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Abstract—Can we hope to provide provable security against
model extraction attacks? As a step towards a theoretical study
of this question, we unify and abstract a wide range of ‘“‘observa-
tional” model extraction defense mechanisms — roughly, those
that attempt to detect model extraction using a statistical analysis
conducted on the distribution over the adversary’s queries. To
accompany the abstract observational model extraction defense,
which we call OMED for short, we define the notion of complete
defenses — the notion that benign clients can freely interact with
the model — and sound defenses — the notion that adversarial
clients are caught and prevented from reverse engineering the
model. We then propose a system for obtaining provable security
against model extraction by complete and sound OMEDs, using
(average-case) hardness assumptions for PAC-learning.

Our main result nullifies our proposal for provable security,
by establishing a computational incompleteness theorem for the
OMED: any efficient OMED for a machine learning model
computable by a polynomial size decision tree that satisfies a
basic form of completeness cannot satisfy soundness, unless the
subexponential Learning Parity with Noise (LPN) assumption
does not hold. To prove the incompleteness theorem, we introduce
a class of model extraction attacks called natural Covert Learning
attacks based on a connection to the Covert Learning model of
Canetti and Karchmer (TCC ’21), and show that such attacks
circumvent any defense within our abstract mechanism in a
black-box, nonadaptive way.

Finally, we further expose the tension between Covert Learning
and OMEDs by proving that the existence of Covert Learning
algorithms requires the nonexistence of provable security via
efficient OMEDs. Therefore, we observe a “win-win” result, by
obtaining a characterization of the existence of provable security
via efficient OMEDs by the nonexistence of natural Covert
Learning algorithms.

Index Terms—Model Extraction, Model Stealing, Covert
Learning, Adversarial Machine Learning, Provable Security.

I. INTRODUCTION

In a model extraction attack, an adversary maliciously
probes an interface to a machine learning model in an at-
tempt to extract the machine learning model itself. In many
cases, preventing model extraction helps increase security and
privacy, especially with respect to model inversion and adver-
sarial example attacks (see e.g. [1] and references therein).
Additionally, in Machine Learning as a Service (MLaaS), the
model is considered confidential as the server usually oper-
ates with a pay-per-query scheme. Therefore, maintaining the
secrecy of ML models and finding effective model extraction
defense mechanisms is paramount. Indeed, the problem of how

to defend against model extraction has been considered from
a practical perspective previously (e.g. [2]-[6]).

Most proposed model extraction defenses (MEDs) in the
literature belong to two types (except a few notable excep-
tions, see e.g. [7]). The first type aims to limit the amount
of information revealed by each client query. One intuitive
proposal for this type of defense is to add independent noise
(i.e. respond an incorrect prediction independently with some
probability) or even deliberately modify the underlying model.
This type of solution is not a focus of this work, because it
necessarily sacrifices predictive accuracy of the ML model,
and is therefore not an option for many ML systems where
accuracy is critical such as autonomous driving, medical
diagnosis, or malware detection.

The second type of MED that has been proposed aims
to separate “benign” clients — those that want to obtain
predictions but will not attempt to extract the model — and
“adverse” clients — clients that aim to extract the model. This
type of “observational” defense is the focus of the present
work. A common implementation of the observational defense
involves so-called “monitors” that, receive as input a batch of
queries submitted by the client, and compute some statistic
meant to measure the likelihood of adversarial behavior, with
the goal of rejecting a client’s requests when the queries pass a
certain threshold on the statistic (e.g. [2], [5], [6]). Essentially,
observational defenses aim to control the distribution of the
client’s queries, by classifying any clients that fail to conform
to the appropriate distributions as adverse, and then prohibiting
them from accessing the model. To date, the choice of such
appropriate distributions have been made heuristically, for
instance, in [5], an appropriate distribution is one with the
property that the distribution over hamming distances between
independent samples is normally distributed.

However, no formal definitions of security against model
extraction have been suggested, and there has also not been
much formal work done in an effort to understand the theo-
retical underpinnings of the proposed observational defenses,
in particular. This fact is highlighted by Vaikuntanathan as
an open problem in [8]. As a result, a “cat-and-mouse”
progression of attacks and defenses has developed, while no
satisfying guarantees have been discovered (for neither cat nor
mouse).



A. Our Contributions

In this work, we study the landscape of model extraction
attacks and defenses from a theoretical perspective. We seek
an answer to the following three-part question:

Can we provide provable security against model
extraction attacks, for any ML model, using an
observational defense? If so, can it be efficiently im-
plemented? In fact, how do we even define provable
security?

We propose a broad method for obtaining cryptographic-
strength provable security via an observational defense, and
then provide a negative answer to the second part of the
question, via the following program:

o We formally define a class of abstract MEDs by unifying
the common observational defense technique seen in the
literature.

o We formalize the concepts of complete and sound de-
fenses, namely, the provable guarantees that benign
clients are accepted and may interact with the machine
learning interface, and adverse clients are rejected. We
show how our formalisms initiate a method for obtaining
a theory of provable security against efficient model ex-
traction acttacks by relying on the computational hardness
of PAC-learning.

o Then, via a connection to the Covert Learning model
of [9], we give a method for generating provably good
and efficient attacks on the abstract defense, granted
that the defense is efficient and it satisfies a basic form
of completeness. We then obtain an attack on decision
tree models protected by the abstract class of MEDs
by an existing algorithm of [9]. The attack relies on
the subexponential Learning Parity with Noise (LPN)
assumption, and to the best of our knowledge, constitutes
the first provable and efficient attack on any large class
of MEDs, for a large class of ML models.

o Using the existence of the attack, we prove our main
result: informally, every efficient defense mechanism
(within the abstract class of MEDs) for decision tree
models which satisfies a basic notion of completeness
does not satisfy soundness, even for efficient attackers.
This result essentially prevents instantiating the OMED
method for provable security.

Additionally, we further develop the relationship between
Covert Learning and OMED defenses. As a consolation to
the negative result, we prove that “either way science wins”:
provable security by OMEDs exist if and only if Covert
Learning algorithms do not exist.

B. Technical Overview and Approach

Let us describe our approach in more detail.

1) The Observational Defense and Provable Security:
First, we informally describe our abstract observational model
extraction defense mechanism (OMED). The OMED can be
described in the following simple terms: it analyzes the
requested queries, and decides if the queries are distributed

in an acceptable manner. It is generally said that this is meant
to decide if the client’s actions are consistent with a benign
client, or an adversarial client (i.e. one who is attempting to
perform model extraction).!

a) Observational Model Extraction Defense: An OMED
for an ML model is an algorithm which takes as input a
sequence of queries and outputs either accept or reject.

In other words, the OMED makes a decision about the
nature of the client which depends solely on the client’s query
selection. As noted, this technique captures one large camp of
the candidate MEDs seen in the literature, and is purposely
defined as broadly as possible so as to strengthen our negative
result. In Section III-B, we highlight and discuss how three
recent proposals (Extraction Monitor [2], PRADA [5], and
VarDetect [6]) implement special cases of the OMED.

Towards obtaining a theory of provable security against
model extraction, we argue that, intuitively, a good OMED
(and any MED) should satisfy:

b) MED Completeness: For any benign client, the de-
fense mechanism does not reject the client and allows the
benign client to continue to interact with the model, with high
probability.

A completeness requirement on a MED can be interpreted as
formalizing the usefulness of the defense. In other words, the
defense at the very least provides the opportunity for benign
clients to interact with the model. On the other hand, the
MED should provide some nontrivial security guarantee. We
consider soundness of a MED:

¢) MED Soundness: For any adverse client that has
attempted extraction, the defense mechanism rejects the client,
with high probability.

A soundness requirement can be interpreted as formalizing
the security of the defense. That is, attackers will not be able
to deceive the OMED into granting interaction with the ML
model in such a way that allows extraction.

d) Cryptographically-Hard Model Extraction: In Sec-
tion III-A, we show how to combine completeness, soundness,
and hardness assumptions for average-case or heuristic PAC-
learning (see e.g. [10], [11]) to obtain cryptographic-strength
security against all efficient model extraction attacks. Infor-
mally, we show,

Theorem 1.1. (Informal version of Theorem II1.10) Let M be
any OMED satisfying completeness and soundness, for a class
of ML models F. Then, if F has no efficient average-case PAC-
learning algorithm, then there exists a large subset S of ML
models within F such that any efficient client cannot extract
a good approximation to any f € S, except with negligble
probability.

For an in-depth discussion on the road to provable security
for OMEDs, see Section I-B4. We define average-case PAC
learning in Section II.

'In Section I-B4 we argue that the analysis of adverse vs. benign clients that
is prevalent in the literature implicitly employs a simulation-based definition
of security against model extraction.



2) Generation of Attacks: Next, we introduce a way to gen-
erate model extraction attacks that are effective in efficiently
performing high fidelity model extraction in the presence of
any efficient and complete OMED. A model extraction attack
has high fidelity if, with respect to the underlying model and
some fixed loss function, the extracted model achieves a low
loss.

The attack operates in the following setting. Let {F, }nen
be an ensemble of function classes, with input space X, =
{0,1}"™ and output space )V, = {—1,1} (we use the labels
{—1,1} for mathematical convenience). An entity learns a
proprietary model f € F,,. The entity then provides an oracle
to f accessible by clients, monitored by and OMED M,
which is itself a (possibly randomized) algorithm. M acts
as an external decision making process for preventing model
extraction (see Section III for a graphical depiction). Using
the recently introduced notion of Covert Learning algorithms
[9] (see Section I-B5 for a more detailed overview, and
Section IV-A for a formal treatment), we show:

Theorem 1.2. (informal version of Theorem 1V.3). Assuming the
existence of a natural Covert Learning algorithm, there exists
a probabilistic polynomial time (p.p.t.) model extraction attack
A such that A has high fidelity and any complete OMED M
outputs accept when given a batch of queries from A, with
high probability.

We stress that the class of attacks is nonadaptive, in
the sense that it does not rely on any knowledge of the
specific implementation of the OMED, nor the underlying
model. Moreover, we call the class of model extraction attacks
natural Covert Learning attacks, as they rely on natural Covert
Learning algorithms — special cases of the Covert Learning
model of [9].

Finally, we instantiate a concrete universal model extraction
attack, by invoking an algorithm of [9]. The algorithm of [9],
called CLDT, learns a decision tree f: {0,1}" — {—1,1} in
the PAC with membership queries model — with the added
constraint that the membership queries are drawn from a
distribution which is cryptographically pseudo-random. The
algorithm relies on the subexponential hardness of the standard
Learning Parity with Noise (LPN) problem (to be defined
formally in Section IV-C).

We say that an OMED satisfies uniform completeness if
it outputs accept on a batch of uniformly distributed queries,
with high probability. We prove:

Theorem 1.3. (informal version of Theorem IV.6). Assuming
subexponential hardness of the standard LPN problem, there
exists a p.p.t. model extraction attack A for decision tree
classifiers such that A has high fidelity and any OMED that
satisfies uniform completeness must output accept when given
a batch of queries from A, with high probability.

We note that, in contrast to typical PAC-learning model
extraction attacks (outlined in Section I-B4), the attack is

provably efficient; it runs in time polynomial in n.
We then use Theorem 1.3 to prove our main result:

Corollary 1.4. (informal version of Corollary IV.7). Assuming
subexponential hardness of the standard LPN problem, any
efficient OMED (for a decision tree classifier) which satisfies
uniform completeness cannot satisfy soundness, even against
efficient adversaries.

The main result follows from Theorem 1.3 because of the
nature of the attack. In short, the adversary poses as a benign
client by requesting queries according to a distribution which
is computationally indistinguishable from that which would
be requested by a truly benign client. Since the completeness
requirement of the OMED dictates that the honest client would
“pass” the OMED, we may conclude that the adversary —
which operates in a way computationally indistinguishable
from honest — must also pass (with high probability).

3) A Characterization of Feasible OMEDs by Nonexistence
of Covert Learning: As consolation for the main result, we
show that non existence of efficient OMEDs is sufficient
to imply Covert Learning algorithms. This is a “win-win”
dynamic, in that it gives a proof of:

Corollary 1.5. (informal version of Corollary V.2) The follow-
ing statements are equivalent.

1) There exists an OMED (for a class of ML models C)
that is complete and sound.

2) There does not exist a natural Covert Learning algo-
rithm for C.

4) Discussion: Towards Complexity-Based Provable Secu-
rity of Observational Defenses: Inspired by Modern Cryp-
tography, a lofty goal behind developing a theory of secu-
rity against model extraction would be to ultimately obtain
provable security guarantees. For example, an initial attempt
could attempt to leverage zero-knowledge style ideas, to obtain
a guarantee that a client learns nothing about the ML model
than they could have learned prior to the interaction. However,
this is likely too strong of a goal, because at the very least the
client will learn some queried examples.’

What kind of guarantees could we feasibly hope to obtain,
then? One possible revised goal, could be to guarantee that a
client learns only as much as possible from some random ex-
amples from the model (perhaps using some simulation-based
security definition). In fact, this notion of security appears
to be implicitly behind existing observational defenses. The
literature on practical observational defenses tends to cite the
goal of detecting model extraction, but the downstream effect
is that the observational defenses seek to exactly confine the
examples obtained by the client to some specific distributions
(by enforcing a particular benign behavior). Hence, the idea
of only serving clients confined to these benign example

2For example, in the setting of Machine Learning as a Service (MLaaS),
the client must be granted “in good faith” at least some ability to learn
information, since otherwise the client may take business elsewhere.



distributions undoubtedly assumes that whatever the benign
client can learn about the model is indeed “secure.”

To unpack this, let us focus on the case of observational
defenses for binary classifiers. At first glance, the beautiful
learning theory of Vapnik and Chervonenkis — which tells us
that a number of samples proportional to the VC dimension
of the hypothesis class suffices for PAC learning — seems
to dash the hopes of using this model of security to obtain
any meaningful protection. Indeed, an adversary could simply
query the model a sufficient number of times according to one
of the appropriate distributions of random examples, and then
apply a PAC-learning algorithm. The output of the algorithm
would be a function which would be a strong approximation
to the underlying ML model with high confidence.

However, this view does not account for the complexity of
such attacks. Indeed, for many important families of classifiers
(e.g. boolean decision trees), no efficient (i.e., polynomial
time) PAC-learning algorithms are known despite intense ef-
fort from the learning theory community.? In fact, no efficient
algorithms are known even when the examples are restricted
to being uniformly distributed, and the classifier itself is drawn
from some kinds of distributions (i.e., in an average-case
way, see e.g. [10]). Hence, this lends credence to the idea
that the revised model of security might actually effective
in preventing unwanted model extraction by computationally
bounded clients, for instance by forcing the client to interact
with the query interface in a way that mimics uniformly
random examples, or some other hard example distribution. In
this way, security against model extraction could be provable
in a complexity-theoretic way: one could give a reduction
from PAC-learning to model extraction in the presence of
observational defenses. In other words, one could hope to
prove a theorem that says “any efficient algorithm to learn an
approximation of a proprietary ML model when constrained
by an observational defense yields a distribution-specific PAC-
learning algorithm (that is currently beyond all known tech-
niques).”

One potential pitfall of the preceding discussion of provable
security is that due to the worst-case guarantees for PAC-
learning, the described reduction would not rule out the useless
case that a single model is hard to extract in the presence of
observational defenses, but all others are easy. However, even
in an average-case or heuristic PAC-learning setting, where
the concept itself is drawn from a distribution (see [10], [11]),
there is still a conjectured cryptographic hardness of learning
for sufficiently complex classes of concepts and concept
distributions. Therefore, we can continue to envision a reduc-
tion from average-case learning to model extraction for most
underlying ML models (provided they are sufficiently complex
to begin with). Such provable security against efficient model
extraction adversaries would be a significant development in
finding the theory behind observational defenses.

3We note that there exist efficient learning algorithms for polynomial size
decision trees that use correlated queries [12] [13]. Therefore, these families
of classifiers are at least efficiently learnable by a server who had this type
of data access, so the setting is still relevant.

5) Discussion: Relating Covert Learning to Model Extrac-
tion in the Presence of Observational Defenses: Our results
draw heavily from the work of [9] and thus they require
familiarity with the Covert Learning model. Let us first give
a brief overview of the necessary ideas in this section,* and
illuminate the connection between Covert Learning and our
setting of Model Extraction.

The Covert Learning model — a variant of Valiant’s PAC
model in the agnostic learning with membership queries
setting — formalizes a new type of privacy in learning
theory. Specifically, the Covert Learning algorithms provide
the guarantee that the membership queries leak very little
information about the concept or the learner’s hypothesis class
with respect to a computationally bounded passive adversary.
In other words, the learner can PAC-learn the concept in
question (using knowledge of secret internal randomness),
while the adversary remains nearly completely “in the dark”
with respect to the concept and the learner’s hypothesis, even
when it views the entire transcript of membership queries and
oracle responses (but is not privy to the secret randomness).
At its heart, the Covert Learning model uses the foundational
simulation paradigm of cryptography to achieve these goals.
Roughly, any Covert Learning algorithm must have an accom-
panying simulator that emulates the membership queries (the
“real” learner) in a computational indistinguishable way —
using nothing but random examples (the “ideal” learner).’

Originally, the Covert Learning model was introduced along
an application to the secure outsourcing of automated scientific
experiments, and a brief note regarding the possibilities of
model extraction attacks against MLaaS. The crux of this
work thus formalizes this connection between the adversary
in Covert Learning — a distinguisher that attempts to dif-
ferentiate between a “real” learner and and “ideal” learner
— and the “adversary” in a model extraction attack — an
OMED. In particular we consider the abstract OMED, and
show that “natural” Covert Learning algorithms can fool the
OMED in the same way that they fool the Covert Learning
adversary (roughly, a Covert Learning algorithm is “natural”
if the membership queries are pseudo-random).

Thus, our attacks work by leveraging the Covert Learning
guarantees to generate a distribution of queries which is com-
putationally indistinguishable from a distribution which will
be considered benign by the OMED. Still, by the guarantees
of Covert Learning, the responses to the queries given by
the server allow the client to extract the underlying model.
Hence, we can show that a single Covert Learning attack can
achieve high fidelity while “fooling” any OMED. That is, any
OMED will output “accept” with high probability even though
an extraction attack is being performed. Since the attack
is completely black-box with respect to the implementation

4We refer the reader to [9] for technical details, and a deeper conceptual
exposition.

5To elaborate a little, the simulator functions without access to the under-
lying concept (or knowledge of the hypothesis class, in the case of agnostic
learning). Instead, the simulator accesses, for instance uniformly random
examples (which for many interesting hypothesis classes makes the learning
requirement hard, hence the use of the real/ideal nomenclature).



of the OMED (it only requires that the OMED is efficient
and satisfies the basic uniform completeness condition), the
existence of this attack demonstrates the incompleteness of
the OMED.

C. Related Work

a) Existing OMEDs: We point the reader to Section I1I-B
for a detailed discussion on some of the practical OMEDs
proposed in the literature.

b) Secure inference for MLaaS: A somewhat related
approach to improving the privacy of Machine Learning as
a Service (MLaaS) termed “secure inference” has been pro-
posed. This approach borrows from ideas in the field of Secure
Function Evaluation (where parties can securely compute a
function without revealing their inputs), and makes use of
garbled circuits [14] or fully homomorphic encryption [15].
However, the principle guarantee of the ‘“secure inference”
approach only provides hiding of information about the model
beyond what can be deduced from the query and the model’s
output. Hence, a secure inference approach to security against
model extraction would implicitly assume (incorrectly) that
total leakage from the predictions is little, and that recov-
ering the model from its predictions would be infeasible or
impossible. Therefore, the “secure inference” approach does
not properly prevent model extraction when considering clients
who repeatedly interact with the service.

c) More natural Covert Learning attacks: The works
of [16] and [17] introduce a method for sampling pairs of
matrices (A,T) with entries in Z,, such that A is statistically
close to a uniformly random matrix, while M> is a low-norm,
full-rank trapdoor matrix such that A-T is the all zero matrix.
In [8], Vaikuntanathan notes that this sampling algorithm gives
an easy, yet somewhat contrived model extraction attack. In
fact, it is a natural Covert Learning attack as well. More
specifically, for any ML model that is essentially a linear
function over Z, with added Gaussian noise e € ZI.°
the linear function (denoted s € Zj) can be extracted by
querying sA + e, and then taking (sA + e¢)T = eT, which
can then be used to extract e via Gaussian elimination (7" is
full rank). Then, given e, s is easily recoverable. However,
A is statistically close to uniformly random, so the queries
are impossible to distinguish from uniformly random queries
with any significant advantage. This statistical Covert Learning
attack could rule out even unbounded OMEDs, however it only
works for the very narrow class of noisy linear models, which
do not appear frequently in practice. The work of [9] discusses
how to similarly sample trapdoors for the low-noise LPN
problem [18].7 The techniques gives rise to another natural
Covert Learning attack for an LPN variant of the above setting,
however the queries are only computationally close to uniform.
Elaborating on this techinque in the present paper would be
quite time-consuming, hence we refer the reader to [9].

OThis setting is a bit contrived, since the typical ML models would rarely
resemble such a noisy inner product mod gq.

"These techniques closely resembled that of the seminal work of
Alekhnovich [18].

d) Related Formalisms: We note that the formalisms
in this work are inspired by the field of Interactive Proofs
[19]. Also, the work of [20], who work on protocols for
verifying forecasting algorithms, inspired the drive to prove
computational incompleteness theorems in this setting.

II. TECHNICAL PRELIMINARIES

a) Basic Notation and Terminology: Let X be a set,
and define the ensemble {X,,},en where X, is the n-wise
direct product of X. Let A(X,) be the convex polytope of
all distributions over A,,. We denote by P, a property of
distributions, where P,, C A(X,,). For an input space X,
and output space Y, let F, C {f : X, — V,} be a
class of functions with domain X, and codomain )/, and
the corresponding ensemble F = {F, } nen.

We will use the following standard of computational indis-
tinguishability.

Definition 11.1. (Computational Indistinguishability) Let
{X,}, Y.} be sequences of distributions with X,,Y,
ranging over {0,1}™™) for some m(n) = n°M. {X,}
and {Y,} are computationally indistinguishable if for every
polynomial time algorithm A and sufficiently large n,

|Pr[A(1", X,,) = 1] — Pr[A(1",Y,,) = 1]| < negl(n)
Often, n is clear from the context, so the subscript is omitted.

We define the following learning models that are considered
in this work. Define the oracle EX(c, D) as one which samples
independently x ~ D (for a distribution D) and returns

(z, f ().

Definition 11.2. (PAC Learning) We say that a concept class C
is PAC-learnable with respect to a distribution class D if there
exists an algorithm A such that for any distribution D € D,
concept ¢ € C, A and given as input n € N, e, > 0, outputs
a function h such that

I;\r LErD [e(x) # h(z)] < e} >1-96

We say that C is efficiently PAC-learnable with respect to D
if A runs in time polynomial in n,e€, .

The following definition of heuristic PAC learning due to
Nanashima [11] can be seen as a variant of many existing
average-case learning models, where the distribution over con-
cepts is fixed to be uniform. In his original work, Nanashima
defines a distribution over representation strings over concepts,
but in this work it suffices to consider a distribution over actual
concepts.

Definition 11.3. (Heuristic PAC-learning — adapted from [11])
Let C be a concept class, and let U be the uniform distribution
over C. We say that the concept class C is heuristically PAC-
learnable with respect to the distribution class D if there exists
an algorithm A that for any D € D, and given as input



n € Nje, §,n > 0, and access to EX(c, D) for some ¢ ~ U,
outputs a function h such that

Pr
c~U

Pr
A

z~D

Pr [c(sc);éh(x)} Se] 21—6} >1-—n

We say that C is efficiently (1), €')-heuristically PAC-learnable
with respect to D if A runs in time polynomial in n,n,¢, 9,
and n, € are fixed to n', €.

III. THE ABSTRACT OBSERVATIONAL MODEL
EXTRACTION DEFENSE

In this section, we formally introduce the OMED as a
unifying abstraction for the current state of the art MEDs.
Before we introduce the OMED formally, let us describe the
model extraction setting in detail.

The setting begins by an ML model f : X — ) being
adversarially chosen (potentially from some restricted class
of functions). Then, we consider the case that a probabilistic
polynomial time algorithm C (the client), can interact via an
oracle to the ML model f. We denote this oracle by O. The
goal of the benign client is to obtain some predictions f(z) for
queries x € X. On the other hand, the goal of the adversarial
client is to output an approximate of f, f that approximately
minimizes a loss function.

S
ML Model f
A J
A
f(@1),- -+, f(=q)
T, "3 %q
—>
>
---------------------------- if "accept," send labels to client
f(@1),- -+, f(=,) :
Y. .
else, output "reject."
Client extracted f

Fig. 1. A depiction of the extraction setting. The adverse client queries the
model f, attempting to extract an approximation f. The OMED watches over
the interaction and outputs a decision to accept (and forward the labels) or
reject the client based on whether or not it is deemed adverse or benign.

However, the adverse client must be able to perform the
extraction in the presence of the OMED. In particular, the
OMED is able to view all the queries made by C (see Figure 1),
and the labels that would be returned. The OMED then outputs
a decision “accept” or “reject,” which essentially mean that
the client is benign or adverse, respectively. Again, the point
is that the client only receives labels on its queries when the
OMED outputs “accept.”

With this in mind, let us now formally define the OMED.
As noted in the introduction and in [21], defense mechanisms

for model extraction have mostly split into two tribes: reducing
the information gained per client query, and differentiating ma-
licious extraction adversaries from benign users. The OMED
mechanism abstracts the latter approach; the implementation
is left unspecified. Hence, we define an OMED as follows.

Definition 11.1. (OMED) A p.p.t. algorithm M is a
(T'(n),q(n))-OMED for a class of ML models F if for every
n €N, f € F, M runs in time T(n) and takes as input a
list of q(n) examples S = [(x1, f(x1)), " (Tg(n) f(Tqn)))] €
(X, x V)2 and outputs o € {accept, reject }.

The definition of the OMED is defined as generally as
possible from the perspective of the defense, but makes one
important restriction on the client: the examples are requested
in large batches, rather than as an adaptive sequence. This
nonadaptive setting (with respect to the query selection) can
be viewed as unnecessarily restrictive on the client. However,
since we prove negative results on the possibility of MEDs
via OMED:s, the restriction on the client actually strengthens
our results. Furthermore, the defense could be expanded to a
multi-client setting, where all clients must submit their batches
simultaneously. This is again a restriction on the power of the
client(s), and thus strengthens our negative results.

A. How to Obtain Provable Security

The above definition of an OMED makes no claims about
desirable properties given by the OMED. Thus, what prop-
erties should we expect from the OMED? As mentioned in
Section I-B4, the goal of the OMED is not just to classify the
behavior of the clients, but to actually confine the clients to
certain predefined benign behaviors. However, it is not enough
to simply define security as the event that the client behavior
is benign, because this actually needs to be detected and then
enforced.

Hence, it should be that a good OMED guarantees that
(with high probability) any benign client is accepted, while
any adverse client is rejected (and thus prevented from re-
verse engineering the underlying model). Naturally, the former
requirement resembles completeness in an interactive proof
system while the latter requirement resembles soundness.
Through this lens of Interactive Proofs, we will formalize a
notion of completeness and soundness.

First, let us explain how we model a client’s behavior in
the context of the model extraction setting depicted above.
It has been noted in the model extraction literature (e.g. [5])
that defenses should consider how a client’s queries relate to
each other, rather than how they look individually. This idea
is implemented by assuming that a client’s queries follow a
distribution®. We adopt a similar idea in this work: we assume
that a client’s queries follow a distribution P over X'. Now, we
may nail down how adverse and benign clients behave, and
subsequently the OMED. Informally, the idea is that all benign

8This model for the basic behavior of a client has appeared previously in
the literature (e.g. [5], [6]).



client request examples according to distributions that share
some abstract property. We may formalize this as follows:

Definition 111.2. We denote by P,, a property of distributions,
where P, C A(Xy, X V).

Thus intuitively,

Definition 111.3. We say that a set of examples Q C X, X YV,
is Pn-benign if Q ~ P for some P € P,

and,

Definition 111.4. We say that a set of examples Q C X)), is
Pn-adverse if Q ~ P for some P ¢ P,,.

Moreover, we will informally refer to a client as benign
(adverse) if he always requests P,-benign (P,-adverse) sets
(and it will be the case that P,, is clear from the context).

1) Completeness: The definition of completeness is

straightforward:

Definition 111.5. (MED completeness) We say that M is a
(T'(n),q(n))-OMED is §-complete with respect to the property
Py if for any client C who requests examples Sc which are
Pn-benign, it holds that

Pr
M,Se

[M(SC) =accept| >1—9§

2) Provable Security for Benign Clients: The definition of
completeness implicitly assumes that, in the case that the client
is classified as benign, they are essentially free to interact with
the model. Thus, the underlying assumption is that by virtue of
queries being benign, the ML model is not considered at risk
for being extracted by the server. Therefore, the choice of the
benign property is of utmost importance. As discussed in the
introduction (see Section I-B4), this leaves room for a theory
of provable security. For example, under our framework, a
solid choice for a property would be the P, = U, (i.e., the
uniform distribution over examples). This is because many
interesting classes of models are thought to be hard to learn
from uniformly random examples, even for most models in the
class (that is, in the heuristic PAC-learning case, rather than
just in the worst-case).

Indeed, a reduction from extracting the ML model (in the
average-case over the uniform distribution) using /,-benign
queries to heuristic PAC-learning with respect to the uniform
distribution nearly writes itself. To formalize this intuition, we
prove the following lemma, which essentially says that if PAC
learning is impossible for a large fraction of the class, then,
given that the OMED accepted a client that used Uf,,-benign
queries, the probability that most models could be extracted
(with arbitrarily high fidelity) is negligible. We will later use
the lemma to show how to obtain a formal notion of security
against model extraction by all clients, whether adverse or
benign.

We first need to establish what constitutes a successful
model extraction. Similarly to [4], we define the following
extraction experiment. Let 7, C {f : X;, = Y, } and A be a
probabilistic polynomial time adversary. We fix a loss function
Lp,s : Fn — [0,1] parametrized by an ML model f € F,,
and a distribution D,, over X,,.

Definition 111.6. (Extraction experiment) Let EXpe p ¢ a(n),e
be defined as the output of the following process.

1) C interacts with Oy by requesting the labels of a set S
of q(n) queries.
2) Using [x,0¢(x)]zecs, C outputs a candidate model f.
f €, output “extracted,” else output

3 If Lp(f) <

“unextracted.”

Lemma 1I1.7. (Provable security against clients behaving be-
nignly) Let M be any p.p.t. OMED satisfying §-completeness
for any 6 > 1 — 1/poly(n), with respect to a property of
distributions Py. Then, if a class of ML models F,, is not
efficiently (n, €)-heuristic PAC-learnable with respect to any
distribution D € 'P,, then there exists ' C F, of size at
least n - | Fy,|, such that for any p.p.t. client C which requests
a set of q(n) examples Sc that is P,-benign, and for all
feS D, Py,

Nligc [EXPC,Dn,f,q(n),e = extracted | M(S¢) = accept}
< negl(n)

Proof. We show the contrapositive. Let E, A be the events
that Expe p,. fq(n),c = extracted and M(Sc) = accept,
respectively. Thus, suppose that we have a p.p.t. C such that
for some D,, € P, € > 0, and a j-complete M,

1
P L 1A= i =

This implies that

PrM,SC [E A A} N 1

Pr >1-—
Pra.s. [A} ~ poly(n) ] - g

froFn

which is equivalent to

1—
Pr Pr [E/\A]Zié >1—n
fN]:n M,SC pOIY<n)

since M is §-complete. We now may observe that latest
equation is the guarantee that C (7, €)-heuristically PAC
learns F,, in time poly(n) with accuracy e and confidence
(1 —6)/poly(n)), for some D,, € P,,.

Then, it follows that F is (1, €)-heuristically PAC-learnable
with respect to D,, by running C poly(n) times to produce
many hypotheses, testing each by random sampling, and
outputting the most accurate hypothesis. This works as long
as § > 1—1/poly(n).

O



3) Soundness: The notion of provable security from
Lemma III.7 only deals with clients that request sets of
examples that are P, -benign. Thus, we need to provide some
guarantees when this is not the case. To this end, we also
formalize soundness using the above extraction experiment.

Definition 111.8. (MED soundness) We say that M is a
(T'(n),q(n))-OMED for F, is 6-sound with respect to the
property P, if for any client C* who requests examples Sc~
which are P,-adverse, and for any f € F,,, D,, € Pp, € >0,
it holds that

Pr | M(Sc+) = accept | Expee b, fq(n).e = extracted}

WSex

<46

The definition mirrors soundness from an Interactive Proof,
where for any adversary that does not use benign queries, and
given that the adversary would have extracted the model, the
probability that the OMED M errs by accepting the adversary
is low. In this cryptographic setting, the OMED would want
to set § to a negligible function of n.

4) Cryptographically-Hard Model Extraction Against All
Clients: To tie it all together, we argue that combining com-
pleteness, soundness, and hardness assumptions for heuristic
PAC-learning light the way to providing full security against
model extraction by an OMED. Our notion of security against
model extraction (defined below) constitutes bounding the
probability that a client wins the extraction game by a neg-
ligible function, in this case of n (the size of the learning
problem).

Definition 1IL.9. (Security against Model Extraction) We say
that an OMED M for F is (n,¢€)-secure against model
extraction if for sufficiently large n, there exists S C JF,, of size
at least n-|JFy,|, such that for any p.p.t. client C which requests
a set of q(n) examples S¢ and for all f € S, D,, € P,

ch Expe.p,,. f.q(n),e = extracted| < negl(n)

)

Thus, we prove that, essentially, for any complete, sound,
OMED M for a class of ML models F,,, if F, has no 5-
heuristic PAC-learning algorithm, then at least n fraction of
models in F,, can not be extracted by any client, no matter
how it behaves, except with negligible probability.

Theorem 1I1.10. (Provable Security from Complete and
Sound OMEDs) Let M be any p.p.t. OMED satisfying §-
completeness and ~y-soundness for any 6 > 1—1/poly(n),v <
1/poly(n), with respect to a property of distributions P,,.
Then, if a class of ML models F,, has no p.p.t. (n, €)-heuristic
PAC-learning algorithm with respect to any distribution D,, €
P, then M is (n, €)-secure against model extraction.

Proof. By definition, the examples requested by C are either
P,-benign or P, -adverse. In the former case, Lemma III.7

implies that
/\/Iigc [Expc’[)mf,q(n),6 = extracted} < negl(n)

In the latter case, we have the guarantee from Definition II1.8
that
P [ Se-) = t] <
Vs M(Sc-) = accept| <7
where «y is a quantity bounded above by a negligible function
of n. Therefore the statement follows. O

We remark that the level of security is essentially deter-
mined by the strength of the hardness assumption on heuristic
PAC-learning. To be specific, an assumption of hardness of
(n, €)-heuristic PAC-learning maps to an (7, €)-secure OMED.
This dynamic mirrors, but formalizes, the efforts of practical
OMED:s in the literature, which implicitly make an underlying
assumption that certain query distributions make extraction
hard. In other words, we phrase the implicit assumptions as
heuristic PAC-learning hardness assumptions.

B. Defense Proposals As Special Cases of the OMED

Our proposed OMED technique for provable security
against model extraction is purposely defined as generally as
possible. However, we view it beneficial to discuss the relation
to some concrete MEDs which have been proposed.

In this section, we will review three MEDs, [2], [5] and
[6], demonstrating that each are special cases of an OMED
(with unproved completeness and soundness guarantees). We
start each example with a direct quote from the original paper
so as to directly demonstrate the relevance to our OMED
framework.

1) Extraction Monitors: Information Gain and Feature
Space Coverage: The work of [2] proposes two different
strategies for detecting model extraction attacks. Both strate-
gies “[quantify] the extraction status of models by continually
observing the API query and response streams of users” and
provide a warning when a certain extraction status is reached.
This is indeed the paradigm outlined by the OMED.

The first proposal of [2] seeks to continuously train a “proxy
model” for each client, where the client queries are used to
train the model. The function of the proxy model is to estimate
the information/knowledge gained by a client with respect to
a validation set which is given by the server (and when this
information reaches some threshold the client is flagged). The
distribution of this validation set mimics the training set of the
underlying model. It is noted that it may require significant
computational resources to train and update the proxy model
(for every user and each incoming query), and thus [2] propose
to use a lightweight decision tree proxy model.

In the second proposal, the observational keeps a short
description of client queries, and estimates the client’s learning
rate (of the extraction attack) by analyzing the feature space
covered by these queries (as they relate to to the class
boundaries of the underlying model. It is noted that a drawback
of this proposal is that the class boundaries of certain complex
models (e.g. neural networks) are not easily found. Thus, it



is proposed that the owner of the underlying model uploads a
“surrogate” decision tree which has high fidelity with respect
to the complex model (class boundaries of decision trees are
easily interpreted by their leaf nodes).

2) PRADA: The MED known as PRADA [5] “analyzes the
distribution of consecutive API queries and raises an alarm
when this distribution deviates from benign behavior” [5].
Immediately, it is clear that the PRADA method is a candidate
for being identified as a special case of the OMED. The
defense works under the observation that queries requested
by an adversarial client are likely to have a distribution that
differs from the characteristic distribution of queries from
a benign client. In PRADA, this benign characteristic was
chosen to be the property that the distribution over hamming
distances between each query in the requested batch should be
normally distributed. This choice is backed by observational
evidence that certain popular attacks such as the attack of [22]
do not satisfy this condition. Hence, PRADA tries to satisfy
completeness and soundness with respect to the property of all
distributions that have a pairwise hamming distance normally
distributed (e.g. the uniform distribution over {0, 1}").

3) VarDetect: The work of [6] proposes a MED called
VarDetect which is designed “to continuously observational
the distribution of queries to [the model] from each user” [6].
Specifically, VarDetect trains a Variational Autoencoder (VAE)
to map the “problem domain” (PD) dataset distribution (the
PD distribution mimics the distribution of data that was used
to train the underlying model) and the adversarial “outlier” (O)
data distribution (the distribution of attacker queries) to distinct
regions in latent space. Benign clients are assumed to query
from the PD distribution while adverse clients are assumed to
query from an O distribution. VarDetect purports to separate
these two by computing the maximum mean discrepancy
(MMD) between the latent mapping of the client’s queries
and that of the PD distribution (the MMD test flags the client
if the result is above a certain threshold).

IV. ATTACKS ON EFFICIENT OMEDS FROM NATURAL
COVERT LEARNING

In this section, we will consider the question:

Can we efficiently realize the provable security guar-

antees outlined in the previous section?

Towards a negative answer, we will introduce an attack on
the OMED technique for provable security, via a connection
to Covert Learning [9]. Our attack will generate a distribution
of examples which is computationally indistinguishable from
a distribution in the property that is accepted by the OMED. In
other words, the attacker operates (computationally) indistin-
guishably from a benign client, in the eyes of the OMED. Still,
the labelled queries allow the algorithm to extract a model with
high fidelity.

a) Notation: We briefly recall some standard termi-
nology and notation from learning theory which we use
throughout the remainder of the work. A concept f is a
function over an input domain A&, and label domain )/,.
A concept class C = {C,},en is a sequence of sets of

functions C,, = {f : X, = YVn}. We call a pair (z,y) €
X, X YV, an example, where x is the input and y is the
label. In the rest of this work, we use X, = {0,1}", and
Y, = {-1,1}. A membership oracle O; for a concept f
is an oracle with the property that on query z € {0,1}",
Of(z) = f(2). Let D = {D,},en be a distribution ensemble
over X,,. Define the distribution EX(f, Dy, q) as the output
of sampling independently z¢,---z4, ~ D, and returning
[(z1, f(z1)), - (xq, f(x4))]. We denote by U, the uniform
distribution over {0, 1}™. Finally, let Lp ; : C — [0,1] be a
loss function parameterized by a concept f and distribution D
over inputs.

A. What is Natural Covert Learning?

We will focus on a special case of Covert Learning, which
we call natural Covert Learning. A natural Covert Learn-
ing algorithm, essentially, is a membership query learning
algorithm that satisfies the normal PAC-learning guarantees
with respect to an example distribution D, with the added
property that distribution over the membership queries and
labels is computationally indistinguishable from examples
sampled according to D.

More formally:

Definition IV.1. (Natural Covert Learning) Let C be a boolean
concept class, let D be a distribution ensemble, and fix a loss
Sfunction L. We say that A is a q(n)-natural Covert Learning
algorithm for C with respect to D and L if for every n €
N, f € Cn,€,0 > 0, A satisfies the following:

o Completeness. For the random variable h = A°7 (n, €, §)
satisfies

1?1‘ [EDn,f(h) < 6] >1-96

e Privacy. For every p.p.t. adversary Adv, and S ~
EX(f, Dn,q(n)),

Pr

Adv,S

Pr
Adv, T(A®F)

[Adv(S) = 1} - [Adv(T(AOf)) = 1}

< negl(n)

where T(ACr) denotes the distribution over the queries
made by A and the responses by the oracle.

B. Natural Covert Learning Attack

In this section, our goal is to show that the existence of
a natural Covert Learning algorithm for a particular concept
class implies inadequacy of a polynomial time OMED for a
class of models equal to the concept class. More specifically,
we prove that satisfying soundness for an OMED is impossi-
ble, for any reasonable completeness parameter. This suffices
to rule out obtaining provable security against model extraction
by an OMED by instantiating Theorem III.10.

Theorem 1V.2. Suppose that there exists a q(n)-natural Covert
Learning algorithm A for a hypothesis class C, with respect



to D and L. Then there exists a client C such that for any 6-
complete OMED M (with respect to Py,) for C, it holds that
foranyn € Nje, 4 >0, f € Cp,

Pr

Ak [M(Sc) = accept A EXpe p. fq(n),e = extracted}

> (1—6)(1—0.4) —negl(n)

where negl(n) denotes a negligible function of n and § 4 is
the failure probability of A.

Proof. Let S denote the set of g(n) examples which are
queried by A. Let S ~ EX(f, Dy, q(n)). Furthermore, de-
fine £ to be the event that M(S4) = accept and that
EXPA. D, f,q(n),c = extracted.

Using the fact that by our Covert Learning assumption we
have that for every p.p.t. adversary Adv,

Pr
Adv,S

Pr

Adv,S 4

[Adv(S) = 1} - [Adv(SA) = 1H < negl(n)

(D

and M, f are polynomial time computable, we then get that

Pr

M,Sa, A [E} > Pr {M(S) = accept A

EXPa, D, f.q(n),e = extracted} — negl(n)
Then, we can conclude by independence of events

Pr

W [E} =Pr [M(S) = accept}

A Pr {Eprmefym(n)_re = extracted] — negl(n)
> (1= 6)(1 = 64) — negl(n)

The last equation follows by the J-completeness property of
M. Therefore, the statement is proved by allowing C to be
identical to A.

O

From this attack, a generic incompleteness theorem follows,
essentially because the attack works against any efficient
OMED.

Corollary 1V.3. Suppose that there exists a q(n)-natural
Covert Learning algorithm A for a hypothesis class C with
respect to D and L. Then if M is a (poly(q(n)), ¢(n))-OMED
for C, and if M is d-complete with respect to D, then it is not
(1 — 6 — v)-sound with respect to D, when q(n) = poly(n)
and v > 1/poly(n).

Proof. By Theorem IV.2 there exists a client C that uses
examples S¢ which are D,-adverse such that for any o-
complete OMED M (with respect to D) for C, it holds that
for any f € C,e > 0,

Pr

e [M(Sc) = accept A EXpe p, fq(n),e = extracted}

> (1=10)(1—dc) — negl(n)

where negl(n) is a negligible function of n and J¢ is the failure
probability of C. Then, we can deduce that

/\/}ch [M(Sc) = accept | Expe b, f.a(n).e = extracted}
Pr [E]
M, Sc

legc {ExpC7an7q(n),€ = extracted]

S (1 =6)(1—0dc) — negl(n)

- 1-6¢
where F is defined as the event that M (S 4) = accept and that
EXP A, D, f,q(n),e = €xtracted. Thus by taking an appropriately

large n, M cannot be (1—J—-y)-sound for a reasonable choice
of d¢ such as 0.99. O]

C. Concrete Attack and Incompleteness Theorem

In this section, we show that under the subexponential
hardness assumption on the standard LPN problem, there
exists an attack of the type outlined in the previous section.
Let us first formally introduce our assumption.

Definition 1V.4. Search LPN assumption. For u €
(0,0.5),n € N, the (m(n),T(n))—SLPN,, ,, search assump-
tion states that for every inverter 1 running in time T (n),

1
Pr [I(A,A =3/ < —
s,Afe[ ( A 6) S] - T(n)
where s & VA & Z;n(n)xn, ed Bﬁn(n).
Thus, the assumption we adopt is the

1 1
(2¢(n2) 2w(n2)) S| PN, ,  assumption. The following
theorem is implicit in [9]. Let DT[poly(n)] be the set of all
decision trees of size poly(n).

Theorem 1V.5. (Agnostic Covert Learning of decision trees
from [9]) Given query access to a function f
{0,1}" — {—1,1}, there exists an algorithm A run-
ning in time poly(s,1/elog(1/6)) and making q(n) =
poly(?, 1 /e,l?g(l /8)) query accesses such that, unless the
(2#(n?) 2w(n2))_S| PN, ,, assumption does not hold,

1) (Completeness) A outputs h : {0,1}™ — {—1,1} such

that
Pr [h(e) # f(@)] < omin P l9(2) # 1(@)]

+e€

with probability 1 — §.
2) (Privacy) The distribution over examples requested by

A is computationally indistinguishable, but statistically
distinguishable, from EX(f,U,,q(n)).

We may now proceed to combine Theorem IV.2 and Theo-
rem I'V.5 to obtain a concrete natural Covert Learning attack on
models implemented by decision tree classifiers of polynomial
size. Let U = {Up }nen, and let Lp s(h) = Pryoplh(z) #
f(@)].



1 1
Theorem IV.6. Under the (2*("?) 2¥("2))_S| PN, ,, assump-
tion, there exists a client C that requests examples Sc that
are Uy-adverse such that for any 6-complete OMED M
(with respect to U) for DTpoly(n)], it holds that for any

f € DT[poly(n)],

Nflfgc [M(Sc) = accept A EXpcyy, £.a(n)e = extracted}

> (1—6)(1 — dc) — negl(n)

where negl(n) is a negligible function of n and d¢ is the failure
probability of C.

Proof. Observe that the algorithm described in Theorem IV.5
constitutes a natural Covert Learning algorithm for C with
respect to U, and loss function Lp f(h) = Prg[h(z) # f(x)].
Thus, the statement follows directly from Theorem IV.5 and
Theorem IV.2. O

1) Incompleteness Theorem: The previous theorem can be
interpreted as the existence of a universal attack against any
OMED for decision tree classifiers with §-completeness for
the uniform property (up to SLPN assumptions). Hence, the
main result now follows.

Corolllary ) IV.7. (Main result.) Under the
(2#(n?) 2w(n2))_S| PN, ,, assumption, if M is a

(poly(g(n)),q(n))-OMED for DT[poly(n)] and U, then
if M is 0-complete it is not (1 — 6 — ~y)-sound, when

q(n) = poly(n), and v = 1/poly(n).

Proof. By Theorem IV.6 there exists a client C such that
for any o-complete OMED M (with respect to U) for
DT[poly(n)], it holds that for any f € DT[poly(n)],e > 0,

legc [M(Sc) = accept A EXpeyy fa(n).e = extracted}
> (1-8)(1 - b¢) — negl(n)

where negl(n) is a negligible function of n and d¢ is the failure
probability of C. Then, we can deduce that

legc {M(Sc) = accept | Expe i, frq(n),e = extracted}
Pr |E]
M, Sc

A/ligc |:EXpC,Z/{,,Lf7q(n),e = extracted}
_ (1-8)(1 — 6¢) — negl(n)
- 1—46¢

Thus by taking an appropriately large n, M cannot be (1 —
d —~)-sound for a reasonable choice of d¢ such as 19/20. O

As an example, our result shows that for any reasonable
choice of § for uniform completeness (e.g. 0.1, meaning that
at most 0.1 honest clients are incorrectly rejected), then it
is impossible to obtain any even remotely useful soundness
guarantee. Using 6 = 0.1, our result shows that not even 0.11
fraction of extraction attempts will be detected by the OMED.

More generally, let us recall the provable security theorem,
restated below.

Theorem IV.8. (Restated Theorem II1.10) Let M be any p.p.t.
OMED satisfying 0-completeness and ~y-soundness for any 6 >
1 —1/poly(n),y < 1/poly(n), with respect to a property of
distributions P,. Then, if a class of ML models JF, has no
p.p.t. (n,€)-heuristic PAC-learning algorithm with respect to
any distribution D,, € P,, then M is (n,¢€)-secure against
model extraction.

The theorem, to be instantiated, requires that the complete-
ness parameter and soundness parameter are noticeably apart.

1 1
Theorem IV.9. Under the (2#("?) 2¢("2))_S| PN, ,, assump-
tion, provable security against model extraction via efficient
OMED and Theorem I11.10 cannot be achieved.

Proof. The statement follows immediately from Corollary IV.7
and inspection of Theorem III.10. O

V. PROVABLE SECURITY FROM THE IMPOSSIBILITY OF
COVERT LEARNING

In this section, we show the inverse of Corollary IV.3.
That is, if natural Covert Learning algorithms do not exist,
then we can obtain good OMEDs needed for security via
Theorem III.10.

Theorem V.1. If there does not exist a q(n)-natural Covert
Learning algorithm for a concept class C,, with respect to
D,,, then there exists M which is a (poly(q(n)),q(n) -
O(log(n™1)))-OMED for a concept class C,, that is 6-
complete and n-sound with respect to the property {D,} for
1 < negl(n).

Proof. Since there does not exist a g(n)-natural Covert Learn-
ing algorithm for the concept class C with respect to D,
then it means that for every learning algorithm A such that
for every f € C,n € Nj¢,+v > 0 we have that with proba-
bility 1 — 7, EXp 4, p, .q(n),e = extracted, then distribution
over queries made by A is efficiently distinguishable from
D,,. In other words, there exists p.p.t. Adv such that for
S ~ EX(f, Du,q(n)),

P [Adv(S) - 1} ~ wbio, Adv(T (A7) = 1} _
2
> 1/poly(n)
3

where T(A®7) denotes the distribution over the queries made

by A and the responses by the oracle. This implies that we

can produce the desired OMED M by using Adv as follows:

1) Estimate Prygy g [Adv(S) = 1] within an additive factor
of u/4 with probability at least 1 — /2.

2) Using segments of submitted query requests S¢, estimate

Pragv,s. [Adv(S¢) = 1] within an additive factor of y/4



(here S¢ are segments of input queries from a client C),
with probability at least 1 — /2.

3) Output “reject” if the two estimates are not within /2,

and “accept” otherwise.

We analyze this process to prove the desired statement,
starting with completeness and soundness. Without loss of
generality, assume that Prygy s [Adv(S) = 1] > 1 — §. Then,
it follows that M is J-complete with respect to P,. Now, by
(2), it must be the case that

Pr [Adv(T(AOf)) - 1} <1-6-p
Adv, T(A®T)
or
Pr [Adv(T(AOf)) = 1} >1-6+u
Adv,T(A®F)

Hence, the estimation procedure is guaranteed to distinguish
between the two cases with probability least 1 — 7 (using a
union bound). Using this fact and inspecting step 3 gives 7-
soundness.

To see that M is an (poly(¢(n)),poly(g(n)))-OMED
specifically, observe that Adv is efficient (and therefore runs in
time poly(g(n)), and consider that the estimation procedure
requires g(n) - O(log(n~!)) examples which are given by the
client to estimate within the desired factor and with probability
1 — 7 as needed. O

We remark that in the above proof, it is important that
the OMED has access to g(n) - O(log(n~1)) examples from
the client. Ideally, we can reduce this number, as clients
may be able to perform model extraction using less queries.
Nonetheless, it allows us to obtain (along with Corollary IV.3)
the following “dichotomy” between the possibility of OMEDs
and Covert Learning.

Corollary V.2. (OMED/Covert Learning Dichotomy) The fol-
lowing statements are equivalent.

1) There exists an (poly(q(n)), q(n)-O(log(n~1)))-OMED
M for a concept class C,, which is §-complete and
negl(n)-sound with respect to D,,.

2) There does not exist a q(n)-natural Covert Learning
algorithm for a concept class C,, with respect to D,,.

Proof. Corollary IV.3 gives 1 — 2, while Theorem V.1 gives
2—=1 O
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