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ABSTRACT

Light-weight convolutional neural networks (CNNs) are the de-facto for mobile
vision tasks. Their spatial inductive biases allow them to learn representations
with fewer parameters across different vision tasks. However, these networks are
spatially local. To learn global representations, self-attention-based vision trans-
formers (ViTs) have been adopted. Unlike CNNs, ViTs are heavy-weight. In this
paper, we ask the following question: is it possible to combine the strengths of
CNNs and ViTs to build a light-weight and low latency network for mobile vision
tasks? Towards this end, we introduce MobileViT, a light-weight and general-
purpose vision transformer for mobile devices. MobileViT presents a different
perspective for the global processing of information with transformers, i.e., trans-
formers as convolutions. Our results show that MobileViT significantly outper-
forms CNN- and ViT-based networks across different tasks and datasets. On the
ImageNet-1k dataset, MobileViT achieves top-1 accuracy of 78.4% with about
6 million parameters, which is 3.2% and 6.2% more accurate than MobileNetv3
(CNN-based) and DeIT (ViT-based) for a similar number of parameters. On the
MS-COCO object detection task, MobileViT is 5.7% more accurate than Mo-
bileNetv3 for a similar number of parameters.

1 INTRODUCTION

Self-attention-based models, especially vision transformers (ViTs; Figure 1a; Dosovitskiy et al.,
2021), are an alternative to convolutional neural networks (CNNs) to learn visual representations.
Briefly, ViT divides an image into a sequence of non-overlapping patches and then learns inter-
patch representations using multi-headed self-attention in transformers (Vaswani et al., 2017). The
general trend is to increase the number of parameters in ViT networks to improve the performance
(e.g., Touvron et al., 2021a; Graham et al., 2021; Wu et al., 2021). However, these performance
improvements come at the cost of model size (network parameters) and latency. Many real-world
applications (e.g., augmented reality and autonomous wheelchairs) require visual recognition tasks
(e.g., object detection and semantic segmentation) to run on resource-constrained mobile devices in
a timely fashion. To be effective, ViT models for such tasks should be light-weight and fast. Even if
the model size of ViT models is reduced to match the resource constraints of mobile devices, their
performance is significantly worse than light-weight CNNs. For instance, for a parameter budget
of about 5-6 million, DeIT (Touvron et al., 2021a) is 3% less accurate than MobileNetv3 (Howard
et al., 2019). Therefore, the need to design light-weight ViT models is imperative.

Light-weight CNNs have powered many mobile vision tasks. However, ViT-based networks are
still far from being used on such devices. Unlike light-weight CNNs that are easy to optimize and
integrate with task-specific networks, ViTs are heavy-weight (e.g., ViT-B/16 vs. MobileNetv3: 86
vs. 7.5 million parameters), harder to optimize (Xiao et al., 2021), need extensive data augmen-
tation and L2 regularization to prevent over-fitting (Touvron et al., 2021a; Wang et al., 2021), and
require expensive decoders for down-stream tasks, especially for dense prediction tasks. For in-
stance, a ViT-based segmentation network (Ranftl et al., 2021) learns about 345 million parameters
and achieves similar performance as the CNN-based network, DeepLabv3 (Chen et al., 2017), with
59 million parameters. The need for more parameters in ViT-based models is likely because they
lack image-specific inductive bias, which is inherent in CNNs (Xiao et al., 2021). To build robust
and high-performing ViT models, hybrid approaches that combine convolutions and transformers
are gaining interest (Xiao et al., 2021; d’Ascoli et al., 2021; Chen et al., 2021b). However, these
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Figure 1: Visual transformers vs. MobileViT
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Figure 2: MobileViT shows better task-level gener-
alization properties as compared to light-weight CNN
models. The network parameters are listed for SSDLite
network with different feature extractors (MobileNetv1
(Howard et al., 2017), MobileNetv2 (Sandler et al.,
2018), MobileNetv3 (Howard et al., 2019), MNASNet
(Tan et al., 2019), MixNet (Tan & Le, 2019b), and Mo-
bileViT (Ours)) on the MS-COCO dataset.

hybrid models are still heavy-weight and are sensitive to data augmentation. For example, remov-
ing CutMix (Zhong et al., 2020) and DeIT-style (Touvron et al., 2021a) data augmentation causes a
significant drop in ImageNet accuracy (78.1% to 72.4%) of Heo et al. (2021).

It remains an open question to combine the strengths of CNNs and transformers to build ViT models
for mobile vision tasks. Mobile vision tasks require light-weight, low latency, and accurate models
that satisfy the device’s resource constraints, and are general-purpose so that they can be applied to
different tasks (e.g., segmentation and detection). Note that floating-point operations (FLOPs) are
not sufficient for low latency on mobile devices because FLOPs ignore several important inference-
related factors such as memory access, degree of parallelism, and platform characteristics (Ma et al.,
2018). For example, the ViT-based method of Heo et al. (2021), PiT, has 3× fewer FLOPs than
DeIT (Touvron et al., 2021a) but has a similar inference speed on a mobile device (DeIT vs. PiT
on iPhone-12: 10.99 ms vs. 10.56 ms). Therefore, instead of optimizing for FLOPs1, this paper
focuses on designing a light-weight (§3), general-purpose (§4.1 & §4.2), and low latency (§4.3)
network for mobile vision tasks. We achieve this goal with MobileViT that combines the benefits
of CNNs (e.g., spatial inductive biases and less sensitivity to data augmentation) and ViTs (e.g.,
input-adaptive weighting and global processing). Specifically, we introduce the MobileViT block
that encodes both local and global information in a tensor effectively (Figure 1b). Unlike ViT and its
variants (with and without convolutions), MobileViT presents a different perspective to learn global
representations. Standard convolution involves three operations: unfolding, local processing, and

1MobileViT FLOPs can be further reduced using existing methods (e.g., DynamicViT (Rao et al., 2021)).
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folding. MobileViT block replaces local processing in convolutions with global processing using
transformers. This allows MobileViT block to have CNN- and ViT-like properties, which helps it
learn better representations with fewer parameters and simple training recipes (e.g., basic augmen-
tation). To the best of our knowledge, this is the first work that shows that light-weight ViTs can
achieve light-weight CNN-level performance with simple training recipes across different mobile
vision tasks. For a parameter budget of about 5-6 million, MobileViT achieves a top-1 accuracy of
78.4% on the ImageNet-1k dataset (Russakovsky et al., 2015), which is 3.2% more accurate than
MobileNetv3 and has a simple training recipe (MobileViT vs. MobileNetv3: 300 vs. 600 epochs;
1024 vs. 4096 batch size). We also observe significant gains in performance when MobileViT is
used as a feature backbone in highly optimized mobile vision task-specific architectures. Replacing
MNASNet (Tan et al., 2019) with MobileViT as a feature backbone in SSDLite (Sandler et al., 2018)
resulted in a better (+1.8% mAP) and smaller (1.8×) detection network (Figure 2).

2 RELATED WORK

Light-weight CNNs. The basic building layer in CNNs is a standard convolutional layer. Because
this layer is computationally expensive, several factorization-based methods have been proposed to
make it light-weight and mobile-friendly (e.g., Jin et al., 2014; Chollet, 2017; Mehta et al., 2020).
Of these, separable convolutions of Chollet (2017) have gained interest, and are widely used across
state-of-the-art light-weight CNNs for mobile vision tasks, including MobileNets (Howard et al.,
2017; Sandler et al., 2018; Howard et al., 2019), ShuffleNetv2 (Ma et al., 2018), ESPNetv2 (Mehta
et al., 2019), MixNet (Tan & Le, 2019b), and MNASNet (Tan et al., 2019). These light-weight
CNNs are versatile and easy to train. For example, these networks can easily replace the heavy-
weight backbones (e.g., ResNet (He et al., 2016)) in existing task-specific models (e.g., DeepLabv3)
to reduce the network size and improve latency. Despite these benefits, one major drawback of these
methods is that they are spatially local. This work views transformers as convolutions; allowing to
leverage the merits of both convolutions (e.g., versatile and simple training) and transformers (e.g.,
global processing) to build light-weight (§3) and general-purpose (§4.1 and §4.2) ViTs.

Vision transformers. Dosovitskiy et al. (2021) apply transformers of Vaswani et al. (2017) for
large-scale image recognition and showed that with extremely large-scale datasets (e.g., JFT-300M),
ViTs can achieve CNN-level accuracy without image-specific inductive bias. With extensive data
augmentation, heavy L2 regularization, and distillation, ViTs can be trained on the ImageNet dataset
to achieve CNN-level performance (Touvron et al., 2021a;b; Zhou et al., 2021). However, unlike
CNNs, ViTs show substandard optimizability and are difficult to train. Subsequent works (e.g.,
Graham et al., 2021; Dai et al., 2021; Liu et al., 2021; Wang et al., 2021; Yuan et al., 2021b; Chen
et al., 2021b) shows that this substandard optimizability is due to the lack of spatial inductive biases
in ViTs. Incorporating such biases using convolutions in ViTs improves their stability and perfor-
mance. Different designs have been explored to reap the benefits of convolutions and transformers.
For instance, ViT-C of Xiao et al. (2021) adds an early convolutional stem to ViT. CvT (Wu et al.,
2021) modifies the multi-head attention in transformers and uses depth-wise separable convolutions
instead of linear projections. BoTNet (Srinivas et al., 2021) replaces the standard 3×3 convolution in
the bottleneck unit of ResNet with multi-head attention. ConViT (d’Ascoli et al., 2021) incorporates
soft convolutional inductive biases using a gated positional self-attention. PiT (Heo et al., 2021)
extends ViT with depth-wise convolution-based pooling layer. Though these models can achieve
competitive performance to CNNs with extensive augmentation, the majority of these models are
heavy-weight. For instance, PiT and CvT learns 6.1× and 1.7× more parameters than EfficientNet
(Tan & Le, 2019a) and achieves similar performance (top-1 accuracy of about 81.6%) on ImageNet-
1k dataset, respectively. Also, when these models are scaled down to build light-weight ViT models,
their performance is significantly worse than light-weight CNNs. For a parameter budget of about 6
million, ImageNet-1k accuracy of PiT is 2.2% less than MobileNetv3.

Discussion. Combining convolutions and transformers results in robust and high-performing ViTs
as compared to vanilla ViTs. However, an open question here is: how to combine the strengths of
convolutions and transformers to build light-weight networks for mobile vision tasks? This paper
focuses on designing light-weight ViT models that outperform state-of-the-art models with simple
training recipes. Towards this end, we introduce MobileViT that combines the strengths of CNNs
and ViTs to build a light-weight, general-purpose, and mobile-friendly network. MobileViT brings
several novel observations. (i) Better performance: For a given parameter budget, MobileViT mod-
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Figure 3: MobileViT shows similar generalization capabilities as CNNs. Final training and vali-
dation errors of MobileNetv2 and ResNet-50 are marked with ? and ◦, respectively (§B).

els achieve better performance as compared to existing light-weight CNNs across different mobile
vision tasks (§4.1 and §4.2). (ii) Generalization capability: Generalization capability refers to
the gap between training and evaluation metrics. For two models with similar training metrics,
the model with better evaluation metrics is more generalizable because it can predict better on an
unseen dataset. Unlike previous ViT variants (with and without convolutions) which show poor
generalization capability even with extensive data augmentation as compared to CNNs (Dai et al.,
2021), MobileViT shows better generalization capability (Figure 3). (iii) Robust: A good model
should be robust to hyper-parameters (e.g., data augmentation and L2 regularization) because tuning
these hyper-parameters is time- and resource-consuming. Unlike most ViT-based models, Mobile-
ViT models train with basic augmentation and are less sensitive to L2 regularization (§C).

3 MOBILEVIT: A LIGHT-WEIGHT TRANSFORMER

A standard ViT model, shown in Figure 1a, reshapes the input X ∈ RH×W×C into a sequence of
flattened patches Xf ∈ RN×PC , projects it into a fixed d-dimensional space Xp ∈ RN×d, and then
learn inter-patch representations using a stack of L transformer blocks. The computational cost of
self-attention in vision transformers is O(N2d). Here, C, H , and W represent the channels, height,
and width of the tensor respectively, and P = wh is number of pixels in the patch with height h and
width w, and N is the number of patches. Because these models ignore the spatial inductive bias
that is inherent in CNNs, they require more parameters to learn visual representations. For instance,
DPT (Dosovitskiy et al., 2021), a ViT-based network, learns 6× more parameters as compared to
DeepLabv3 (Chen et al., 2017), a CNN-based network, to deliver similar segmentation performance
(DPT vs. DeepLabv3: 345 M vs. 59 M). Also, in comparison to CNNs, these models exhibit sub-
standard optimizability. These models are sensitive to L2 regularization and require extensive data
augmentation to prevent overfitting (Touvron et al., 2021a; Xiao et al., 2021).

This paper introduces a light-weight ViT model, MobileViT. The core idea is to learn global repre-
sentations with transformers as convolutions. This allows us to implicitly incorporate convolution-
like properties (e.g., spatial bias) in the network, learn representations with simple training recipes
(e.g., basic augmentation), and easily integrate MobileViT with downstream architectures (e.g.,
DeepLabv3 for segmentation).

3.1 MOBILEVIT ARCHITECTURE

MobileViT block. The MobileViT block, shown in Figure 1b, aims to model the local and global
information in an input tensor with fewer parameters. Formally, for a given input tensor X ∈
RH×W×C , MobileViT applies a n × n standard convolutional layer followed by a point-wise (or
1×1) convolutional layer to produce XL ∈ RH×W×d. The n×n convolutional layer encodes local
spatial information while the point-wise convolution projects the tensor to a high-dimensional space
(or d-dimensional, where d > C) by learning linear combinations of the input channels.

With MobileViT, we want to model long-range non-local dependencies while having an effective
receptive field of H ×W . One of the widely studied methods to model long-range dependencies

4



Under review as a conference paper at ICLR 2022

1

Figure 4: Every pixel sees every other pixel in the MobileViT block. In this example, the red
pixel attends to blue pixels (pixels at the corresponding location in other patches) using transformers.
Because blue pixels have already encoded information about the neighboring pixels using convolu-
tions, this allows the red pixel to encode information from all pixels in an image. Here, each cell in
black and gray grids represents a patch and a pixel, respectively.

is dilated convolutions. However, such approaches require careful selection of dilation rates. Oth-
erwise, weights are applied to padded zeros instead of the valid spatial region (Yu & Koltun, 2016;
Chen et al., 2017; Mehta et al., 2018). Another promising solution is self-attention (Wang et al.,
2018; Ramachandran et al., 2019; Bello et al., 2019; Dosovitskiy et al., 2021). Among self-attention
methods, vision transformers (ViTs) with multi-head self-attention are shown to be effective for
visual recognition tasks. However, ViTs are heavy-weight and exhibit sub-standard optimizability.
This is because ViTs lack spatial inductive bias (Xiao et al., 2021; Graham et al., 2021).

To enable MobileViT to learn global representations with spatial inductive bias, we unfold XL

into N non-overlapping flattened patches XU ∈ RP×N×d. Here, P = wh, N = HW
P is the

number of patches, and h ≤ n and w ≤ n are height and width of a patch respectively. For
each p ∈ {1, · · · , P}, inter-patch relationships are encoded by applying transformers to obtain
XG ∈ RP×N×d as:

XG(p) = Transformer(XU (p)), 1 ≤ p ≤ P (1)

Unlike ViTs that lose the spatial order of pixels, MobileViT neither loses the patch order nor the spa-
tial order of pixels within each patch (Figure 1b). Therefore, we can fold XG ∈ RP×N×d to obtain
XF ∈ RH×W×d. XF is then projected to low C-dimensional space using a point-wise convolution
and combined with X via concatenation operation. Another n× n convolutional layer is then used
to fuse local and global features in the concatenated tensor. Note that because XU (p) encodes local
information from n × n region using convolutions and XG(p) encodes global information across
P patches for the p-th location, each pixel in XG can encode information from all pixels in X, as
shown in Figure 4. Thus, the overall effective receptive field of MobileViT is H ×W .

Relationship to convolutions. Standard convolutions can be viewed as a stack of three sequential
operations: (1) unfolding, (2) matrix multiplication (to learn local representations), and (3) fold-
ing. MobileViT block is similar to convolutions in the sense that it also leverages the same build-
ing blocks. MobileViT block replaces the local processing (matrix multiplication) in convolutions
with deeper global processing (a stack of transformer layers). As a consequence, MobileViT has
convolution-like properties (e.g., spatial bias). Hence, the MobileViT block can be viewed as trans-
formers as convolutions. An advantage of our intentionally simple design is that low-level efficient
implementations of convolutions and transformers can be used out-of-the-box; allowing us to use
MobileViT on different devices without any extra effort.

Light-weight. MobileViT block uses standard convolutions and transformers to learn local and
global representations respectively. Because previous works (e.g., Howard et al., 2017; Mehta et al.,
2021a) have shown that networks designed using these layers are heavy-weight, a natural question
arises: Why MobileViT is light-weight? We believe that the issues lie primarily in learning global
representations with transformers. For a given patch, previous works (e.g., Touvron et al., 2021a;
Graham et al., 2021) convert the spatial information into latent by learning a linear combination
of pixels (Figure 1a). The global information is then encoded by learning inter-patch information
using transformers. As a result, these models lose image-specific inductive bias, which is inherent in
CNNs. Therefore, they require more capacity to learn visual representations. Hence, they are deep
and wide. Unlike these models, MobileViT uses convolutions and transformers in a way that the
resultant MobileViT block has convolution-like properties while simultaneously allowing for global
processing. This modeling capability allows us to design shallow and narrow MobileViT models,
which in turn are light-weight. Compared to the ViT-based model DeIT that uses L=12 and d=192,
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MobileViT model uses L= {2, 4, 3} and d={96, 120, 144} at spatial levels 32 × 32, 16 × 16, and
8 × 8, respectively. The resulting MobileViT network is faster (1.85×), smaller (2×), and better
(+1.8%) than DeIT network (Table 3; §4.3).

Computational cost. The computational cost of multi-headed self-attention in MobileViT and ViTs
(Figure 1a) is O(N2Pd) and O(N2d), respectively. In theory, MobileViT is inefficient as compared
to ViTs. However, in practice, MobileViT is more efficient than ViTs (Table 3; §4.3). We believe
that this is because of similar reasons as for the light-weight design (discussed above).

MobileViT architecture. Our networks are inspired by the philosophy of light-weight CNNs. We
train MobileViT models at three different network sizes (S: small, XS: extra small, and XXS: extra
extra small) that are typically used for mobile vision tasks (Figure 3c). The initial layer in Mo-
bileViT is a strided 3 × 3 standard convolution, followed by MobileNetv2 (or MV2) blocks and
MobileViT blocks (Figure 1b and §A). We use Swish (Elfwing et al., 2018) as an activation func-
tion. Following CNN models, we use n = 3 in the MobileViT block. The spatial dimensions of
feature maps are usually multiples of 2 and h,w ≤ n. Therefore, we set h = w = 2 at all spatial
levels (see §C for more results). The MV2 blocks in MobileViT network are mainly responsible for
down-sampling. Therefore, these blocks are shallow and narrow in MobileViT network. Spatial-
level-wise parameter distribution of MobileViT in Figure 3d further shows that the contribution of
MV2 blocks towards total network parameters is very small across different network configurations.

3.2 MULTI-SCALE SAMPLER FOR TRAINING EFFICIENCY

A standard approach in ViT-based models to learn multi-scale representations is fine-tuning. For in-
stance, Touvron et al. (2021a) fine-tunes the DeIT model trained at a spatial resolution of 224× 224
on varying sizes independently. Such an approach for learning multi-scale representations is prefer-
able for ViTs because positional embeddings need to be interpolated based on the input size, and the
network’s performance is subjective to interpolation methods. Similar to CNNs, MobileViT does
not require any positional embeddings and it may benefit from multi-scale inputs during training.

Previous CNN-based works (e.g., Redmon & Farhadi, 2017; Mehta et al., 2021b) have shown that
multi-scale training is effective. However, most of these works sample a new spatial resolution after
a fixed number of iterations. For example, YOLOv2 (Redmon & Farhadi, 2017) samples a new
spatial resolution from a pre-defined set at every 10-th iteration and uses the same resolution across
different GPUs during training. This leads to GPU under-utilization and slower training because
the same batch size (determined using the maximum spatial resolution in the pre-defined set) is
used across all resolutions. To facilitate MobileViT learn multi-scale representations without fine-
tuning and to further improve training efficiency (i.e., fewer optimization updates), we extend the
multi-scale training method to variably-sized batch sizes. Given a sorted set of spatial resolutions
S = {(H1,W1), · · · , (Hn,Wn)} and a batch size b for a maximum spatial resolution of (Hn,Wn),
we randomly sample a spatial resolution (Ht,Wt) ∈ S at t-th training iteration on each GPU and
compute the batch size for t-th iteration as: bt = HnWnb

HtWt
. As a result, larger batch sizes are used for

smaller spatial resolutions. This reduces optimizer updates per epoch and helps in faster training.

Figure 5 compares standard and multi-scale samplers. Here, we refer to DistributedDataParallel in
PyTorch as the standard sampler. Overall, the multi-scale sampler (i) reduces the training time as it
requires fewer optimizer updates with variably-sized batches (Figure 5b), (ii) improves performance
by about 0.5% (Figure 10; §B), and (iii) forces the network to learn better multi-scale representations
(§B), i.e., the same network when evaluated at different spatial resolutions yields better performance
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(c) Comparison with heavy-weight CNNs

Figure 6: MobileViT vs. CNNs on ImageNet-1k validation set. All models use basic augmentation.

as compared to the one trained with the standard sampler. In §B, we also show that the multi-scale
sampler is generic and improves the performance of CNNs (e.g., MobileNetv2).

4 EXPERIMENTAL RESULTS

In this section, we first evaluate MobileViTs performance on the ImageNet-1k dataset and show that
MobileViT delivers better performance than state-of-the-art networks (§4.1). In §4.2 and §4.3, we
show MobileViTs are general-purpose and mobile-friendly, respectively.

4.1 IMAGE CLASSIFICATION ON THE IMAGENET-1K DATASET

Implementation details. We train MobileViT models from scratch on the ImageNet-1k classifica-
tion dataset (Russakovsky et al., 2015). The dataset provides 1.28 million and 50 thousand images
for training and validation, respectively. The MobileViT networks are trained using PyTorch for 300
epochs on 8 NVIDIA GPUs with an effective batch size of 1,024 images using AdamW optimizer
(Loshchilov & Hutter, 2019), label smoothing cross-entropy loss (smoothing=0.1), and multi-scale
sampler (S = {(160, 160), (192, 192), (256, 256), (288, 288), (320, 320)}). The learning rate is in-
creased from 0.0002 to 0.002 for the first 3k iterations and then annealed to 0.0002 using a cosine
schedule (Loshchilov & Hutter, 2017). We use L2 weight decay of 0.01. We use basic data augmen-
tation (i.e., random resized cropping and horizontal flipping) and evaluate the performance using a
single crop top-1 accuracy. For inference, an exponential moving average of model weights is used.

Comparison with CNNs. Figure 6a shows that MobileViT outperforms light-weight CNNs across
different network sizes (MobileNetv1 (Howard et al., 2017), MobileNetv2 (Sandler et al., 2018),
ShuffleNetv2 (Ma et al., 2018), ESPNetv2 (Mehta et al., 2019), and MobileNetv3 (Howard et al.,
2019)). For instance, for a model size of about 2.5 million parameters (Figure 6b), MobileViT out-
performs MobileNetv2 by 5%, ShuffleNetv2 by 5.4%, and MobileNetv3 by 7.4% on the ImageNet-
1k validation set. Figure 6c further shows that MobileViT delivers better performance than heavy-
weight CNNs (ResNet (He et al., 2016), DenseNet (Huang et al., 2017), ResNet-SE (Hu et al.,
2018), and EfficientNet (Tan & Le, 2019a)). For instance, MobileViT is 2.1% more accurate than
EfficentNet for a similar number of parameters.
Comparison with ViTs. Figure 7 compares MobileViT with ViT variants that are trained from
scratch on the ImageNet-1k dataset without distillation (DeIT (Touvron et al., 2021a), T2T (Yuan
et al., 2021b), PVT (Wang et al., 2021), CAIT (Touvron et al., 2021b), DeepViT (Zhou et al., 2021),
CeiT (Yuan et al., 2021a), CrossViT (Chen et al., 2021a), LocalViT (Li et al., 2021), PiT (Heo et al.,
2021), ConViT (d’Ascoli et al., 2021), ViL (Zhang et al., 2021), BoTNet (Srinivas et al., 2021),
and Mobile-former (Chen et al., 2021b)). Unlike ViT variants that benefit significantly from ad-
vanced augmentation (e.g., PiT w/ basic vs. advanced: 72.4 (R4) vs. 78.1 (R17); Figure 7b), Mo-
bileViT achieves better performance with fewer parameters and basic augmentation. For instance,
MobileViT is 2.5× smaller and 2.6% better than DeIT (R3 vs. R8 in Figure 7b).

Overall, these results show that, similar to CNNs, MobileViTs are easy and robust to optimize.
Therefore, they can be easily applied to new tasks and datasets.
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Row # Model Augmentation # Params.
w� Top-1

~w
R1 DeIT Basic 5.7 M 68.7
R2 T2T Advanced 4.3 M 71.7
R3 DeIT Advanced 5.7 M 72.2
R4 PiT Basic 10.6 M 72.4
R5 Mobile-former Advanced 4.6 M 72.8
R6 PiT Advanced 4.9 M 73.0
R7 CrossViT Advanced 6.9 M 73.4
R8 MobileViT-XS (Ours) Basic 2.3 M 74.8
R9 CeiT Advanced 6.4 M 76.4
R10 DeIT Advanced 10 M 75.9
R11 T2T Advanced 6.9 M 76.5
R12 ViL Advanced 6.7 M 76.7
R13 LocalVit Advanced 7.7 M 76.1
R14 Mobile-former Advanced 9.4 M 76.7
R15 PVT Advanced 13.2 M 75.1
R16 ConViT Advanced 10 M 76.7
R17 PiT Advanced 10.6 M 78.1
R18 BoTNet Advanced 20.8 M 78.3
R19 MobileViT-S (Ours) Basic 5.6 M 78.4

(b)

Figure 7: MobileViT vs. ViTs on ImageNet-1k validation set. Here, basic means ResNet-style aug-
mentation while advanced means a combination of augmentation methods with basic (e.g., MixUp
(Zhang et al., 2018), RandAugmentation (Cubuk et al., 2019), and CutMix (Zhong et al., 2020)).

4.2 MOBILEVIT AS A GENERAL-PURPOSE BACKBONE

To evaluate the general-purpose nature of MobileViT, we benchmark MobileViT on two widely
studied mobile vision tasks: (1) object detection (§4.2.1) and (2) semantic segmentation (§4.2.2).

4.2.1 MOBILE OBJECT DETECTION

Feature backbone # Params.
w� mAP

~w
MobileNetv3 4.9 M 22.0
MobileNetv2 4.3 M 22.1
MobileNetv1 5.1 M 22.2
MixNet 4.5 M 22.3
MNASNet 4.9 M 23.0
MobileViT-XS (Ours) 2.7 M 24.8
MobileViT-S (Ours) 5.7 M 27.7

(a) Comparison w/ light-weight CNNs
Feature backbone # Params.

w� mAP
~w

VGG 35.6 M 25.1
ResNet50 22.9 M 25.2
MobileViT-S (Ours) 5.7 M 27.7

(b) Comparison w/ heavy-weight CNNs

Table 1: Detection w/ SSDLite.

Implementation details. We integrate MobileViT with
a single shot object detection backbone (SSD; Liu et al.,
2016). Following light-weight CNNs (e.g., MobileNets), we
replace standard convolutions in the SSD head with separa-
ble convolutions and call the resultant network as SSDLite.
We finetune MobileViT, pre-trained on the ImageNet-1k
dataset, at an input resolution of 320 × 320 using AdamW
on the MS-COCO dataset (Lin et al., 2014) that contains
117k training and 5k validation images. We use smooth L1
and cross-entropy losses for object localization and classi-
fication, respectively. The performance is evaluated on the
validation set using mAP@IoU of 0.50:0.05:0.95. For other
hyper-parameters, see §D.

Results. Table 1a shows that, for the same input resolution
of 320 × 320, SSDLite with MobileViT outperforms SS-
DLite with other light-weight CNN models (MobileNetv1, MobileNetv2, MobileNetv3, MNASNet,
and MixNet). For instance, SSDLite’s performance improves by 1.8%, and its model size reduces
by 1.8× when MobileViT is used as a backbone instead of MNASNet. Further, SSDLite with Mo-
bileViT outperforms standard SSD-300 with heavy-weight backbones while learning significantly
fewer parameters (Table 1b).

4.2.2 MOBILE SEMANTIC SEGMENTATION

Feature backbone # Params.
w� mIOU

~w
MobileNetv1 11.2 M 75.3
MobileNetv2 4.5 M 75.7
MobileViT-XXS (Ours) 1.9 M 73.6
MobileViT-XS (Ours) 2.9 M 77.1
ResNet-101 58.2 M 80.5
MobileViT-S (Ours) 6.4 M 79.1

Table 2: Segmentation w/ DeepLabv3.

Implementation details. We integrate Mobile-
ViT with DeepLabv3 (Chen et al., 2017). We fine-
tune MobileViT using AdamW with cross-entropy
loss on the PASCAL VOC 2012 dataset (Ever-
ingham et al., 2015). Following a standard train-
ing practice (e.g., Chen et al., 2017; Mehta et al.,
2019), we also use extra annotations and data from
Hariharan et al. (2011) and Lin et al. (2014), re-
spectively. The performance is evaluated on the
validation set using mean intersection over union (mIOU). For other hyper-parameters, see §D.

8



Under review as a conference paper at ICLR 2022

3 4 5 6 7 8 9 10
Inference time (in ms)

66
68
70
72
74
76
78
80

To
p-

1 
ac

cu
ra

cy
Real-timeXXS

XS

S

XXS

XS

SPatch sizes
8,4,2
2,2,2

(a) Classification @ 256× 256

6 8 10 12 14 16 18
Inference time (in ms)

18

20

22

24

26

28

m
AP

@
.5

0:
.0

5:
.9

5

Real-timeXXS

XS

S

XXS

XS

SPatch sizes
8,4,2
2,2,2

(b) Detection @ 320× 320

15 20 25 30 35 40
Inference time (in ms)

70

72

74

76

78

80

m
Io

U

Real-timeXXS

XS
S

XXS

XS
SPatch sizes

8,4,2
2,2,2

(c) Segmentation @ 512× 512

Figure 8: Inference time of MobileViT models on different tasks. Here, dots in green color region
represents that these models runs in real-time (inference time < 33 ms).

Results. Table 2 shows that DeepLabv3 with MobileViT is smaller and better. The performance
of DeepLabv3 is improved by 1.4%, and its size is reduced by 1.6× when MobileViT is used as a
backbone instead of MobileNetv2. Also, MobileViT gives competitive performance to model with
ResNet-101 while requiring 9× fewer parameters; suggesting MobileViT is a powerful backbone.

4.3 PERFORMANCE ON MOBILE DEVICES

Light-weight and low latency networks are important for enabling mobile vision applications. To
demonstrate the effectiveness of MobileViT for such applications, pre-trained full-precision Mobile-
ViT models are converted to CoreML using publicly available CoreMLTools (2021). Their inference
time is then measured (average over 100 iterations) on a mobile device, i.e., iPhone 12.

Mobile-friendly. Figure 8 shows the inference time of MobileViT networks with two patch size
settings (Config-A: 2, 2, 2 and Config-B: 8, 4, 2) on three different tasks. Here p1, p2, p3 in Config-
X denotes the height h (width w = h) of a patch at an output stride2 of 8, 16, and 32, respectively.
The models with smaller patch sizes (Config-A) are more accurate as compared to larger patches
(Config-B). This is because, unlike Config-A models, Config-B models are not able to encode the
information from all pixels (Figure 13 and §C). On the other hand, for a given parameter budget,
Config-B models are faster than Config-A even though the theoretical complexity of self-attention
in both configurations is the same, i.e., O(N2Pd). With larger patch sizes (e.g., P=82=64), we
have fewer number of patches N as compared to smaller patch sizes (e.g., P=22=4). As a result,
the computation cost of self-attention is relatively less. Also, Config-B models offer a higher degree
of parallelism as compared to Config-A because self-attention can be computed simultaneously for
more pixels in a larger patch (P=64) as compared to a smaller patch (P=4). Hence, Config-B models
are faster than Config-A. To further improve MobileViT’s latency, linear self-attention (Wang et al.,
2020) can be used. Regardless, all models in both configurations run in real-time (inference speed
≥ 30 FPS) on a mobile device except for MobileViT-S models for the segmentation task. This is
expected as these models process larger inputs as compared to classification and detection networks.

Model # Params.
w� Time

w� Top-1
~w

MobileNetv2† 3.5 M 0.92 ms 73.3
DeIT 5.7 M 10.99 ms 72.2
PiT 4.9 M 10.56 ms 73.0
MobileViT (Ours) 2.3 M 7.28 ms 74.8

Table 3: ViTs are slower than CNNs.
†Results with multi-scale sampler (§B).

Discussion. We observe that MobileViT and other ViT-
based networks (e.g., DeIT and PiT) are slower as com-
pared to MobileNetv2 on mobile devices (Table 3). This
observation contradicts previous works which show that
ViTs are more scalable as compared to CNNs (Dosovit-
skiy et al., 2021). This difference is primarily because
of two reasons. First, dedicated CUDA kernels exist for
transformers on GPUs, which are used out-of-the-box in
ViTs to improve their scalability and efficiency on GPUs
(e.g., Shoeybi et al., 2019; Lepikhin et al., 2021). Second, CNNs benefit from several device-level
optimizations, including batch normalization fusion with convolutional layers (Jacob et al., 2018).
These optimizations improve latency and memory access. However, such dedicated and optimized
operations for transformers are currently not available for mobile devices. Hence, the resultant infer-
ence graph of MobileViT and ViT-based networks for mobile devices is sub-optimal. We believe that
similar to CNNs, the inference speed of MobileViT and ViTs will further improve with dedicated
device-level operations in the future.

2Output stride: Ratio of the spatial dimension of the input to the feature map.
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A MOBILEVIT ARCHITECTURE

MobileViT’s are inspired by the philosophy of light-weight CNNs and the overall architecture of
MobileViT at different parameter budgets is given in Table 4. The initial layer in MobileViT is
a strided 3 × 3 standard convolution, followed by MobileNetv2 (or MV2) blocks and Mobile-
ViT blocks. We use Swish (Elfwing et al., 2018) as an activation function. Following CNN models,
we use n = 3 in the MobileViT block. The spatial dimensions of feature maps are usually mul-
tiples of 2 and h,w ≤ n. Therefore, we set h = w = 2 at all spatial levels. The MV2 blocks
in MobileViT network are mainly responsible for down-sampling. Therefore, in these blocks, we
use an expansion factor of four, except for MobileViT-XXS where we use an expansion factor of 2.
The transformer layer in MobileViT takes a d-dimensional input, as shown in Figure 1b. We set the
output dimension of the first feed-forward layer in a transformer layer as 2d instead of 4d, a default
value in the standard transformer block of Vaswani et al. (2017).

B MULTI-SCALE SAMPLER

Multi-scale sampler reduces generalization gap. Generalization capability refers to the gap be-
tween training and evaluation metrics. For two models with similar training metrics,the model with
better evaluation metrics is more generalizable because it can predict better on an unseen dataset.
Figure 9a and Figure 9b compares the training and validation error of the MobileViT-S model trained
with standard and multi-scale samplers. The training error of MobileViT-S with multi-scale sampler
is higher than standard sampler while validation error is lower. Also, the gap between training error
and validation error of MobileViT-S with multi-scale sampler is close to zero. This suggests that a
multi-scale sampler improves generalization capability. Also, when MobileViT-S trained indepen-
dently with standard and multi-scale sampler is evaluated at different input resolutions (Figure 9c),
we observe that MobileViT-S trained with multi-scale sampler is more robust as compared to the one
trained with the standard sampler. We also observe that multi-scale sampler improves the perfor-
mance of MobileViT models at different model sizes by about 0.5% (Figure 10). These observations
in conjunction with impact on training efficiency (Figure 5b) suggests that a multi-scale sampler is
effective. Pytorch implementation of multi-scale sampler is provided in Listing 1.

Multi-scale sampler is generic. We train a heavy-weight (ResNet-50) and a light-weight
(MobileNetv2-1.0) CNN with the multi-scale sampler to demonstrate its generic nature. Results
in Table 5 show that a multi-scale sampler improves the performance as well as training efficiency.

Layer Output size Output stride Repeat Output channels

XXS XS S

Image 256× 256 1

Conv-3× 3, ↓ 2
128× 128 2 1 16 16 16

MV2 1 16 32 32

MV2, ↓ 2
64× 64 4 1 24 48 64

MV2 2 24 48 64

MV2, ↓ 2
32× 32 8 1 48 64 96

MobileViT block (L = 2) 1 48 (d = 64) 64 (d = 96) 96 (d = 144)

MV2, ↓ 2
16× 16 16 1 64 80 128

MobileViT block (L = 4) 1 64 (d = 80) 80 (d = 120) 128 (d = 192)

MV2, ↓ 2
8× 8 32

1 80 96 160
MobileViT block (L = 3) 1 80 (d = 96) 96 (d = 144) 160 (d = 240)
Conv-1× 1 1 320 384 640

Global pool
1× 1 256 1Linear 1000 1000 1000

Network Parameters 1.3 M 2.3 M 5.6 M

Table 4: MobileViT architecture. Here, d represents dimensionality of the input to the transformer
layer in MobileViT block (Figure 1b). By default, in MobileViT block, we set kernel size n as three
and spatial dimensions of patch (height h and width w) in MobileViT block as two.
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Figure 9: MobileViT-S learns better representations with multi-scale sampler on ImageNet-1k.
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Figure 10: MobileViT’s performance on ImageNet-1k with standard and multi-scale sampler.

Model # Params # Epochs # Updates
w� Top-1 accuracy

~w Training time
w�

ResNet-50 w/ standard sampler (PyTorch) 25 M – – 76.2 (0.0%) – –
ResNet-50 w/ standard sampler (our repro.)† 25 M 150 187 k 77.1 (+0.9%) 54 k sec. (1.35×)
ResNet-50 w/ multi-scale sampler (Ours)† 25 M 150 116 k 78.6 (+2.4%) 40 k sec. (1×)

MobileNetv2-1.0 w/ standard sampler (PyTorch) 3.5 M – – 71.9 (0.0%) – (–)
MobileNetv2-1.0 w/ standard sampler (our repro.)† 3.5 M 300 375 k 72.1 (+0.2%) 78 k sec. (1.16×)
MobileNetv2-1.0 w/ multi-scale sampler (Ours)† 3.5 M 300 232 k 73.3 (+1.4%) 67 k sec. (1×)

Table 5: Multi-scale sampler is generic. All models are trained with basic augmentation on the
ImageNet-1k. †Results are with exponential moving average.

For instance, a multi-scale sampler improves the performance of MobileNetv2-1.0 by about 1.4%
while decreasing the training time by 14%.

C ABLATIONS

Impact of weight decay. A good model should be insensitive or less sensitive to L2 regularization
(or weight decay) because tuning it for each task and dataset is time- and resource-consuming.
Unlike CNNs, ViT models are sensitive to weight decay (Dosovitskiy et al., 2021; Touvron et al.,
2021a; Xiao et al., 2021). To study if MobileViT models are sensitive to weight decay or not, we
train the MobileViT-S model by varying the value of weight decay from 0.1 to 0.0001. Results are
shown in Figure 11. With an exception to the MobileViT model trained with a weight decay of 0.1,
all other models converged to a similar solution. This shows that MobileViT models are robust to
weight decay. In our experiments, we use the value of weight decay as 0.01. Note that 0.0001 is
the widely used value of weight decay in most CNN-based models, such as ResNet and DenseNet.
Even at this value of weight decay, MobileViT outperforms CNNs on the ImageNet-1k dataset (e.g.,
DenseNet vs. MobileViT: 76.2 with 14 M parameters vs. 77.4 with 5.7 M parameters).

Impact of skip-connection. Figure 12 studies the impact of skip-connection in the MobileViT block
(red arrow in Figure 1b). With this connection, the performance of MobileViT-S improves by 0.5%
on the ImageNet dataset. Note that even without this skip-connection, MobileViT-S delivers similar
or better performance than state-of-the-art CNN- (Figure 6) and ViT-based (Figure 7b) models, that
too with basic data augmentation.

Impact of patch sizes. MobileViT combines convolutions and transformers to learn local and global
representations effectively. Because convolutions are applied on n × n regions and self-attention
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Figure 11: Impact of weight decay. Here, results are shown for MobileViT-S model (5.7 M param-
eters) on the ImageNet-1k dataset. Results in (c) are with exponential moving average.
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Figure 12: Impact of skip connection. Here, results are shown for MobileViT-S model (5.7 M
parameters) on the ImageNet-1k dataset. Results in (c) are with exponential moving average.

Patch sizes # Params. Time
w� Top-1

~w
2,2,2 5.7 M 9.85 ms 78.4
3,3,3† 5.7 M 14.69 ms 78.5
4,4,4 5.7 M 8.23 ms 77.6
8,4,2 5.7 M 8.20 ms 77.3

Table 6: Impact of patch sizes. Here, the patch sizes are for spatial levels at 32× 32, 16× 16, and
8 × 8, respectively. Also, results are shown for MobileViT-S model on the ImageNet-1k dataset.
Results are with exponential moving average. † Spatial dimensions of feature map are not multiple
of patch dimensions. Therefore, we use bilinear interpolation in folding and unfolding operations to
resize the feature map.

is computed over patches with spatial dimensions of h and w, it is essential to establish a good
relationship between n, h, and w. Following previous works on CNN designs, we set n = 3
and then vary h and w. Specifically, we study four configurations: (i) h = w = 2 at all spatial
levels (Figure 13a). In this case, h,w < n and would allow each pixel to encode information from
every other pixel using MobileViT. (ii) h = w = 3 at all spatial levels (Figure 13b). In this case,
h = w = n. Similar to (i), this configuration would also allow each pixel to encode information
from every other pixel using MobileViT. (iii) h = w = 4 at all spatial levels (Figure 13c). In this
case, h,w > n and would not allow each pixel to aggregate information from other pixels in the
tensor. (iv) h = w = 8, h = w = 4, and h = w = 2 at spatial level of 32× 32, 16× 16, and 8× 8,
respectively. Unlike (i), (ii), and (iii), the number of patches N is the same across different spatial
resolutions in (iv). Also, h,w < n only for a spatial level of 8 × 8 where h = w = 2. Note that
all these models have the same number of network parameters and the same computational cost of
self-attention, i.e., O(N2Pd). Here, N is the number of patches, P = hw is the number of pixels
in a patch with height h and width w, and d is the model dimension.

Results are shown in Table 6. We can see that when h,w ≤ n, MobileViT can aggregate information
more effectively, which helps improve performance. In our experiments, we used h = w = 2
instead of h = w = 3 because spatial dimensions of feature maps are multiples of 2, and using
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1

(a) h = w = 2 < n = 3

1

(b) h = w = n = 3

1

(c) h = w = 4 > n = 3

Figure 13: Relationship between kernel size (n × n) for convolutions and patch size (h × w)
for folding and unfolding in MobileViT. In a and b, the red pixel is able to aggregate information
from all pixels using local (cyan colored arrows) and global (orange colored arrows) information
while in (c), every pixel is not able to aggregate local information using convolutions with kernel
size of 3× 3 from 4× 4 patch region. Here, each cell in black and gray grids represents a patch and
pixel, respectively.

h = w = 3 requires additional operations. For folding and unfolding, we need to either pad or
resize. In the case of padding, we need to mask the padded pixels in self-attention in transformers.
These additional operations result in latency, as shown in Table 6. To avoid these extra operations,
we choose h = w = 2 in our experiments, which also provides a good trade-off between latency
and accuracy.

D TRAINING DETAILS FOR SSDLITE AND DEEPLABV3

All SSDLite-MobileViT and DeepLabv3-MobileViT networks are trained for 200 and 50 epochs
with a standard sampler on 4 NVIDIA GPUs and with an effective batch size of 128 images, re-
spectively. The learning rate is increased from 0.00009 to 0.0009 in the first 500 iterations and
then annealed to 0.00009 using a cosine learning rate scheduler. We use L2 weight decay of 0.01.
We change the stride of MV2 block from two to one at an output stride of 32 in Table 4 to obtain
DeepLabv3-MobileViT models at an output stride of 16.

For these models, we do not use a multi-scale sampler. This is because these task-specific networks
are resolution-dependent. For example, DeepLabv3 uses an atrous (or dilation) rate of 6, 12, and
18 at an output stride of 16 to learn multi-scale representations. If we use a lower resolution (say
256× 256) than 512× 512, then the atrous kernel weights will be applied to padded zeros; making
multi-scale learning ineffective.
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1 i m p o r t t o r c h
from t o r c h . u t i l s . d a t a . s a m p l e r i m p o r t Sampler

3 i m p o r t t o r c h . d i s t r i b u t e d as d i s t
i m p o r t math

5 i m p o r t random
i m p o r t numpy as np

7

9 c l a s s Mul t iSca leSamplerDDP ( Sampler ) :
d e f i n i t ( s e l f , base im w : i n t , b a s e i m h : i n t , b a s e b a t c h s i z e : i n t , n d a t a s a m p l e s : i n t ,
↪→ m i n s c a l e m u l t : f l o a t = 0 . 5 , m a x s c a l e m u l t : f l o a t = 1 . 5 , n s c a l e s : i n t = 5 , i s t r a i n i n g : boo l =
↪→ F a l s e ) −> None :

11 # min . and max . s p a t i a l d i m e n s i o n s
min im w , max im w = i n t ( base im w * m i n s c a l e m u l t ) , i n t ( base im w * m a x s c a l e m u l t )

13 min im h , max im h = i n t ( b a s e i m h * m i n s c a l e m u l t ) , i n t ( b a s e i m h * m a x s c a l e m u l t )

15 # Get t h e GPU and node r e l a t e d i n f o r m a t i o n
n u m r e p l i c a s = d i s t . g e t w o r l d s i z e ( )

17 rank = d i s t . g e t r a n k ( )

19 # a d j u s t t h e t o t a l s amples t o a v o i d b a t c h d r o p p i n g
n u m s a m p l e s p e r r e p l i c a = i n t ( math . c e i l ( n d a t a s a m p l e s * 1 . 0 / n u m r e p l i c a s ) )

21 t o t a l s i z e = n u m s a m p l e s p e r r e p l i c a * n u m r e p l i c a s
i m g i n d i c e s = [ i d x f o r i d x i n r a n g e ( n d a t a s a m p l e s ) ]

23 i m g i n d i c e s += i m g i n d i c e s [ : ( t o t a l s i z e − n d a t a s a m p l e s ) ]
a s s e r t l e n ( i m g i n d i c e s ) == t o t a l s i z e

25
s e l f . s h u f f l e = F a l s e

27 i f i s t r a i n i n g :
# compute t h e s p a t i a l d i m e n s i o n s and c o r r e s p o n d i n g b a t c h s i z e

29 w i d t h d i m s = l i s t ( np . l i n s p a c e ( min im w , max im w , n s c a l e s ) )
h e i g h t d i m s = l i s t ( np . l i n s p a c e ( min im h , max im h , n s c a l e s ) )

31 # ImageNet models down− sample images by a f a c t o r o f 3 2 .
# Ensure t h a t wid th and h e i g h t d i m e n s i o n s a r e m u l t i p l e o f 3 2 .

33 w i d t h d i m s = [ (w / / 32) * 32 f o r w i n w i d t h d i m s ]
h e i g h t d i m s = [ ( h / / 32) * 32 f o r h i n h e i g h t d i m s ]

35
i m g b a t c h p a i r s = l i s t ( )

37 b a s e e l e m e n t s = base im w * b a s e i m h * b a s e b a t c h s i z e
f o r ( h , w) i n z i p ( h e i g h t d i m s , w i d t h d i m s ) :

39 b a t c h s i z e = max ( 1 , ( b a s e e l e m e n t s / ( h * w) )
i m g b a t c h p a i r s . append ( ( h , w, b a t c h s i z e ) )

41 s e l f . i m g b a t c h p a i r s = i m g b a t c h p a i r s
s e l f . s h u f f l e = True

43 e l s e :
s e l f . i m g b a t c h p a i r s = [ ( base im h , base im w , b a s e b a t c h s i z e ) ]

45
s e l f . i m g i n d i c e s = i m g i n d i c e s

47 s e l f . n s a m p l e s p e r r e p l i c a = n u m s a m p l e s p e r r e p l i c a
s e l f . epoch = 0

49 s e l f . r ank = rank
s e l f . n u m r e p l i c a s = n u m r e p l i c a s

51
d e f i t e r ( s e l f ) :

53 i f s e l f . s h u f f l e :
random . seed ( s e l f . epoch )

55 random . s h u f f l e ( s e l f . i m g i n d i c e s )
random . s h u f f l e ( s e l f . i m g b a t c h p a i r s )

57 i n d i c e s r a n k i = s e l f . i m g i n d i c e s [ s e l f . r ank : l e n ( s e l f . i m g i n d i c e s ) : s e l f . n u m r e p l i c a s ]
e l s e :

59 i n d i c e s r a n k i = s e l f . i m g i n d i c e s [ s e l f . r ank : l e n ( s e l f . i m g i n d i c e s ) : s e l f . n u m r e p l i c a s ]

61 s t a r t i n d e x = 0
w h i l e s t a r t i n d e x < s e l f . n s a m p l e s p e r r e p l i c a :

63 c u r r h , cur r w , c u r r b s z = random . c h o i c e ( s e l f . i m g b a t c h p a i r s )

65 e n d i n d e x = min ( s t a r t i n d e x + c u r r b s z , s e l f . n s a m p l e s p e r r e p l i c a )
b a t c h i d s = i n d i c e s r a n k i [ s t a r t i n d e x : e n d i n d e x ]

67 n b a t c h s a m p l e s = l e n ( b a t c h i d s )
i f n b a t c h s a m p l e s != c u r r b s z :

69 b a t c h i d s += i n d i c e s r a n k i [ : ( c u r r b s z − n b a t c h s a m p l e s ) ]
s t a r t i n d e x += c u r r b s z

71
i f l e n ( b a t c h i d s ) > 0 :

73 b a t c h = [ ( c u r r h , cur r w , b i d ) f o r b i d i n b a t c h i d s ]
y i e l d b a t c h

75
d e f s e t e p o c h ( s e l f , epoch : i n t ) −> None :

77 s e l f . epoch = epoch

Listing 1: PyTorch implementation of multi-scale sampler
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