain, offers principled statistical learning approaches with29

theoretical guarantees [6, 7]. DA in the BCI field mainly distinguishes inter-session and -subject30

transfer learning (TL) [8]. In inter-session TL, domain shifts, are expected across sessions mainly31

due to mental drifts (low specificity) as well as differences in the relative positioning of the electrodes32

and their impedances. Inter-subject TL is more difficult, as domain shifts are additionally driven by33

structural and functional differences in brain networks as well as variations in the performed task [9].34

These domain shifts are traditionally circumvented by recording labeled calibration data and fitting35

domain-specific models [10, 11]. As recording calibration data is costly, models that are robust to36

scarce data with low SNR perform well in practice. Currently, tangent space mapping (TSM) models37

[12, 13] operating with symmetric, positive definite (SPD) covariance descriptors of preprocessed38
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Figure 1: Visualization of the proposed framework around SPD domain-specific momentum batch
normalization (SPDDSMBN) (a) that learns parameters Θ = {θ, ϕ, ψ} of typical tangent space
mapping (TSM) models (b) end-to-end to crack multi-source/-target unsupervised domain adaptation
on S+

D for EEG data (c, illustrative example). For EEG data, we propose a simple, intrinsically
interpretable parametrization of f and g, denoted TSMNet, and obtain SOA performance.

data are considered state-of-the-art (SOA) [10, 14, 15]. They are well suited for EEG data as they39

exhibit invariances to linear mixing of latent sources [16], and are consistent [13] and intrinsically40

interpretable [17] estimators for generative models that encode label information with a log-linear41

relationship in source power modulations.42

Competitive, supervised calibration-free methods are one of the long-lasting grand challenges in43

EEG neurotechnology research [5, 10, 18, 19, 15]. Among the applied transfer learning techniques,44

including multi-task learning [20] and domain-invariant learning [21–23], unsupervised domain45

adaptation (UDA) [24] is considered as key to overcome this challenge [10, 19]. Contemporary46

methods cast the problem as a multi source and target UDA problem and address it with deep learning47

[25–28] or shallow, Riemannian geometry aware alignment methods [29–32]. Successful methods48

must cope with notoriously small and heterogeneous datasets (i.e., dozens of domains with a few49

dozens observations per domain and class). In a recent, relatively large scale inter-subject and -dataset50

TL competition with few labeled examples per target domain [19], deep learning approaches that51

aligned the first and second order statistics either in input [33, 27] or latent space [34] obtained52

the highest scores. Whereas, in a pure UDA competition [15] with a smaller dataset, Riemannian53

geometry aware approaches dominated. With the increasing popularity of geometric deep learning54

[35], Ju and Guan [36] proposed a architecture based on SPD neural networks [37] to align SPD55

features in latent space and attained SOA scores. Despite the tremendous advances in recent years,56

the field still lacks methods that can consistently close the performance gap to state-of-the-art57

domain-specific methods.58

To close this gap, we propose a machine learning framework around domain-specific batch normaliza-59

tion on the SPD manifold (Figure 1). The proposed framework is used to implement domain-specific60

TSM (Figure 1a), which requires tracking the domains’ Fréchet means in latent space as they are61

changing during training a typical TSM model in an end-to-end fashion (Figure 1b). After review-62

ing some preliminaries in section 2, we extend momentum batch normalization (MBN) [32] to63

SPDMBN that controls the Fréchet mean and variance of SPD data in section 3. In a theoretical64

analysis, we show under reasonable assumptions that SPDMBN can track and converge to the data’s65

true Fréchet mean, enabling, for the first time, end-to-end learning of feature extractors, TSM and66

tangent space classifiers. Building upon this insight, we combine SPDMBN with domain-specific67

batch normalization (DSBN) [38] to form SPDDSMBN (Figure 1a). A SPDDSMBN layer can68

transform domain-specific SPD inputs into domain-invariant SPD outputs (Figure 1c). Like DSBN,69

SPDDSMBN easily extends to multi-source, multi-target and online UDA scenarios. In section 4,70

we briefly review the generative model of EEG, before the proposed methods are combined in a71

simple, intrinsically interpretable network architecture, denoted TSMNet (Figure 1b). We obtain72

state-of-the-art performance in inter-session and -subject UDA on small and large scale EEG BCI73

datasets, and show in an ablation study that the performance increase is driven by performing DSBN74

on the SPD manifold.75

2 Preliminaries76

Multi-source multi-target unsupervised domain adaptation Let X denote the space of input77

features, Y a label space, and Id ⊂ N an index set that contains unique domain identifiers. In78

the multi-source, multi-target unsupervised domain adaptation scenario considered here, we are79

given a set T source = {Ti|i ∈ Isourced ⊂ Id} with |Isourced | = N domains. Each domain Ti =80
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{(Xij , yij)}Mj=1 ∼ P iXY contains M observations of feature (X ∈ X ) and label (y ∈ Y) tuples81

sampled from a joint distribution P iXY .1 While the joint distributions can be different (but related)82

across domains, we assume that the class priors are the same (i.e., P iY = PY ). The goal is to learn83

a predictive function h : X × Id → Y that, once fitted to T source, can generalize to unseen target84

domains T target = {Tl|l ∈ Itargetd ⊂ Id, Itargetd ∩ Isourced = ∅} merely based on unsupervised85

adaptation of h to each target domain Tl once its label l and features {Xil}Mj=1 ∼ P lX are revealed.86

Riemannian geometry on S+
D We start with recalling notions of geometry on the space of real87

D × D symmetric positive definite (SPD) matrices S+
D = {Z ∈ RD×D : ZT = Z,Z ≻ 0}. The88

space S+
D forms a cone shaped Riemannian manifold in RD×D [39]. A Riemannian manifold M is a89

smooth manifold equipped with an inner product on the tangent space TZM at each point Z ∈ M.90

Tangent spaces have Euclidean structure with easy to compute distances TZM×TZM → R+ which91

locally approximate Riemannian distances on M induced by an inner product [40]. Logarithmic92

LogZ : M → TZM and exponential ExpZ : TZM → M mappings project points to and from93

tangent spaces.94

Using the inner product ⟨S1,S2⟩Z = Tr(Z−1S1Z
−1S2) for points S1,S2 in the tangent space TZS+

D95

(i.e., the space of real symmetric D × D matrices) results in a globally defined affine invariant96

Riemannian metric on S+
D [41, 39], which can be computed in closed form:97

δ(Z1,Z2) = ||log(Z− 1
2

1 Z2Z
− 1

2
1 )||F (1)

where Z1 and Z2 are two SPD matrices, log(·) denotes the matrix logarithm2, || · ||F the Frobe-98

nius norm, and Tr(·) in the inner product the trace operator. Due to affine invariance, we have99

δ(AZ1A
T ,AZ2A

T ) = δ(Z1,Z2) for any invertible affine transformation matrix A. The exponen-100

tial and logarithmic mapping are also globally defined in closed form as101

LogZ(Z1) = Z
1
2 log(Z− 1

2Z1Z
− 1

2 )Z
1
2 (2)

102

ExpZ(S1) = Z
1
2 exp(Z− 1

2S1Z
− 1

2 )Z
1
2 (3)

For a set of SPD points Z = {Zj ∈ S+
D}j≤M , we will use the notion of Fréchet mean GZ ∈ S+

D and103

Fréchet variance ν2Z ∈ R+. The Fréchet mean G is defined as the minimizer of the average squared104

distances105

GZ = arg min
G∈S+

D

1

M

M∑
j=1

δ2(G,Zj) (4)

For M = 2, there is a closed form solution expressed as106

GZ(γ) = Z1#γZ2 = Z
1
2
1

(
Z

− 1
2

1 Z2Z
− 1

2
1

)γ
Z

1
2
1 (5)

with weight γ = 0.5. Choosing γ ∈ [0, 1] computes weighted means along the geodesic (i.e., the107

shortest curve) that connects both points. For M > 2, (4) can be solved using the Karcher flow108

algorithm [42], which iterates between projecting the data to the tangent space (2) at the current109

estimate, arithmetic averaging, and projecting the result back (3) to obtain a new estimate. The110

Fréchet variance ν2Z is defined as the attained value at the minimizer GZ :111

ν2Z = VarZ(GZ) =
1

M

M∑
j=1

δ2(GZ ,Zj) (6)

To shift a set of tangent space points to vary around a parametrized mean Gϕ, parallel transport on112

S+
D can be used [43]:113

ΓGZ→Gϕ
(S) = ETSE , E = (G−1

Z Gϕ)
1
2 (7)

While, parallel transport is generally defined for tangent space vectors S [40], on S+
D the same114

operations also apply directly to points on the manifold (i.e., Z ∈ Z) [31, 44].115

1For ease of notation, although not required by our method, we assume that M is the same for each domain.
2For SPD matrices, powers, logarithms and exponentials can be computed via eigen decomposition.
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Table 1: Overview and differences of relevant batch normalization algorithms. The last column,
denoted normalization, sumarizes which statistics are used to normalize the batch data during training.

Acronym S+
D domain-specific momentum γ normalization

MBN [32] no no adaptive running stats
SPDBN [46] yes no fixed running stats
SPDMBN (algorithm 1) proposed yes no adaptive running stats
DSBN [38] no yes fixed batch stats
SPDDSMBN (19) proposed yes yes adaptive running stats

3 Domain-specific batch normalization on S+
D116

In this section, we review relevant batch normalization (BN) [45] variants with a focus on S+
D . We117

then present SPDMBN and show in a theoretical analysis that the running estimate converges to the118

true Fréchet mean under reasonable assumptions. At last, we combine the idea of domain-specific119

batch normalization (DSBN) [38] with SPDMBN to form a SPDDSMBN layer. Table 1 provides a120

brief overview of the related and proposed methods.121

Batch normalization Batch normalization (BN) [45] is a widely used training technqiue in deep122

learning as BN layers speed up convergence and improve generalization via smoothing of the engery123

landscape [47, 32]. A standard BN layer applies slightly different transformations during training124

and testing to independent and identically distributed (iid) observations xj ∈ Rd within the k-th125

minibatch Bk of size M drawn from a dataset T . During training, the data are normalized using the126

batch mean bk and variance s2k, and then scaled and shifted to have a parametrized mean gϕ and127

variance σ2
ϕ. Internally, the layer updates running estimates of the dataset’s statistics (gk,σ2

k) during128

each training step k; the updates are computed via exponential smoothing with momentum parameter129

γ. During testing, the running estimates are used.130

Using batch statistics to normalize data during training rather than running estimates introduces noise131

whose level depends on the batch size [32]; smaller batch sizes raise the noise level. The introduced132

noise regularizes the training process, which can help to escape poor local minima in initial learning133

but also lead to underfitting. Momentum BN (MBN) [32] allows small batch sizes while avoiding134

underfitting. Like batch renormalization [48], MBN uses running estimates during training and135

testing. The key difference is that MBN keeps two sets of running statistics; one for training and136

one for testing. The latter are updated conventionally, while the former are updated with momentum137

parameter γtrain(k) that decays over training steps k. MBN can, therefore, quickly escape poor local138

minima during initial learning and avoid underfitting at later stages [32].139

Batch normalization on S+
D It is intractable to compute the Fréchet mean GBk

for each minibatch140

Bk = {Zj ∈ S+
D}Mj=1, as there is no efficient algorithm to solve (4). Brooks et al. [44] proposed141

Riemannian Batch Normalization (RBN) as a tractable approximation. RBN approximateley solves142

(4) by aborting the iterative Karcher flow algorithm after one iteration. To transform Zj ∈ Bk143

with estimated mean Bk to vary around Gϕ, parallel transport (7) is used. The RBN input output144

transformation is then expressed as145

RBN(Zj ;Gϕ, γ) = ΓBk→Gϕ
(Zj) = ETZjE , E = (B−1

k Gϕ)
1
2 , ∀Zj ∈ Bk (8)

Using (5), the running estimate of the dataset’s Fréchet mean can be updated in closed form146

Gk = Gk−1#γBk (9)

Kobler et al. [46] proposed an extension to RBN, denoted SPD batch renormalization (SPDBN) that147

controls both Fréchet mean and variance. Like batch renormalization [48], SPDBN uses running148

estimates Gk and ν2k during training and testing. To transform Zj ∈ Bk to vary around Gϕ with149

variance ν2ϕ, each observation is first transported to vary around the identity matrix I, rescaled via150

computing matrix powers and finally transported to vary around Gϕ. The sequence of operations can151

be expressed as152

SPDBN(Zj ;Gϕ, ν
2
ϕ, ε, γ) = ΓI→Gϕ

◦ ΓGk→I(Zj)
νϕ

νk+ε , ∀Zj ∈ Bk (10)

The standard backpropagation framework with extensions for structured matrices [49] and manifold-153

constrained gradients [40] can be used to propagate gradients through RBN and SPDBN layers and154

learn the parameters (Gϕ, νϕ).155
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Algorithm 1: SPD momentum batch normalization (SPDMBN)

Input :batch Bk = {Zj ∈ S+
D}Mj=1 at training step k,

running mean Ḡk−1, Ḡ0 = I and variance ν̄2
k−1, ν̄2

0 = 1 for training,
running mean G̃k−1, G̃0 = I and variance ν̃2

k−1, ν̃2
0 = 1 for testing,

learnable parameters (Gϕ, νϕ), and momentum for training and testing γtrain(k), γ ∈ [0, 1]

Output :normalized batch {Z̃j = SPDMBN(Zj) ∈ S+
D | Zj ∈ Bk}

if training then
Bk = karcher_flow (Bk, steps = 1); // approx. solve problem (4)

Ḡk = Ḡk−1#γtrain(k)Bk; // update running stats for training

ν̄2
k = (1− γtrain(k))ν̄

2
k−1 + γtrain(k)VarBk (Ḡk)

G̃k = G̃k−1#γBk; // update running stats for testing

ν̃2
k = (1− γ)ν̃2

k−1 + γVarBk (G̃k)
end
(Gk, ν

2
k) = (Ḡk, ν̄k) if training else (G̃k, ν̃

2
k)

Z̃j = ΓI→Gϕ ◦ ΓGk→I(Zj)
νϕ

νk+ε ; // use (10) to whiten, rescale and rebias

Momentum batch normalization on S+
D SPDBN [46] suffers from the same limitations as batch156

renormalization [48]. Consequently, we propose to extend MBN [32] to S+
D . We list the pseudocode of157

our proposed extension, which we denote SPDMBN, in algorithm 1. SPDMBN uses approximations158

of batch-specific Fréchet means to update two sets of running estimates of the dataset’s Fréchet mean.159

As MBN [32], we decay γtrain(k) with a clamped exponential decay schedule160

γtrain(k) = 1− γ
1

K−1max(K−k,0)
min + γmin (11)

where K defines the training step at which γmin ∈ [0, 1] should be attained.161

The running mean in SPDMBN converges to the Fréchet mean Here, we consider models that162

apply a SPDMBN layer to latent representations generated by a feature extractor fθ : X → S+
D with163

learnable parameters θ.164

We define a dataset that contains the latent representations generated with feature set θk as Zθk =165

{fθk(x)|x ∈ T }, and a minibatch of M iid samples at training step k as Bk. We denote the Fréchet166

mean of Zθk as Gθk , the estimated Fréchet mean, defined in (9), as Gk, and the estimated batch167

mean as Bk. Since the batches are drawn randomly, we consider the batch and running means as168

random variables.169

We assume that the variance Varθk(Bk−1) = EBk−1
{δ2(Bk−1,Gθk)} of the previous batch mean170

Bk−1 with respect to the current Fréchet mean Gθk is bounded by the current variance Varθk(Bk)171

and the norm of the difference in the parameters172

Varθk(Bk−1) ≤ (1 + ||θk − θk−1||)Varθk(Bk) (12)

That is, across training steps k the parameter updates are required to change the first and second order173

moments of the distribution of Zθk gradually so that the expected distance between Gθk and the174

previous batch mean Bk−1 is bounded. We conjecture that this is the case for feature extractors fθ175

that are smooth in the parameters and small learning rates, but leave the proof for future work.176

Proposition 1 (Error bound for Gk). Consider the setting defined above, and assumption (12) holds177

true. Then, the variance of the running mean Varθk(Gk) is bounded by178

Varθk(Gk) ≤ Varθk(Bk) (13)

over training steps k if179

||θk − θk−1|| ≤
1− γ2

(1− γ)2
− 1 (14)

holds true.180

The proof is provided in appendix A.1 of the supplementary material and relies on the proof of the181

geometric law of large numbers [50].182

Proposition 1 states that if (12) and (14) are met, the expected distance between the true Fréchet mean183

and the running mean is less or equal to the one of the batch mean. Consequently, the introduced184
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noise level of SPDBN (equation 10) and SPDMBN (algorithm 1), which use Gk to normalize batches185

during training, is smaller or equal to RBN (equation 8), which uses Bk.186

Since γ controls the adaptation speed of Gk, proposition 1 also states that if γ converges to zero (=no187

adaptation), the parameter updates are required to converge to zero as well (=no learning). Hence, for188

a fixed γ ∈ (0, 1), as in the case of SPDBN (equation 10), proposition 1 is fulfilled, if the learning189

rate for the parameters θ is chosen sufficiently small. This can substantially slow down initial learning190

for standard choices of γ (e.g., 0.1 or 0.01). As a remedy, SPDMBN (algorithm 1) uses an adaptive191

momentum parameter, which allows larger parameter updates during initial training steps.192

If we consider a late stage of learning, and in particular assume that after a certain number of iterations193

K the parameters stay in a small ball with radius ε around θ∗:194

||θk − θ∗|| ≤ ε ∀ k ≥ K (15)

assumption (12) reduces to Varθk(Bk−1) ≈ Varθk(Bk), which implies that the dataset’s Fréchet195

mean and variance can be considered fixed.196

Remark 1 (Convergence of Gk for SPDMBN). If assumptions (12) and (15) hold true and the197

momentum parameter is decayed with schedule γ(k) = 1/kα ∀α ∈ (0, 1), then the theorem of large198

numbers on S+
D [50] applies directly. That is, the running mean Gk converges to the Fréchet mean199

Gθ∗ in probability as k → ∞.200

Taken together, Proposition 1 and Remark 1 provide guidelines to update Gk in SPDMBN so that the201

introduced estimation error is bounded during initial fast learning (large γ) and decays towards zero202

in late learning (small γ).203

SPDMBN to learn tangent space mapping at Fréchet means Typical TSM models for classifica-204

tion [12] and regression [13] first use (2) to project Z ∈ T ⊂ S+
D to the tangent space at the Fréchet205

mean GT , then use (7) to transport the result to vary around I, and finally extract elements in the up-206

per triangular part3 to reduce feature redundancy. The invertible mapping PGT : S+
D → RD(D+1)/2207

is expressed as:208

PGT (Z) = upper ◦ ΓGT →I ◦ LogGT
(Z) = upper(log(G

− 1
2

T ZG
− 1

2

T )) (16)

We propose to use a SPDMBN layer followed by a LogEig layer [37] to compute a similar mapping209

mϕ (Figure 1a). A LogEig layer simply computes the matrix logarithm and vectorizes the result so210

that the norm is preserved. If the parametrized mean of SPDMBN is fixed to the identify matrix211

(Gϕ = I), the composition computes212

mϕ(Z) = LogEig ◦ SPDMBN(Z) = upper ◦ log ◦ ΓGk→I(Z)
νϕ

νk+ε

= upper

(
νϕ

νk + ε
log

(
G

− 1
2

k ZG
− 1

2

k

))
(17)

where (Gk, ν
2
k) are the estimated Fréchet mean and variance of the dataset T at training step k, and213

ϕ = {νϕ} the learnable parameters. According to remark 1 Gk converges to GT and, in turn, mϕ to214

a scaled version of PGT , since upper is linear.215

The mapping mϕ offers several advantageous properties. First, the features are projected to a216

Euclidean vector space where standard layers can be applied and distances are cheap to compute.217

Second, distances between the projected features locally approximate δ and, therefore, inherit its218

invariance properties (e.g., affine mixing) [41]. This improves upon a LogEig layer [37] which219

projects features to the tangent space at the identity matrix. As a result, distances between LogEig220

projected features correspond to distances measured with the log-Euclidean Riemannian metric221

(LERM) [51] which is not invariant to affine mixing. Third, controlling the Fréchet variance in (17)222

empirically speeds up learning and improves generalization [46].223

Domain-specific batch normalization on S+
D Considering a multi-source UDA scenario, Chang224

et al. [38] proposed a domain-specific BN (DSBN) layer which simply keeps multiple parallel BN225

layers and distributes observations according to the associated domains. Formally, we consider226

minibatches Bk that form the union of NBk
≤ |Id| domain-specific minibatches Bik drawn from227

3To preserve the norm, the off diagonal elements are scaled by
√
2.
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distinct domains i ∈ IBk
⊆ Id. As before, each Bik contains j = 1, ...,M/NBk

iid observations xj .228

A DSBN layer mapping Rd × Id → Rd can then be expressed as229

DSBN(xj , i) = BNi(xj ;gϕi
, sϕi

, ε, γ) , ∀xj ∈ Bik , ∀i ∈ IBk
(18)

In practice, the batch size M is typically fixed. The particular choice is influenced by resource230

availability and the desired noise level introduced by minibatch based stochastic gradient descent.231

A drawback of DSBN is that for a fixed batch size M and an increasing number of source domains232

NBk
, the effective batch size declines for the BN layers within DSBN. Since small batch sizes233

increase the noise level introduced by BN, increasing the number of domains per batch can lead to234

underfitting [32]. To alleviate this effect, we use the previously introduced SPDMBN layer. The235

proposed domain-specific BN layer on S+
D is then formally defined as236

SPDDSMBN(Zj , i) = SPDMBNi(Zj ;Gϕi
, νϕi

, ε, γ, γtrain(k)) , ∀Zj ∈ Bik ⊂ S+
D , ∀i ∈ IBk

(19)
The layer can be readily adapted to new domains, as new SPDMBN layers can be added on the fly. If237

the entire data of a domain becomes available, the domain-specific Fréchet mean and variance can be238

estimated by solving (4), otherwise, the update rules in algorithm 1 can be used.239

4 SPDDSMBN to crack interpretable multi-source/-target UDA for EEG data240

With SPDDSMBN introduced in the previous section, we focus on a specific application domain,241

namely, multi-source/-target UDA for EEG-based BCIs and propose an intrinsically interpretable242

architecture which we denote TSMNet.243

Generative model of EEG EEG signals x(t) ∈ RP capture voltage fluctuations on P channels.244

An EEG record (=domain) is uniquely identified by a subject and session identifier. After standard245

pre-processing steps, each domain i contains j = 1, ...,M labeled observations with features246

Xij ∈ X ⊂ RP×T where T is the number of temporal samples. Due to linearity of Maxwell’s247

equations and Ohmic conductivity of tissue layers in the frequency ranges relevant for EEG [52], a248

domain-specific linear instantaneous mixture of sources model is a valid generative model:249

Xij = AiSij +Nij (20)

where Sij ∈ RQ×T represents the activity ofQ latent sources, Ai ∈ RP×Q a domain-specific mixing250

matrix and Nij ∈ RP×T additive noise. Both Ai and Sij are unknown which demands making251

assumptions on Ai (e.g., anatomical prior knowledge [53]) and/or Sij (e.g., statistical independence252

[54]) to extract interesting sources.253

Interpretable multi-source/-target UDA for EEG data As label information is available for the254

source domains, our goal is to identify discriminative oscillatory sources shared across domains.255

Our approach relies on TSM models with linear classifiers [12], as they are consistent [13] and256

intrinsically interpretable [17] estimators for generative models with log-linear relationships between257

the target yij and variance Var{s(k)ij (t)} of k = 1, ...,K ≤ Q discriminative sources:258

yij =

K∑
k=1

bklog
(
Var{s(k)ij (t)}

)
+ εij (21)

where bk ∈ R summarizes the coupling between the target yij and the variance of the encoding259

source, and εij additive noise. Kobler et al. [17] showed that the encoding sources’ coupling and their260

patterns4 (columns of Ai) can be recovered via solving a generalized eigenvalue problem between261

the Fréchet mean GTi
and classifier patterns [55] that were back projected to S+

D with P−1
GTi

. The262

resulting eigenvectors are the patterns and the eigenvalues λk reflect the relative source contribution263

ck:264

ck = max(λk, λ
−1
k ) , λk = exp(bk/||b||22) (22)

To benefit from the intrinsic interpretability of TSM models, we constrain our hypothesis class265

H to functions h : X × Id → Y that can be decomposed into a composition of a shared linear266

feature extractor with covariance pooling fθ : X → S+
D , domain-specific tangent space mapping267

mϕ : S+
D × Id → RD(D+1)/2, and a shared linear classifier gψ : RD(D+1)/2 → Y with parameters268

Θ = {θ, ϕ, ψ}.269

4Here, we use the entire dataset’s Fréchet mean instead of the domain-specific ones to compute patterns for
the average domain.
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TSMNet with SPDDSMBN Unlike previous approaches which learn fθ,mϕ, gψ sequentially270

[29, 31, 13, 30], we parametrize h = gψ ◦mϕ ◦ fθ as a neural network and learn the entire model271

in an end-to-end fashion (Figure 1b). Details of the proposed architecture, denoted TSMNet, are272

provided in appendix A.2.5. In a nutshell, we parametrize fθ as the composition of the first two273

linear convolutional layers of ShConvNet [56], covariance pooling [57], BiMap [37], and ReEig [37]274

layers. A BiMap layer applies a linear subspace projection, and a ReEig layer thresholds eigenvalues275

of symmetric matrices so that the output is SPD. We used the default threshold (10−4) and found276

that it was never active in the trained models. Hence, after training, fθ fulfilled the hypothesis class277

constraints. In order for mϕ to align the domain data and compute TSM, we use SPDDSMBN (19)278

with shared parameters (i.e., Gϕi
= Gϕ = I, νϕi

= νϕ) in (17). Finally, the classifier gψ was279

parametrized as a linear layer with softmax activations. We use the standard-cross entropy loss as280

training objective, and optimized the parameters with the Riemannian ADAM optimizer [58].281

5 Experiments with EEG data282

In the following, we apply our method to classify target labels from short segments of EEG data. We283

consider two BCI applications, namely, mental imagery [59, 5] and mental workload estimation [60].284

Both applications have high potential to aid society in rehabilitation and healthcare [61, 62, 18] but285

have, currently, limited practical value because of poor generalization across sessions and subjects286

[19, 15].287

Datasets and preprocessing The considered mental imagery datasets were BNCI2014001 [63] (9288

subjects/2 sessions/4 classes), BNCI2015001 [64] (12/2-3/2), Lee2019 [65] (54/2/2), Lehner2020289

[66] (1/7/2), Stieger2021 [67] (62/4-8/4) and Hehnberger2021 [68] (1/26/4). For mental workload290

estimation, we used a recent competition dataset [69] (12/2/3). A detailed description of the datasets291

is provided in appendix A.2.1. Altogether, we analyzed a total of 603 sessions of 158 human subjects292

whose data was acquired in previous studies that obtained the subjects’ info rmed consent and the293

right to share anonymized data.294

Python packages (moabb [14], mne [70]) were used to preprocess the datasets. The applied steps295

comprise resampling the EEG signals to 250/256 Hz, applying temporal filters to extract oscillatory296

EEG activity in the 4 to 36 Hz range (spectrally resolved if required by a method) and finally extract297

short segments (≤ 3s) associated to a class label (details provided in appendix A.2.2).298

Evaluation We evaluated TSMNet against several baseline methods implementing direct transfer or299

multi-source (-target) UDA strategies. They can be broadly categorized as component based [71, 68],300

Riemannian geometry aware [12, 17, 30, 72] or deep learning [56, 73, 25]. All models were fit and301

evaluated with a randomized leave 5% of the sessions (inter-session TL) or subjects (inter-subject302

TL) out cross-validation (CV) scheme. For inter-session TL, the models were only provided with data303

of the associated subject. When required, inner train/test splits (neural nets) or CV (shallow methods)304

were used to optimize hyper parameters (e.g., early stopping, regularization parameters). The dataset305

Hehenberger2021 was used to fit the hyper parameters of TSMNet, and is, therefore, omitted in the306

presented results. Balanced accuracy (i.e., the average recall across classes) was used as scoring307

metric. As the discriminability of the data varies considerably across subjects, we decided to report308

the results in the figures relative to the score of a SoA domain-specific Riemannian geometry aware309

method [17], which was fitted and evaluated in a 80%/20% chronological train/test split (for details310

see appendix A.2.4).311

Soft- and hardware We either used publicly available python code or implemented the methods in312

python using the packages torch [74], scikit-learn [75], skorch [76], geoopt [77], mne [70], pyriemann313

[78], pymanopt [79]. We ran the experiments on standard computation PCs equipped with 32 core314

CPUs with 128 GB of RAM and used up to 1 GPU (24 GRAM). Depending on the dataset size,315

fitting and evaluating TSMNet varied from a few seconds to minutes.316

5.1 Mental imagery317

TSMNet closes the gap to domain-specific methods Figure 2 summarizes the mental imagery318

results. It displays test set scores of the considered TL methods relative to the score of a SOA319

domain-specific reference method. Combining the results of all subjects across datasets (Figure 2a),320

it becomes apparent that TSMNet is the only method that can significantly reduce the gap to the321

reference method (inter-subject) or even exceed its performance (inter-session). Figure 2b displays the322

results resolved across datasets (for details see appendix A.3.1). We make two important observations.323

First, concerning inter-session TL, TSMNet meets or exceeds the score of the reference method324
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Figure 2: Mental imagery results (5 datasets). BCI test set score (balanced accuracy) for inter-session/-
subject transfer learning methods relative to a SOA domain-specific reference model (80%/20%
chronological train/test split; for details see appendix A.2.4). a, Barplots summarize the grand
average (573 sessions, 138 subjects) results. Errorbars indicate bootstrapped (1e3 repetitions) 95%
confidence intervals (over subjects). b, Box and scatter plots summarize the dataset-specific results
for selected methods from each category. Datasets are ordered according to the training set size. Each
dot summarizes the score for one subject. Lehner2021 is not displayed as it contains only 1 subject.

Figure 3: Model interpretation results. Patterns extracted from a fitted TSMNet. a, Motor imagery
dataset (BNCI2015001, inter-subject TL). The top, left panel lists the contribution, defined in (22), for
each extracted source k = 1, ..., 20 (x-axis) to the target class. Panels in the left column summarize
the spectral patterns of extracted sources. For visualization purposes, only the 2 most discriminative
sources are displayed. Panels in the top row summarize the frequency profile of each spectral channel
(output of 4 temporal convolution layers in fθ). Topographic plots summarize how the source activity
is projected to regions covered by the EEG channels (rows correspond to the source index; columns
to spectral channels). EEG channels at darker blue or red areas capture more source activity and are,
therefore, more discriminative. b, As in a but for the mental workload estimation dataset and class
low.

consistently across datasets. Second, concerning inter-subject TL, we found that all considered325

methods tend to reduce the performance gap as the dataset size (# subjects) increases, and that326

TSMNet is consistently the top or among the top methods. As a fitted TSMNet corresponds to a327

typical TSM model with a linear classifier, we can transform the fitted parameters into interpretable328

patterns [17]. Figure 3a displays extracted patterns for the BNCI2015001 dataset (inter-subject TL).329

It is clearly visible that TSMNet infers the target label from neurophysiologically plausible sources330

(rows in Figure 3a). As expected [2], the source with highest contribution has spectral peaks in the331

alpha and beta bands, and originates in contralateral and central sensorimotor cortex.332

DSBN on S+
D drives the success of TSMNet Since TSMNet combines several advances, we333

present the results of an ablation study in Table 2. It summarizes the grand average inter-session TL334

test scores relative to TSMNet with SPDDSMBN for n = 138 subjects. We observed three significant335

effects. The largest effect can be attributed to S+
D , as we observed the largest performance decline if336
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Table 2: Ablation study. Grand average (5 mental imagery datasets, 138 subjects, inter-session TL)
score for the test data relative to the proposed method, and training fit time (50 epochs). Standard-
deviation is used to report the variability across subjects. Permutation t-tests (1e4 perms, df=137, 4
tests with t-max adjustment) were used to identify significant effects.

∆ balanced accuracy (%) fit time (s)
mean (std) t-val (p-val) mean (std)

S+
D DSBN BN method

yes yes SPDMBN (algo. 1) (proposed) - - 16.9 ( 1.0)
yes SPDBN [46] -1.6 ( 2.2) -7.8 (0.0001) 20.3 ( 1.6)
no SPDMBN (algo. 1) -3.9 ( 4.4) -10.7 (0.0001) 11.3 ( 0.5)

no yes MBN [32] -4.5 ( 3.8) -10.1 (0.0001) 6.6 ( 0.2)
no MBN [32] -6.9 ( 4.8) -13.4 (0.0001) 4.4 ( 0.1)

the architecture would be modified5 to omit the SPD manifold (4.5% with DSBN, 3% w/o DSBN).337

The performance gain comes at the cost of a 2.6x longer time to fit the parameters. The second largest338

effect can be attributed to DSBN; without DSBN the performance dropped by 3.9% (with S+
D) and339

2.4% (w/o S+
D). The smallest, yet significant effect can be attributed to SPDMBN.340

5.2 Mental workload estimation341

Compared to the baseline methods, TSMNet obtained the highest average scores of 54.7% (7.3%)342

and 52.4% (8.8%) in inter-session and -subject TL (for details see appendix A.3.1). Interestingly, the343

inter-session TL score of TSMNet matches the score (54.3%) of the winning method in last year’s344

competition [15]. To shed light on the sources utilized by TSMNet, we show patterns for a fitted345

model in Figure 3b. For the low mental workload class, the top contributing source’s activity peaked in346

the theta band and originated in pre-frontal areas. The second source’s activity originated in occipital347

cortex with non-focal spectral profile. Our results agree with the findings of previous research, as348

both areas and the theta band have been implicated in mind wandering and effort withdrawal [60].349

6 Discussion350

In this contribution, we proposed a machine learning framework around (domain-specific) momentum351

batch normalization on S+
D to learn tangent space mapping (TSM) models and feature extractors in352

an end-to-end fashion. In a theoretical analysis, we provided error bounds for the running estimate of353

the Fréchet mean as well as convergence guarantees under reasonable assumptions. We then applied354

the framework, to a multi-source multi-target unsupervised domain adaptation problem, namely,355

inter-session and -subject transfer learning for EEG data and obtained or attained state-of-the art356

performance with a simple, intrinsically interpretable model, denoted TSMNet, in a total of 6 diverse357

BCI datasets (138 human subjects, 573 sessions). In the case of mental imagery, we found that358

TSMNet significantly reduced (inter-subject TL) or even exceeded (inter-session TL) the performance359

gap to a SOA domain-specific method.360

Although our framework could be readily extended to online UDA for unseen target domains, we361

limited this study to offline evaluations and leave actual BCI studies to future work. A limitation of362

our framework, and also any other method that involves eigen decomposition, is the computational363

complexity, which limits its application to high-dimensional SPD features (e.g., fMRI connectivity364

matrices with fine spatial granularity). Altogether, the presented results demonstrate the utility of365

our framework and in particular TSMNet as it not only achieves highly competitive results but is366

also intrinsically interpretable. While we do not foresee any immediate negative societal impacts,367

we provide direct contributions towards the scalability and acceptability of EEG-based healthcare368

[1, 5] and consumer [18, 60] technologies. We expect future works to evaluate the impact of the369

proposed methods in clinical applications of EEG like sleep staging [80, 81], seizure [82] or pathology370

detection [83, 84].371

5To do so, we replaced the covariance pooling, BiMap, ReEig, SPD(DS)MBN, LogEig layers with variance
pooling, elementwise log activations followed by (DS)MBN. Note that the resulting architecture is similar to
ShConvNet.
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Normalization Help Optimization? In Proceedings of the 32nd International Conference on524

Neural Information Processing Systems, NIPS’18, pages 2488–2498, Red Hook, NY, USA,525

2018. Curran Associates Inc.526

[48] Sergey Ioffe. Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-527

Normalized Models. In Proceedings of the 31st International Conference on Neural Information528

Processing Systems, NIPS’17, pages 1942–1950, Red Hook, NY, USA, 2017. Curran Associates529

Inc. ISBN 978-1-5108-6096-4.530

[49] Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Matrix Backpropagation for531

Deep Networks with Structured Layers. In 2015 IEEE International Conference on Computer532

Vision (ICCV), pages 2965–2973, Santiago, Chile, 2015. IEEE. ISBN 978-1-4673-8391-2. doi:533

10.1109/ICCV.2015.339.534

[50] Jeffrey Ho, Guang Cheng, Hesamoddin Salehian, and Baba Vemuri. Recursive Karcher Ex-535

pectation Estimators And Geometric Law of Large Numbers. In Carlos M. Carvalho and536

Pradeep Ravikumar, editors, Proceedings of the Sixteenth International Conference on Artificial537

Intelligence and Statistics, volume 31 of Proceedings of Machine Learning Research, pages538

325–332, Scottsdale, Arizona, USA, 2013. PMLR.539

[51] Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Geometric Means in540

a Novel Vector Space Structure on Symmetric Positive-Definite Matrices. SIAM Journal on541

Matrix Analysis and Applications, 29(1):328–347, 2007. doi: 10.1137/050637996.542

[52] Paul L. Nunez and Ramesh Srinivasan. Electric Fields of the Brain. Oxford University Press,543

2006. ISBN 978-0-19-505038-7. doi: 10.1093/acprof:oso/9780195050387.001.0001.544

[53] Christoph M. Michel, Micah M. Murray, Göran Lantz, Sara Gonzalez, Laurent Spinelli, and545

Rolando Grave De Peralta. EEG source imaging. Clinical Neurophysiology, 115(10), 2004.546

doi: 10.1016/j.clinph.2004.06.001.547

[54] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications. Neural548

Networks, 13(4-5):411–430, 2000. doi: 10.1016/S0893-6080(00)00026-5.549

[55] Stefan Haufe, Frank Meinecke, Kai Görgen, Sven Dähne, John Dylan Haynes, Benjamin550

Blankertz, and Felix Bießmann. On the interpretation of weight vectors of linear models in551

multivariate neuroimaging. NeuroImage, 87:96–110, 2014. doi: 10.1016/j.neuroimage.2013.10.552

067.553

[56] Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer, Martin554

Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Burgard,555

and Tonio Ball. Deep learning with convolutional neural networks for EEG decoding and556

visualization: Convolutional Neural Networks in EEG Analysis. Human Brain Mapping, 38557

(11):5391–5420, 2017. doi: 10.1002/hbm.23730.558

[57] Dinesh Acharya, Zhiwu Huang, Danda Pani Paudel, and Luc Van Gool. Covariance Pooling for559

Facial Expression Recognition. In Proceedings of the IEEE Conference on Computer Vision560

and Pattern Recognition (CVPR) Workshops, 2018.561

[58] Gary Becigneul and Octavian-Eugen Ganea. Riemannian Adaptive Optimization Methods. In562

International Conference on Learning Representations, 2019.563

[59] G. Pfurtscheller and C. Neuper. Motor imagery and direct brain-computer communication.564

Proceedings of the IEEE, 89(7):1123–1134, 2001. doi: 10.1109/5.939829.565

14



[60] Frédéric Dehais, Alex Lafont, Raphaëlle Roy, and Stephen Fairclough. A Neuroergonomics Ap-566

proach to Mental Workload, Engagement and Human Performance. Frontiers in Neuroscience,567

14:268, 2020. doi: 10.3389/fnins.2020.00268.568

[61] Ana R. C. Donati, Solaiman Shokur, Edgard Morya, Debora S. F. Campos, Renan C. Moioli,569

Claudia M. Gitti, Patricia B. Augusto, Sandra Tripodi, Cristhiane G. Pires, Gislaine A. Pereira,570

Fabricio L. Brasil, Simone Gallo, Anthony A. Lin, Angelo K. Takigami, Maria A. Aratanha,571

Sanjay Joshi, Hannes Bleuler, Gordon Cheng, Alan Rudolph, and Miguel A. L. Nicolelis. Long-572

Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological573

Recovery in Paraplegic Patients. Scientific Reports, 6(1):30383, 2016. doi: 10.1038/srep30383.574

[62] Domen Novak, Roland Sigrist, Nicolas J. Gerig, Dario Wyss, René Bauer, Ulrich Götz, and575

Robert Riener. Benchmarking Brain-Computer Interfaces Outside the Laboratory: The Cy-576

bathlon 2016. Frontiers in Neuroscience, 11:756, 2018. doi: 10.3389/fnins.2017.00756.577

[63] Michael Tangermann, Klaus-Robert Müller, Ad Aertsen, Niels Birbaumer, Christoph Braun,578

Clemens Brunner, Robert Leeb, Carsten Mehring, Kai J Miller, Gernot Müller-Putz, Guido579

Nolte, Gert Pfurtscheller, Hubert Preissl, Gerwin Schalk, Alois Schlögl, Carmen Vidaurre,580

Stephan Waldert, and Benjamin Blankertz. Review of the BCI Competition IV. Frontiers in581

Neuroscience, 6, 2012.582

[64] Josef Faller, Carmen Vidaurre, Teodoro Solis-Escalante, Christa Neuper, and Reinhold Scherer.583

Autocalibration and recurrent adaptation: towards a plug and play online ERD-BCI. Neural584

Systems and Rehabilitation Engineering, IEEE Transactions on, 20(3):313–319, 2012.585

[65] Min-Ho Lee, O-Yeon Kwon, Yong-Jeong Kim, Hong-Kyung Kim, Young-Eun Lee, John586

Williamson, Siamac Fazli, and Seong-Whan Lee. EEG dataset and OpenBMI toolbox for three587

BCI paradigms: an investigation into BCI illiteracy. GigaScience, 8(5):giz002, 2019. doi:588

10.1093/gigascience/giz002.589

[66] Rea Lehner, Neethu Robinson, Tushar Chouhan, Mihelj Mihelj, Ernest, Kratka Kratka, Paulina,590

Frédéric Debraine, Cuntai Guan, and Nicole Wenderoth. Design considerations for long591

term non-invasive Brain Computer Interface training with tetraplegic CYBATHLON pilot:592

CYBATHLON 2020 Brain-Computer Interface Race Calibration Paradigms. 2020. doi: 10.593

3929/ETHZ-B-000458693. URL http://hdl.handle.net/20.500.11850/458693.594

[67] James R. Stieger, Stephen A. Engel, and Bin He. Continuous sensorimotor rhythm based595

brain computer interface learning in a large population. Scientific Data, 8(1):98, 2021. doi:596

10.1038/s41597-021-00883-1.597

[68] Lea Hehenberger, Reinmar J. Kobler, Catarina Lopes-Dias, Nitikorn Srisrisawang, Peter Tumfart,598

John B. Uroko, Paul R. Torke, and Gernot R. Müller-Putz. Long-term mutual training for the599

CYBATHLON BCI Race with a tetraplegic pilot: a case study on inter-session transfer and intra-600

session adaptation. Frontiers in Human Neuroscience, 2021. doi: 10.3389/fnhum.2021.635777.601

[69] Marcel F. Hinss, Ludovic Darmet, Bertille Somon, Emilie Jahanpour, Fabien Lotte, Simon602

Ladouce, and Raphaëlle N. Roy. An EEG dataset for cross-session mental workload estimation:603

Passive BCI competition of the Neuroergonomics Conference 2021. 2021. doi: 10.5281/604

ZENODO.5055046.605

[70] Alexandre Gramfort. MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience,606

7, 2013. doi: 10.3389/fnins.2013.00267.607

[71] Kai Keng Ang, Zhang Yang Chin, Haihong Zhang, and Cuntai Guan. Filter Bank Common608

Spatial Pattern (FBCSP) in Brain-Computer Interface. In 2008 IEEE International Joint609

Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pages610

2390–2397, Hong Kong, China, 2008. IEEE. ISBN 978-1-4244-1820-6. doi: 10.1109/IJCNN.611

2008.4634130.612

[72] Or Yair, Felix Dietrich, Ronen Talmon, and Ioannis G. Kevrekidis. Domain Adaptation with613

Optimal Transport on the Manifold of SPD matrices. arXiv:1906.00616 [cs, stat], 2020.614

15

http://hdl.handle.net/20.500.11850/458693


[73] Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P615

Hung, and Brent J Lance. EEGNet: a compact convolutional neural network for EEG-based616

brain–computer interfaces. Journal of Neural Engineering, 15(5):056013, 2018. doi: 10.1088/617

1741-2552/aace8c.618

[74] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,619

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas620

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,621

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,622

High-Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’623

Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems624

32, pages 8024–8035. Curran Associates, Inc., 2019.625

[75] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,626

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,627

M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine628

Learning Research, 12:2825–2830, 2011.629

[76] Marian Tietz, Thomas J. Fan, Daniel Nouri, Benjamin Bossan, and skorch Developers. skorch:630

A scikit-learn compatible neural network library that wraps PyTorch. 2017. URL https:631

//skorch.readthedocs.io/en/stable/.632

[77] Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian Optimization in633

PyTorch, 2020. _eprint: 2005.02819.634

[78] Barachant Alexandre. pyRiemann, 2022. URL https://github.com/pyRiemann/635

pyRiemann.636

[79] James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A python toolbox637

for optimization on manifolds using automatic differentiation. Journal of Machine Learning638

Research, 17(137):1–5, 2016.639

[80] Ian G. Campbell. EEG Recording and Analysis for Sleep Research. Current Protocols in640

Neuroscience, 49(1):10.2.1–10.2.19, 2009. doi: 10.1002/0471142301.ns1002s49.641

[81] Hubert Banville, Omar Chehab, Aapo Hyvärinen, Denis-Alexander Engemann, and Alexandre642

Gramfort. Uncovering the structure of clinical EEG signals with self-supervised learning.643

Journal of Neural Engineering, 2020. doi: 10.1088/1741-2552/abca18.644

[82] U. Rajendra Acharya, S. Vinitha Sree, G. Swapna, Roshan Joy Martis, and Jasjit S. Suri.645

Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems, 45:147–165, 2013.646

doi: https://doi.org/10.1016/j.knosys.2013.02.014.647

[83] Marc R. Nuwer, David A. Hovda, Lara M. Schrader, and Paul M. Vespa. Routine and quantitative648

eeg in mild traumatic brain injury. Clinical Neurophysiology, 116(9):2001–2025, 2005. doi:649

10.1016/j.clinph.2005.05.008.650

[84] Lukas A.W. Gemein, Robin T. Schirrmeister, Patryk Chrabaszcz, Daniel Wilson, Joschka651

Boedecker, Andreas Schulze-Bonhage, Frank Hutter, and Tonio Ball. Machine-learning-based652

diagnostics of EEG pathology. NeuroImage, 220:117021, 2020. doi: 10.1016/j.neuroimage.653

2020.117021.654

[85] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François655

Laviolette, Mario March, and Victor Lempitsky. Domain-Adversarial Training of Neural656

Networks. Journal of Machine Learning Research, 17(59):1–35, 2016.657

Checklist658

1. For all authors...659

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s660

contributions and scope? [Yes]661

(b) Did you describe the limitations of your work? [Yes] See section 6662

16

https://skorch.readthedocs.io/en/stable/
https://skorch.readthedocs.io/en/stable/
https://skorch.readthedocs.io/en/stable/
https://github.com/pyRiemann/pyRiemann
https://github.com/pyRiemann/pyRiemann
https://github.com/pyRiemann/pyRiemann


(c) Did you discuss any potential negative societal impacts of your work? [Yes] See section663

6664

(d) Have you read the ethics review guidelines and ensured that your paper conforms to665

them? [Yes]666

2. If you are including theoretical results...667

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See paragraph668

4 in section 3.669

(b) Did you include complete proofs of all theoretical results? [Yes] See appendix A.1 in670

the supplementary material.671

3. If you ran experiments...672

(a) Did you include the code, data, and instructions needed to reproduce the main exper-673

imental results (either in the supplemental material or as a URL)? [Yes] See Supple-674

mentary Material.675

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they676

were chosen)? [Yes] See paragraph 2 in section 5 for a brief summary and appendix677

A.2 for details.678

(c) Did you report error bars (e.g., with respect to the random seed after running exper-679

iments multiple times)? [Yes] We provide error bars with respect to the variability680

across sessions and subjects.681

(d) Did you include the total amount of compute and the type of resources used (e.g., type682

of GPUs, internal cluster, or cloud provider)? [Yes] See paragraph 3 in section 5.683

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...684

(a) If your work uses existing assets, did you cite the creators? [Yes] See paragraph 1 in685

section 5.686

(b) Did you mention the license of the assets? [Yes] See appendix A.2.1 in the Supplemen-687

tary material.688

(c) Did you include any new assets either in the supplemental material or as a URL? [No]689

(d) Did you discuss whether and how consent was obtained from people whose data you’re690

using/curating? [Yes] See paragraph 1 in section 5.691

(e) Did you discuss whether the data you are using/curating contains personally identifiable692

information or offensive content? [Yes] See paragraph 1 in section 5.693

5. If you used crowdsourcing or conducted research with human subjects...694

(a) Did you include the full text of instructions given to participants and screenshots, if695

applicable? [N/A]696

(b) Did you describe any potential participant risks, with links to Institutional Review697

Board (IRB) approvals, if applicable? [N/A]698

(c) Did you include the estimated hourly wage paid to participants and the total amount699

spent on participant compensation? [N/A]700

A Supplementary Material701

A.1 Proof of proposition 1702

In the proof, we will use Theorem 2 of [50] which relates the distance between interpolated points703

along the geodesic R#γS, connecting points R and S, and point T to the distances between R, S704

and T. Formally, for all R,S,T ∈ S+
D we have705

δ2(R#γS,T) ≤ (1− γ)δ2(R,T) + γδ2(S,T)− γ(1− γ)δ2(R,S) (23)

As a last ingredient for the proof, we use Proposition 1 of [50], which states that for a random variable706

U, following distribution PU defined on S+
D with Fréchet mean GU , we have for any point V ∈ S+

D :707

E{δ2(U,V)} ≥
∫
δ2(u,GU )dPU (u)︸ ︷︷ ︸

=:Var(GU )

+δ2(V,GU ) (24)
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which means that the expected distance between V and U is bounded from below by the variance of708

U and the distance between V and its Fréchet mean GU .709

Let us quickly repeat the definitions, assumptions and proposition 1. We define a dataset containing710

the latent representations generated with feature set θk as Zθk = {fθk(x)|x ∈ T }, and a minibatch711

of M iid samples drawn from Zθk at training step k as Bk. We denote the Fréchet mean of Zθk as712

Gθk , the estimated Fréchet mean, defined in (9), as Gk, and the estimated batch mean as Bk. Since713

the batches are drawn randomly, we consider Bk and Gk as random variables.714

We assume that the variance Varθk(Bk−1) = EBk−1
{δ2(Bk−1,Gθk)} of the previous batch mean715

Bk−1 with respect to the current Fréchet mean Gθk is bounded by the current variance Varθk(Bk)716

and the norm of the difference in the parameters717

Varθk(Bk−1) ≤ (1 + ||θk − θk−1||)Varθk(Bk) (25)

Proposition 1 states then that the variance of the running mean Varθk(Gk) is bounded by718

Varθk(Gk) ≤ Varθk(Bk) (26)

over training steps k, if719

||θk − θk−1|| ≤
1− γ2

(1− γ)2
− 1 (27)

holds true.720

Proof of Proposition 1. We prove Proposition 1 via induction. We assume that the variance721

Varθk(Gk−1), that is the expected distance between the running mean Gk−1 and the Fréchet mean722

Gθk , is bounded by the variance of the batch mean Bk−1:723

Varθk(Gk−1) = EGk−1
{δ2(Gk−1,Gθk)} ≤ Varθk(Bk−1) (28)

and show that this also holds for Gk and Bk. The assumption is trivially satisfied for G0 = B0. We724

start the induction step with (23) and apply it to the update rule for the running estimate Gk. As a725

result, we have726

δ2(Gk,Gθk) ≤ (1− γ)δ2(Gk−1,Gθk) + γδ2(Bk,Gθk)− γ(1− γ)δ2(Gk−1,Bk) (29)

where we used Gk = Gk−1#γBk, as defined in algorithm 1. Taking the expectations for the random727

variables Gk, Gk−1 and Bk, we get728

Varθk(Gk) ≤ (1−γ)Varθk(Gk−1)+γVarθk(Bk)−γ(1−γ)EGk−1
{EBk

{δ2(Gk−1,Bk)}} (30)

Using (24) to simplify the last term, we obtain729

Varθk(Gk) ≤ (1− γ)Varθk(Gk−1) + γVarθk(Bk)− γ(1− γ) (Varθk(Gk−1) + Varθk(Bk))
(31)

≤ (1− γ)2Varθk(Gk−1) + γ2Varθk(Bk) (32)

Applying assumptions (28) and (25), we get730

Varθk(Gk)
(28)

≤ (1− γ)2Varθk(Bk−1) + γ2Varθk(Bk) (33)
(25)

≤
[
(1− γ)2(1 + ||θk − θk−1||) + γ2

]
Varθk(Bk) (34)

The resulting inequality holds true, for731

(1− γ)2(1 + ||θk − θk−1||) + γ2
!
≤ 1 ⇔ ||θk − θk−1||

!
≤ 1− γ2

(1− γ)2
− 1 (35)

and, in turn, results in feasible bounds for the parameter updates for fixed γ ∈ (0, 1). This concludes732

the proof.733
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A.2 Supplementary Methods734

A.2.1 Datasets735

A summary of the datasets’ key attributes is listed in Table 3. The datasets contain736

a diverse sample of 154 human subjects, whose data was acquired in Europe (38 sub-737

jects; BNCI2014001,BNCI2015001,Lehner2021,Hehenberger2021,Hinss2021), Asia (54 subjects;738

Lee2019) and North America (62 subjects; Stieger2021).739

A.2.2 Preprocessing740

Depending on the dataset, either all or a subset of EEG channels was selected, and then resampled741

along the temporal dimension to a sampling rate of either 250 or 256 Hz. (see Table 3). Thereafter,742

an infinite impulse response (IIR) bandpass filter was used to extract EEG activity in the 4 to 36 Hz743

range (4th order Butterworth filter, 4 and 36 Hz cut-off frequencies, zero-phase). Some baseline744

methods required spectrally resolved input data. For these, we applied a bank of 8 filters with similar745

parameters except for the cut-off frequencies ([4, 8], [8, 12], ..., [32, 36] Hz). Finally, short epochs746

(=segments) were extracted (see Table 3) relative to the task cues (=labels). The labeled data were747

then extended with a domain index (= unique integer associated to one session of one subject).748

A.2.3 Baseline methods749

We considered several established and SOA baseline methods which were previously applied to inter-750

session/-subject TL. They can be broadly categorized as component based, Riemannian geometry751

aware or deep learning which we denote component, geometric and end-to-end, respectively. For the752

component category, we considered the popular filter-bank common spatial patterns (FBCSP+SVM)753

[71] and a variant [68], designed for MSMTUDA, that applies domain-specific standardization (DSS)754

to features before classification, denoted FBCSP+DSS+LDA. The geometric category was represented755

by TSM+SVM [12], a spectrally resolved variant [17] denoted FB+TSM+LR (which was also used756

as domain-specific baseline method). We additionally considered two MSUDA methods, denoted757

URPA+MDM and SPDOT+TSM+SVM here, that align SPD observations (=spatial covariance758

matrices) of different domains. The former uses Riemannian Procrustes Analysis (RPA) [30] to align759

domains, and the latter optimal transport (OT) on S+
D [72]. The end-to-end category was represented760

by EEGNet [73] and ShConvNet [56] two convolutional neural network architectures specifically761

designed for EEG data. We additionally considered variants [25] that use domain-adversarial neural762

networks (DANN) [85] to learn domain-invariant latent representations.763

A.2.4 Domain-specific reference method764

Due to the success of TSM models [14, 10], we considered a spectrally resolved model [13, 17]765

which consisted of a filter-bank to separate activity of canonical frequency bands. For each frequency766

band, PCA was used to reduce the spatial dimensionality and TSM to project the SPD features to767

the Euclidean vector space. Finally, all features were pooled and submitted to a penalized logistic768

regression classifier. For further details, see [17].769

A.2.5 TSMNet770

Architecture The architecture of TSMNet is outlined in Figure 4 and detailed in Table 4. The feature771

extractor fθ comprises two convolutional layers, followed by covariance pooling [57], BiMap [37] and772

ReEig [37] layers. The first convolutional layer performs convolution along the temporal dimension;773

implementing a finite impulse response (FIR) filter bank (4 filters) with learnable parameters. The774

second convolutional layer applies spatio-spectral filters (40 filters) along the spatial and convolutional775

channel dimensions. Covariance pooling is then applied along the temporal dimension. A subsequent776

BiMap layer projects covariance matrices to a subspace via a bilinear mapping (i.e, BiMap(Z) =777

WT
θ ZWθ) where the parameter matrix Wθ is constrained to have orthogonal rows (i.e., Wθ ∈778

{U ∈ RI×O : UTU = IO, I ≥ O}). Next, a ReEig layer rectifies all eigenvalues, lower than a779

6We used 20 channels that covered sensorimotor areas.
7We used 34 channels that covered sensorimotor areas.
8To reduce computation time, only data from the 4th to last session were considered (inter-session) or last

session (inter-subject).
9We used 30 channels with a dense coverage in frontal areas.

10The dataset is shared on an individual basis by the authors of [68].
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threshold ϵ = 10−4 (i.e, ReEig(Z) = Umax(Σ, ϵI)UT with [Σ,U] = eig(Z)).780

Domain-specific tangent space mapping mϕ is implemented via combining SPDDSMBN and LogEig781

layers. In order for mϕ to align the domain data and compute TSM, we use SPDDSMBN (19) with782

shared parameters (i.e., Gϕi
= Gϕ = I, νϕi

= νϕ) in (17). The classifier gψ was parametrized as a783

linear layer with softmax activations.784

Parameter estimation We used the cross entropy loss as training objective, and the standard785

backpropagation framework with extensions for structured matrices [49] and manifold-constrained786

gradients [40] to propagate gradients through the layers of TSMNet. Gradients were estimated with787

mini-batches of fixed size (50 observations; 10 per domain; 5 distinct domains) and converted into788

parameter updates with the Riemannian ADAM optimizer [58] (10−3 learning rate, 10−4 weight789

decay applied to unconstrained parameters; β1 = 0.9, β2 = 0.999).790

For every MSMTUDA problem, comprising source and target domain sets, we split the source791

domains’ data into training and validation sets (80%/20% splits; randomized; stratified across792

domains and labels) and repeatedly iterated through the training set for 50 epochs via exhaustive793

minibatch sampling. As required by SPDMBN, we implemented a decaying schedule (over epochs)794

for the training momentum parameter γtrain(k), defined in (11), with γtrain(0) = 1 and γmin = 0.2795

attained at epoch K = 40. During training, we monitored the loss on the validation data (at the end796

of every epoch). Post training, the model with minimal loss on the validation data was selected. For797

each target domain, the associated data was then passed through this model to estimate the labels.798

During the forward pass, the domain’s normalization statistics within the SPDMBN layers were799

computed by solving (4) with the Karcher flow algorithm [42].800

A.3 Supplementary results801

A.3.1 EEG data802

The test set score for each considered EEG dataset is summarized in in Table 5. Significant differences803

between the proposed method (TSMNet with SPDDSMBN) and baseline methods are highlighted.804

11Shared Frechet variance parameter ν2
ϕ.
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Table 3: Dataset attributes. The epoch indices the temporal window after a task cue (time relative to
cue onset) that was extracted from continuous EEG data.

epoch sampling channels subjects sessions obsevations
dataset (s) rate (Hz) # # # # (per session)

BNCI2014001 0.5 - 3.5 250 22 9 2 288
BNCI2015001 1.0 - 4.0 256 13 12 2-3 200
Lee2019 1.0 - 3.5 250 206 54 2 100
Stieger2021 1.0 - 3.0 250 347 62 4-88 390
Lehner2021 0.5 - 2.5 250 60 1 7 61
Hehenberger2021 1.0 - 3.0 250 32 1 26 105
Hinss2021 0.0 - 2.0 250 309 15 2 447

classes license identifier linked
dataset # publication

BNCI2014001 4 CC BY-ND 4.0 001-2014 [63]
BNCI2015001 2 CC BY-NC-ND 4.0 001-2015 [64]
Lee2019 2 unspecified 100542 [65]
Stieger2021 4 CC BY 4.0 m9.figshare.13123148.v1 [67]
Lehner2021 2 InC-NC 10.3929/ethz-b-000458693 [66]
Hehenberger2021 4 individual10 - [68]
Hinss2021 3 CC BY-SA 4.0 10.5281/zenodo.5055046 [69]

Figure 4: Overview of the TSMNet architecture. The network uses observations X and the associated
domain index i to estimate the target label ŷ.

Table 4: TSMNet architecture details. The letters P, T and C refer to the number of input channels,
temporal samples and classes.

Block Input (dim) Output (dim) Parameter (dim) Operation Note

TempConv 1 x P x T 4 x P x T 4 x 1 x 1 x 25 convolution padding: same, reflect
SpatConv 4 x P x T 40 x 1 x T 40 x 4 x P x 1 convolution padding: valid
CovPool 40 x T 40 x 40 covariance temporal dimension
BiMap 40 x 40 20 x 20 40 x 20 bilinear subspace projection
ReEig 20 x 20 20 x 20 EV threshold threshold = 0.0001
SPDDSMBN 20 x 20 20 x 20 111 TSM domain alignment
LogEig 20 x 20 210 TSM
Linear 210 C 211 x C linear softmax activation
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Table 5: Average (standard deviation across sessions or subjects) test set score (balanced accuracy;
higher is better) for all BCI datasets and evaluations. Permutation-paired t-test were used to identify
significant differences between the proposed (highlighted) and baseline methods (1e4 permutations,
10 tests, tmax correction). Significant differences are highlighted (• p ≤ 0.05, • p ≤ 0.01, •
p ≤ 0.001).

dataset BNCI2014001 BNCI2015001
evaluation inter-session inter-subject inter-session inter-subject
degrees of freedom / # classes 17 / 4 8 / 4 27 / 2 11 / 2

UDA method

no FBCSP+SVM • 60.6 ( 4.9) • 32.3 ( 7.3) • 81.5 ( 4.4) • 58.6 (13.4)
TSM+SVM • 61.8 ( 4.1) • 34.7 ( 8.6) • 75.7 ( 5.1) • 56.0 ( 6.0)
FB+TSM+LR 69.8 ( 4.8) • 36.5 ( 8.2) • 80.9 ( 6.0) • 60.6 (10.9)
EEGNet • 41.8 ( 5.8) • 43.3 (17.0) • 72.4 ( 8.4) • 59.2 ( 9.5)
ShConvNet • 51.3 ( 2.3) • 42.2 (16.2) • 74.1 ( 4.2) • 58.7 ( 5.8)

yes FBCSP+DSS+LDA 71.3 ( 1.8) 48.3 (14.3) 84.6 ( 4.8) • 67.7 (14.3)
URPA+MDM • 59.5 ( 2.7) 46.8 (14.6) • 79.2 ( 4.6) • 70.3 (16.1)
SPDOT+TSM+SVM 66.8 ( 3.8) • 38.6 ( 8.6) • 77.5 ( 2.9) • 63.3 ( 8.1)
EEGNet+DANN • 50.0 ( 7.7) 45.8 (18.0) • 71.6 ( 5.3) • 63.7 (11.1)
ShConvNet+DANN • 51.6 ( 3.2) • 42.2 (13.6) • 74.1 ( 4.0) • 64.2 (11.6)
TSMNet(SPDDSMBN) 69.0 ( 3.6) 51.6 (16.5) 85.8 ( 4.3) 77.0 (13.7)

dataset Lee2019 Stieger2021
evaluation inter-session inter-subject inter-session inter-subject
degrees of freedom / # classes 107 / 2 53 / 2 411 / 4 61 / 4

UDA method

no FBCSP+SVM • 63.1 ( 4.2) • 63.4 (12.1) • 47.5 ( 7.0) • 37.6 (10.5)
TSM+SVM • 62.5 ( 3.3) • 65.3 (13.0) • 49.5 ( 8.1) • 40.2 (12.3)
FB+TSM+LR • 65.2 ( 4.5) • 68.5 (12.4) • 57.3 ( 7.3) • 40.3 ( 9.2)
EEGNet • 51.2 ( 2.7) • 69.6 (13.8) • 58.3 ( 7.9) • 43.1 (11.0)
ShConvNet • 57.8 ( 4.0) • 68.5 (13.6) • 60.1 ( 6.6) • 42.2 (10.4)

yes FBCSP+DSS+LDA 66.8 ( 4.1) • 68.7 (13.8) • 59.4 ( 6.6) • 48.2 (13.4)
URPA+MDM • 63.8 ( 4.2) • 66.7 (12.3) • 47.0 ( 6.6) • 38.7 (10.4)
SPDOT+TSM+SVM • 65.6 ( 4.2) • 65.4 (10.5) • 50.3 ( 5.8) • 42.1 (10.5)
EEGNet+DANN • 55.4 ( 4.4) • 69.4 (13.1) • 60.1 ( 6.9) • 43.6 (10.7)
ShConvNet+DANN • 59.1 ( 3.4) • 66.0 (12.4) • 61.3 ( 6.0) • 43.1 (11.5)
TSMNet(SPDDSMBN) 68.2 ( 4.1) 74.6 (14.2) 64.8 ( 6.8) 48.9 (14.3)

dataset Lehner2021 Hehen.2021 Hinss2021
evaluation inter-session inter-session inter-session inter-subject
degrees of freedom / # classes 6 / 2 25 / 4 29 / 3 14 / 3

UDA method

no FBCSP+SVM 68.9 ( 6.0) • 52.5 ( 7.1) • 43.7 ( 8.2) 45.6 ( 6.5)
TSM+SVM 62.7 ( 9.1) • 44.8 ( 7.3) • 36.8 ( 4.5) • 41.7 ( 7.4)
FB+TSM+LR 73.0 ( 9.6) • 52.2 ( 6.0) • 40.8 ( 7.1) • 45.1 ( 5.0)
EEGNet • 49.6 ( 6.4) • 48.2 ( 6.3) • 46.3 (10.1) 47.8 ( 5.1)
ShConvNet • 56.3 ( 7.3) • 53.0 ( 5.1) 48.9 ( 7.4) • 45.9 ( 6.8)

yes FBCSP+DSS+LDA 77.1 ( 8.4) 56.4 ( 5.3) • 47.1 ( 7.4) 48.4 ( 9.0)
URPA+MDM 70.8 ( 8.2) • 46.6 ( 7.2) 51.4 ( 3.7) 48.4 ( 6.1)
SPDOT+TSM+SVM • 63.0 ( 9.2) • 45.9 ( 6.0) • 42.0 ( 4.7) • 40.4 ( 7.5)
EEGNet+DANN • 49.8 ( 3.7) • 49.3 ( 6.7) • 49.4 ( 6.8) 50.0 ( 7.3)
ShConvNet+DANN • 57.5 ( 7.6) • 54.0 ( 5.1) 51.5 ( 4.9) 48.8 ( 5.7)
TSMNet(SPDDSMBN) 77.7 (10.0) 57.8 ( 5.8) 54.7 ( 7.3) 52.4 ( 8.8)
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