CLPLM: Character Level Pretrained Language Model for Extracting
Support Phrases for Sentiment Labels

Raj Ratn Pranesh Ambesh Shekhar Sumit Kumar
Birla Institute of Birla Institute of Birla Institute of
Technology Technology Technology

Mesra, India
raj.ratn18 @
gmail.com

Abstract

In this paper, we have designed a character-
level pre-trained language model for extract-
ing support phrases from tweets based on the
sentiment label. We also propose a character-
level ensemble model designed by properly
blending Pre-trained Contextual Embeddings
(PCE) models- RoBERTa, BERT, and AL-
BERT along with Neural network models-
RNN, CNN and WaveNet at different stages
of the model. For a given tweet and associated
sentiment label, our model predicts the span
of phrases in a tweet that prompts the particu-
lar sentiment in the tweet. In our experiments,
we have explored various model architectures
and configuration for both single as well as en-
semble models. We performed a systematic
comparative analysis of all the model’s per-
formance based on the Jaccard score obtained.
The best performing ensemble model obtained
the highest Jaccard scores of 73.5, giving it
a relative improvement of 2.4% over the best
performing single RoBERTa based character-
level model, at 71.5(Jaccard score).

1 Introduction

Sentiment analysis has been a trendy topic for the
last some decades. Whether its a graphical image
or textual data, all types of an entity consists of
something that conveys the sentiment. For the past
few years, development in methods and techniques
has always helped us in understanding the study
of sentiment and ways to solve complicated issues
that comprised of individual sentiments. We live
in an era, where people often share their opinions
over the internet, numerous platforms are present
on the internet that comprises sentiment triggering
data, primarily textual data.

With the recent development in machine-
learning methods, new innovative and powerful
models has been developed in the field on nat-
ural language processing such heavy pretrained

Mesra, India
ambesh.sinha @
gmail.com

Mesra, India
sumit.atlancey @
gmail.com

language models. Language models are machine
learning framework that shows the probability dis-
tribution over sequences of contextual data con-
sisting of tokens and characters. These language
models have been shown to learn remarkably well
on downstream tasks including machine translation,
question-answering, text classification, and sum-
marization. Everyday we deal with lots of things
that are a component of natural languages and these
models have helped a lot in various researches in-
volving natural languages. Language models such
as the Bag-of-words model, recurrent neural net-
work, attention networks, and transformers have
been always promising in the analysis of textual
data.

In the last few years, researchers have devoted
their time to the analysis of a content’s sentiment
over natural languages, demystifying one’s percep-
tion. In this paper, we tackle a new challenge of ex-
tracting sentiment support phrases/words from the
tweets based on it’s associated sentiment. This task
can be framed as span detection task in question-
answering. Adaption of state of the art models has
given a good head start for the analysis of such
problems, but based on the dataset given, we came
up with the application of character-level based
language model. Since question answering system
consists of span detection and classification tech-
niques to find rightful answers for various ques-
tions. Based on such methods, we use the span
classification technique on our dataset to detect
tokens that trigger ones sentiment.

We designed a novel character-level pretrained
language model framework which utilizes the trans-
formers and character-level language models to
extract sentiment phrases. The proposed model
works in four steps- (i) token-level span predic-
tion using transformer model, (ii) converting token-
level representation to character-level representa-
tion, (iii) precise character-level span prediction

using character-level neural network model, and
(iv) retrieving selected sentiment phrases. We also
proposed an ensemble character-level model that
surpassed the single transformer models. In spit of
being a simple idea, ensemble learning has always
been successful in number of tasks(Zhang and Ma,
2012). We conducted extensive performance analy-
sis of various models and systematically presented
our results in the paper.

The primary challenge was in the dataset. As
shown in the table 1, for the word such as likeeee,
the selected sentiment phrase can be like or likee or
likeee or likeeee. So, by predicting the strat and end
tokens would not get us to the exact sentiment text
span. So, we needed to consider the start and end
characters in order to predict the correct sentiment
phrase span. This motivated us to utilize the strong
contextual understating of transformers and precise
character-level text processing of character-level
neural network models for span detection based on
different sentiments. Through this study we aim
at generating some insights about what exactly a
person was thinking while generating any textual
content. For example, if a user complains or trolls
about an product then there is a need to understand
the core reason that dissatisfies that customer about
the product. Therefore extracting the phrases that
triggers the sentiment can play a very important
role in better understanding of the user generated
content.

The rest of the paper is divided into following
major sections: (i) section2 gives a detail descrip-
tion of the proposed models, (ii) section3 provides
an overview of dataset used, evaluation method
and experiment settings, (iii) section4 contains ex-
periment results and brief discussion, (iv) section5
summarizes related works and finally in (v) sec-
tion6 we concluded the paper.

2 Proposed Transformer Language
Models

In this section, we have sequentially discussed and
elaborated on the design of the proposed character
level pre-trained language models. We first talked
about the architecture and working of single Pre-
trained Contextual Embeddings (PCE) based char-
acter model. Then we talked about the construction
and functioning of the character level ensemble
model.

2.1 Character Level Transformer Model

The architecture of a character level pre-trained
language model is divided into 2 levels. In the
experiment, we used 5-fold cross-validation(4-fold
data for training and 1-fold for testing) for each
PCE model for comparative analysis but the overall
design and workflow were common in every single
PCE model. So we have provided a generalized
pipeline that is compatible with all PCE models.

2.1.1 Levell

At level 1, we will discuss the transformer’s ar-
chitecture and training procedure along with the
conversion of token level predictions to character
level predictions. Following are the steps involved
in level 1:

Language Model Processing: We separately
used following Pre-trained Contextual Embedding
(PCE) models to build Level 1 model: BERT-
base-uncased(Devlin et al., 2018a), BERT-large-
uncased-WWM(Devlin et al., 2018a), ALBERT-
large-v2, ALBERT-base-v2(Lan et al., 2019),
RoBERTa-base(Liu et al., 2019) and RoBERTa-
large. All the pre-trained models were fine-tuned’
on SQuAD2.0(Rajpurkar et al., 2018) dataset. The
training data was consist of two components-
tweet text(t) and sentiment label(s). For an
input in the PCE model, the data was struc-
tured by concatenating ¢ and s with separator to-
ken and classification token added at the begin-
ning. So for BERT and ALBERT the input se-
quence was [CLS]s[SEP]t[SEP] whereas for
RoBERTa it was <s>s</s></s>t</s>. We ex-
tracted AvgPool by performing average pooling
and MazPool by performing max-pooling over
the output values from hidden states at the same
index of each (n-1) layer(except the embedding
layer). The AvgPool and MaxPool were con-
catenated together to form a combined linear vec-
tor which was then passed to two fully connected
layers, one of size 1024 with tanh activation and
next one of size 128. Followed by a multi-sample
dropout(Inoue, 2019) layer and finally a softmax
activation layer. The model outputs the probabil-
ities of tokens for being start and end of the sen-
timent phrases span in the tweets. Custom loss
as described here 3.3 was used by modifying the
cross-entropy loss. The Jaccard score was calcu-
lated on test data to measure the performance of

"Pre-trained models are available at

https://huggingface.co/models

https://huggingface.co/models

[l _____ ! i _____ i l _____ .

[embedaing]

([eroutang

(a.) RNN

(b.) WaveNet (c) CNN

Figure 1: Level 2 Character Level Neural Network (a)Recurrent Neural Network (b)WaveNet (c)Convolution

Neural Network

the trained model using the test data as described
here 3.1.

Character Level Prediction: Once the trans-
former finished training we had five train models
weight because of 5-fold cross-validation. We took
the mean start/end token level predictions of all
five models on the whole dataset(train+test)b. To
make the token level predictions compatible with
character-level neural network model we converted
the token level start/end predictions to character
level start/end predictions. This is done by firstly
removing the padding and sentiment label tokens
and then assigning each of the characters in the
tweet their respective token probabilities received
from the transformer(PCE) model.

2.1.2 Level 2

In level 2, we discuss the processing of the output
obtained from Level 1, feature aggregation, and
architecture of character-level neural network mod-
els. The character-level models were trained using
a 5-fold cross-validation method over the character
level start/end predictions. Following are the steps
involved in level 2:

Character Level Neural Network: We de-
signed three character-level neural network models
for processing the character level probabilities and
during experiment 3 each model was tested sepa-
rately. As shown in figure 1, all three models take
three inputs: start/end char probabilities, character
stream(character level tokens of input tweet), and
sentiment label. The models working are described
sequentially. (i) In recurrent neural network (RNN)
model, we parallelly passed the start/end char prob-
abilities(2 features) through a BiLSTM layer of
size 32 along with the characters and sentiment
label were through separate embedding layers of

each size 32. The three outputs were then concate-
nated and passed through two BiLSTM layers with
a size of 64 each. The output from two BiLSTM
were then concatenated with skip connection and
passed through a fully connected layer(size=64)
and multi-sample dropout(Inoue, 2019)(p=0.5). Fi-
nally, a softmax layer that outputs the character
level start and end probabilities. (ii) In convolu-
tional neural networks(CNN) model the start/end
char probabilities(2 features) were passed into a 1D
convolution layer with batch normalization and the
characters and sentiment label were through sepa-
rate embedding layers of each size 32. All three out-
puts were concatenated and passed through four 1D
convolution layer of size 64 with batch normaliza-
tion, followed by a fully connected layer(size=64)
and multi-sample dropout(Inoue, 2019)(p=0.5) and
finally a softmax layer. (iii) In the WaveNet
model, similar to CNN model the start/end prob-
ability vector, character vector and sentiment vec-
tor after concatenation were passed through three
WaveBlocks(size=64) with batch normalization,
followed by a fully connected layer(size=64) and
multi-sample dropout(Inoue, 2019)(p=0.5) and fi-
nally a softmax layer.

Retrieving Prediction: The final step in extract-
ing sentiment phrases from the tweet was to convert
the character-level start/end probabilities received
from the character-level neural network model into
the start/end indexes which represent the span of
the selected phrases. Once we have the start
index and end index, our model outputs the
selected phrases between the start index and
During training, we found that
sometimes the start index > end index,
means that our model was unable to extract any
phrases so in output we return the whole tweet as

end index.

BERT
base
uncased

Convolution
Neural
Network

Neural Neural
Network

Recurrent

Network

Level 2

Figure 2: The proposed architecture: Ensemble Model. In level 1, all the transformer models are placed parallelly.

In level 2, char-NN models are placed parallelly.

the selected phrase. During training custom loss
3.3 was used and Jaccard score 3.1 was calculated
over test data.

2.2 Character Level Ensemble Model

For building the ensemble model, we stacked to-
gether with a set of pre-trained language models
and character-level neural network models together
blended in such a manner that it outperformed
all the baseline single character-level model. As
shown in figure2 ensemble design is similar to char-
acter level transformer model and divided into fol-
lowing two levels:

2.2.1 Levell

At level 1, we trained each character level trans-
former model separately following the above-
mentioned method and stacked the predictions to
form a single start/end character level prediction.
Following were the steps:

Ensemble Language Model Processing: After
training each character level transformer model
using 5-fold cross-validation, we had five trained
model weights from each transformer model. We

predicted a mean token level start/end probabilities
using all five model weights and stored them.

Character Level Prediction: As described in
the above character level transformer model, we
converted the stored token level start/end proba-
bilities from each transformer model into char-
acter level start/end probabilities which were
then stacked and concatenated together to form
character-level ensemble probabilities(C'hargy).
While concatenating we made sure that the proba-
bilities corresponding to the same tweet were com-
bined together.

2.2.2 Level 2

At level 2, the character-level neural network en-
semble comes in play. The character-level en-
semble model was trained using a 5-fold cross-
validation method. Following are the steps involved
in level 2:

Character Level Ensemble Neural Network:
At this step, we created an ensemble of character-
level neural networks using three models: RNN,
CNN, and WaveNet. Each of the three char-
acter level neural network parallelly receives

three inputs: (i) character-level ensemble start/end
probability(Chargy), (ii) character stream, and
(iii) sentiment label. Each outputs the character-
level start/end probabilities which were then again
concatenated and averaged to form a final character-
level ensemble start/end probability(C'harg2)

Retrieving Prediction: As discussed above
2.1.2, the start/end probability(C'har go) were used
to extract the sentiment phrases from the tweet.
Custom loss and Jaccard scores were used here.

3 Experiment

In this section, we have discussed the dataset and
it’s preprocessing step along with the evaluation
matrix used in our experiment. We have sequen-
tially explained the experiment setup and model
configuration in detail.

3.1 Evaluation Methods

For the evaluation of our proposed single and en-
semble character-level pre-trained language mod-
els, we used Jaccard score as evaluation metrics.
It was based on the Jaccard index or Jaccard sim-
ilarity coefficient which is defined as the size of
the intersection divided by the size of the union
of two label sets. We used the word-level Jaccard
score for precise comparison of predicted phrases
and the ground truth span. We used stratified k-
fold cross-validation for training and evaluation
of models. For a given model in training, in each
validation fold, Jaccardscore was calculated us-
ing the predicted string and ground-truth string and
then at the end of the training mean Jaccard score
Jaccard scoremean 0f k validation fold was calcu-
lated which was used as the final model score.

1 n
Jaccard score = — jaccard(gt;, dt;
- ; ()
where, n is the number of tweets in a set, gt;
is the i*" ground truth and dt; is the i** predicted
value. Therefore the mean Jaccard score of k-fold
cross-validation is,

k
Jaccard score;

Jaccard scoremean = g 2
Jj=1

3.2 Dataset

We used Tweet Sentiment Extraction competition
dataset® publicly available on the Kaggle® website.
Dataset is available at https://www.kaggle.com/c/tweet-

sentiment-extraction/data
3https://www.kaggle.com/

The dataset is comprised of three parts1- (i) tweets
(ii) one of the three sentiment classes(Positive, Neg-
ative, and Neutral) associated with each tweet (iii)
the phrases/words extracted from each tweet that
support the sentiment label in the tweet. The to-
tal number of tweets in the dataset were 27,481,
consisting of 10,992 neutral tweets/8,244 positive
tweets/8,245 negative tweets. For the experiment,
we used 5 fold stratified cross-validation in which
4 folds i.e. 80%(21,985 tweets) of the dataset
was used for training the model and 1 fold i.e.
20%(5,496 tweets) of the dataset used for the vali-
dation. The Cross-validation and Jaccard score 3.1
was calculated for each 5 fold during the experi-
ment.

3.2.1 Dataset Preprocessing

Before conducting the experiments the tweets and
ground truth answers were normalized by convert-
ing to lowercase representation. The tweets in the
dataset were free from any unwanted elements such
as username, mentions, links, so no further clean-
ing was required.

3.3 Experiment Setting

In this section, we have discussed the experiment
settings, hyperparameters settings, optimization
strategies, and loss function used for model training
and performance analysis.

Model training: At level 1: (i) each model was
trained separately using 5-fold cross-validation
method for 5 epochs with the batch size of
64(BERT-base, RoBERTa-base), 32(ALBERT-
large, Distil-RoBERTa-base) and 16(BERT-large-
WWM, RoBERTa-large), (ii) the tokenized input
sequence was truncated or padded up to the max
length of 100 and Adam(Kingma and Ba, 2014)
optimizer was used with learning rate = 3e-5 and
weight decay = 0.001. At level 2: (i) character-level
model were trained using 5-fold cross-validation
for 5 epochs, (ii) each model had following configu-
rations: max sequence length = 150, training batch
size = 128, validation batch size of 512. Trained for
5 epochs with learning rate of 5e-3, (iii) character-
level ensemble model was trained using 5 fold
cross-validation for 5 epochs with the batch size =
8, learning rate = 5e-4 and character-level model
configuration was same.

Custom loss (Jaccard-based Soft Labels): Since
Cross-Entropy does not optimize Jaccard directly,
we tried different loss functions to penalize far pre-

https://www.kaggle.com/c/tweet-sentiment-extraction/data
https://www.kaggle.com/c/tweet-sentiment-extraction/data
https://www.kaggle.com/

text(given) sentiment(given) selected text(target)

I really really like the song -, .

Love Story by Taylor Swift positive like

I need to get my computer neutral I need to get my computer
fixed fixed

Sooo SAD I will miss you negative S000 SAD

here in San Diego

Table 1: Dataset: texts(given) represents tweets,
lected_text(target) represents extracted phrases.

dictions more than close ones. We developed a
custom loss function that modifies cross-entropy
label smoothing by computing Jaccard on the token
level. We then use this new target labels and opti-
mize Kullback-Leibler (KL) divergence(Kullback
and Leibler, 1951). Alpha here is a parameter to
balance between usual cross-entropy and Jaccard-
based labeling. On top of this, we used Stochastic
Weight Averaging (SWA)(Izmailov et al., 2018)
for better generalization to improve the training
stability.

yztd’V'thUft :ayztart,oldJr

(17&) jaccard(sel_text,text[k:true_end])
> jaccard(sel_text,text[i:true_end])

d.. t
yzn sof :Ozyznd’Old"r

(1 —Oé) jaccard(sel_text,text[true_start:k])
> jaccard(sel_text,text[true_start:i])

Regularization setting: At level 1:Based on ex-
periments the best regularization parameters for
every architecture were selected. For improving
generalization and accelerating training we used
Multi-Sample Dropout(Inoue, 2019)(MSD). Each
Transformer had an MSD layer with a probabil-
ity of 0.5 except for RoBERTa-large which was
0.6. We add the Gaussian Noise, with = 0.02,
to the output layer of the transformers. Based
on BERT-paper(Devlin et al., 2018b) we assigned
attention probability dropout(0.1) to every trans-
former. At level 2: As discussed here 2.1.2, for
each character-level NN model in the ensemble we
used MSD(Inoue, 2019) with the dropout probabil-
ity value = 0.5.

4 Result and Discussion

In this section, we have discussed the experiment
results and presented a performance analysis of
character-level transformer models and ensemble
models. During our experiment, we combined

sentiment(given) represents associated sentiment, se-

Models Jaccard Scorepeqn,
BERT-base-uncased 71.0
BERT-large-uncased-WWM 71.1
ALBERT-base-V2 70.5
ALBERT-large-V2 71.1
RoBERTa-base 71.4
RoBERTa-large 71.5
Ensemble-Model 73.5

Table 2: Models’ Scores(in %) on Test Data

the level 1 model, with every level 2 model pair-
wise. As a result, we found out that the RNN
based model surpassed other models by achiev-
ing a higher Jaccard score during testing. As a
result, table2 contains the Jaccard scorémean of
each transformer combined with the RNN model
as Level 2 character-NN model.

According to the table 2, among various sin-
gle transformer models, the RoOBERTa-large model
shows good results by having a Jaccard scoremean
of 71.5%. RoBERTa-base achieved a score
of 71.4% which was very close to RoBERTa-
large. Other models also shows promising results,
like BERT-large-uncased-WWM and ALBERT-
large-V2 had equal Jaccard scoremean of 71.1%,
whereas the ALBERT-base-V2 and BERT-base-
uncased achieved the Jaccard scoremean of 70.5%
and 71.0% respectively.

Our proposed ensemble model outperformed all
the single transformer by an average of 2.4%. With
perfect blending of transformer models the ensem-
ble model was able to achieve a Jaccard scoremean
of 73.5%.

5 Related Work

Sentiment Analysis: In the past few years,
plenty of work has been done in the field of natural
language processing which involves analyzing and
exploring sentiments hidden in textual representa-

tions. For example, various approaches to build
a sentiment classifier have been formulated in the
recent past. (Hu and Liu, 2004; Pang and Lee,
2004) used feature-based methods, (Socher et al.,
2012, 2013; Tai et al., 2015) used recursive neu-
ral networks, (Kim, 2014) used convolution neural
network and (Liu et al., 2015) formulated using
recurrent neural networks.

Recently with the introduction of large pre-
trained language models such as BERT(Devlin
et al, 2018b), ALBERT(Lan et al., 2019),
RoBERTa(Liu et al., 2019) researchers were able
to design and build a state of the art models to
perform various tasks related to natural language
processing. For instance, in paper(Araci, 2019), the
author used a pre-trained language model(BERT)
for financial sentiment analysis. In the paper(Yu
and Jiang, 2019), the author builds a multimodel
inspired by BERT architecture for detecting sen-
timent polarity on tweets. (Yang et al., 2020) uti-
lized an integrated transformer framework, called
a simple transformer, to conduct multi-label senti-
mental classification by fine-tuning the pre-trained
language model on the labeled data.

Character-level models: Efforts have been
made in the past for building character-level neu-
ral network models. Most of the models follow
the translation model architecture design proposed
by the authors in this paper(Sundermeyer et al.,
2014). Training a recurrent neural net (RNN) over
the mini-batches consisting of text sequences, with
a short sequence length of around 200 tokens. For
capturing the context of a length longer than batch
sequence, batches are supplied in sequential or-
der, along with the previous batches hidden states
are passed to the current batches. This method is
called as “Truncated Back-propagation Through
Time” (TBTT). But this method presents complex
training processes and performance limitations. To
overcome the RNN based model limitations, the au-
thor(Al-Rfou et al., 2019) presented a transformer’s
self-attention layer(Vaswani et al., 2017) based non-
recurrent character-level model which surpassed
the RNN based character-level models. Hence the
character-level RNNs are not even nearly as power-
ful as the transformer.

Stacking Ensemble Language models: The
main idea behind designing an ensemble model is
to combine a set of single models in order to obtain
a more accurate and reliable model in comparison

with other single models. Stacking is as known
as a stacked generalization, based on the princi-
ple of meta-model learning which involves com-
bining the prediction from different models which
results in minimum generalization error. Since
each distinct model used in the ensemble have a
different architecture which the ensemble model
exploits because of the minimal probability of con-
stituent models to collude and give wrong out-
put(Witten and Frank, 2002). For example, in the
paper(Malmasi and Dras, 2017), the author pro-
posed a stacked deep learning model for native
language identification using textual data. The
author in paper(El-Geish, 2020) designed an en-
semble model using pre-trained language models
for a question-answering task. The best ensemble
model configuration was able to beat all the single
transformer models.

6 Conclusion

In this paper, we proposed a character-level lan-
guage model consisting of a pre-trained language
model and character-level neural network for ex-
tracting sentiment support phrases from human-
generated tweets based on the associated senti-
ment labels. We also designed a stacking ensemble
model by carefully blending multiple PCE trans-
former models like BERT, RoBERTa, ALBERT,
and character-level neural network models like
CNN, RNN, and WaveNet. We conducted a com-
parative performance analysis of all character-level
transformer models and ensemble models. We
found that with the optimal combination of trans-
former models and character-level neural network
models, the ensemble architecture generalizes bet-
ter and outperforms the single transformer models
at every level. The ensemble model showed promis-
ing results, having a Jaccard Score of 73.5% which
is better than any single transformer model. The
results achieved by our models are far from per-
fect and can be improved, therefore there is still
room for improvement in the proposed method.
Future work and possible experiments that can
be done such as including new transformers fine-
tuned on user-generated content. More extensive
pre-processing of the dataset to reduce possible
noises and post-processing techniques for improv-
ing model accuracy can be also done.

References

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy
Guo, and Llion Jones. 2019. Character-level lan-
guage modeling with deeper self-attention. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pages 3159-3166.

Dogu Araci. 2019. Finbert: Financial sentiment analy-
sis with pre-trained language models. arXiv preprint
arXiv:1908.10063.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018a. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018b. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Mohamed El-Geish. 2020. Gestalt: a stacking ensem-
ble for squad2. 0. arXiv preprint arXiv:2004.07067.

Minging Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168-177.

Hiroshi Inoue. 2019. Multi-sample dropout for ac-
celerated training and better generalization. arXiv
preprint arXiv:1905.09788.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. 2018.
Averaging weights leads to wider optima and better
generalization. arXiv preprint arXiv:1803.05407.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22(1):79-86.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Pengfei Liu, Xipeng Qiu, Xinchi Chen, Shiyu Wu,
and Xuan-Jing Huang. 2015. Multi-timescale long
short-term memory neural network for modelling
sentences and documents. In Proceedings of the
2015 conference on empirical methods in natural
language processing, pages 2326-2335.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Shervin Malmasi and Mark Dras. 2017. Native lan-
guage identification using stacked generalization.
arXiv preprint arXiv:1703.06541.

Bo Pang and Lillian Lee. 2004. A sentimental edu-
cation: Sentiment analysis using subjectivity sum-
marization based on minimum cuts. arXiv preprint
¢s/0409058.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 joint conference on empirical
methods in natural language processing and com-
putational natural language learning, pages 1201—
1211.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,

pages 1631-1642.

Martin Sundermeyer, Tamer Alkhouli, Joern Wuebker,
and Hermann Ney. 2014. Translation modeling with
bidirectional recurrent neural networks. In Proceed-
ings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 14—
25.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Ian H Witten and Eibe Frank. 2002. Data mining: prac-
tical machine learning tools and techniques with java
implementations. Acm Sigmod Record, 31(1):76—
77.

Qiang Yang, Hind Alamro, Somayah Albaradei, Adil
Salhi, Xiaoting Lv, Changsheng Ma, Manal Al-
shehri, Inji Jaber, Faroug Tifratene, Wei Wang,
et al. 2020. Senwave: Monitoring the global senti-
ments under the covid-19 pandemic. arXiv preprint
arXiv:2006.10842.

Jianfei Yu and Jing Jiang. 2019. Adapting bert for
target-oriented multimodal sentiment classification.

Cha Zhang and Yunqgian Ma. 2012. Ensemble machine
learning: methods and applications. Springer.

