
Gradient Descent on Two-layer Nets:
Margin Maximization and Simplicity Bias

Anonymous Author(s)
Affiliation
Address
email

Abstract

The generalization mystery of overparametrized deep nets has motivated efforts1

to understand how gradient descent (GD) converges to low-loss solutions that2

generalize well. Real-life neural networks are initialized from small random values3

and trained with cross-entropy loss for classification (unlike the "lazy" or "NTK"4

regime of training where analysis was more successful), and a recent sequence5

of results (Lyu and Li, 2020; Chizat and Bach, 2020; Ji and Telgarsky, 2020)6

suggest that GD may converge to the "max-margin" solution that attains the global7

optimum of the loss, which presumably generalizes well. The current paper is8

able to establish such convergence for gradient flow on finite two-layer Leaky9

ReLU nets trained on linearly separable and symmetric data, including global10

optimality of the margin. The analysis also gives some theoretical justification for11

recent empirical findings (Kalimeris et al., 2019) on the so-called simplicity bias12

of GD towards linear or other "simple" classes of solutions, especially early in13

training. On the pessimistic side, the paper suggests that such results are fragile.14

A simple data manipulation can make gradient flow converge to a linear classifier15

with suboptimal margin.16

1 Introduction17

One major mystery in deep learning is why deep neural networks generalize despite overparameteri-18

zation (Zhang et al., 2017). To tackle this issue, many recent works turn to study the implicit bias19

of gradient descent (GD) — what kind of theoretical characterization can we give for the low-loss20

solution found by GD?21

The seminal works by Soudry et al. (2018a,b) revealed an interesting connection between GD and22

margin maximization: for linear logistic regression on linearly separable data, there can be multiple23

linear classifiers that perfectly fit the data, but GD with any initialization always converges to the max-24

margin (hard-margin SVM) solution, even when there is no explicit regularization. Thus the solution25

found by GD have the same margin-based generalization bounds as hard-margin SVMs. Subsequent26

works on linear models have extended this theoretical understanding of GD to SGD (Nacson et al.,27

2019b), other gradient-based methods (Gunasekar et al., 2018a), other loss functions with certain28

poly-exponential tails (Nacson et al., 2019a), linearly non-separable data (Ji and Telgarsky, 2018,29

2019b), deep linear networks (Ji and Telgarsky, 2019a; Gunasekar et al., 2018b).30

Given the above results on linear models, a nature question to ask is whether GD has the same implicit31

bias towards max-margin solutions for machine learning models in general. Going beyond linear32

models, Lyu and Li (2020) studied the relationship between GD and margin maximization on deep33

homogeneous neural networks. We say that a neural network is homogeneous if the output function34

is (positively) homogeneous with respect to its parameters. Thus only the direction of parameter35

matters for classification tasks. For logistic and exponential loss, Lyu and Li (2020) showed that36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

GD decreases the loss to 0 and converges to a direction satisfying the Karush-Kuhn-Tucker (KKT)37

conditions of a constrained optimization problem on margin maximization, as long as the initial loss38

is small enough.39

However, given the non-convex nature of neural networks, KKT conditions do not imply global40

optimality for margins. Several attempts are made to prove the global optimality specifically for41

two-layer networks. Chizat and Bach (2020) provided a mean-field analysis for infinitely wide42

two-layer Squared ReLU networks and showed that the solution found by gradient flow achieves43

the global max margin and can be fully characterized by the max-margin classifier in a certain44

non-Hilbertian space of functions. Ji and Telgarsky (2020) discretized this proof to make it hold for45

finite-width, but the width is required to be exponential in the input dimension due to the use of a46

covering condition. Under a restrictive assumption that the data is orthogonally separable, i.e., any47

data point xi can serve as a perfect linear separator, Phuong and Lampert (2021) showed that gradient48

flow on two-layer ReLU nets with small initialization converges to a piecewise linear classifier that49

maximizes the margin, irrespective of network width.50

In this paper, we study the implicit bias of gradient flow on two-layer neural networks with Leaky51

ReLU activation (Maas, 2013) and logistic loss. To avoid the lazy or Neural Tangent Kernel (NTK)52

regime where the weights are initialized to large random values and do not change much during53

training (Du et al., 2019b; Chizat et al., 2019; Du et al., 2019a; Allen-Zhu et al., 2019), we use small54

initialization to encourage the model to learn features actively, which is closer to real-life neural55

network training. We focus on linearly separable datasets, meaning that linear classifiers suffice to56

achieve full training accuracy.57

Our Contribution. Among all the classifiers that can be represented by the two-layer Leaky58

ReLU networks, we show any global-max-margin classifier is exactly linear under one more data59

assumption: the dataset is symmetric, i.e., if x is in the training set, then so is −x. Note that such60

symmetry can be ensured by simple data augmentation.61

Still, little is known about what kind of classifiers neural network trained by GD learns. Though62

Lyu and Li (2020) shows that gradient flow converges to a KKT-margin direction, we note that63

KKT-margin directions can be non-linear and have complicated decision boundaries (see Figure 1).64

Suprisingly, based on a trajectory analysis, we are able to show gradient flow converges to a global-65

max-margin linear classifier (Theorem 4.2). The proof uses a multi-phase analysis for the trajectory66

and leverages power iteration to show neuron alignment in early training, inspired by Li et al. (2021),67

which allows us to embed the wide network into a two-neuron net and guarantees alignment at any68

training time. To extend the alignment to the infinite time limit, we apply Kurdyka-Łojasiewicz (KL)69

inquality in a similar way to (Ji and Telgarsky, 2020). Unlike (Phuong and Lampert, 2021) where the70

final convergence and alignment are implied by the uniqueness of the KKT point, our convergence71

analysis relies on the neuron alignment throughout the training process, and could be applied to more72

general settings beyond orthogonal separability.73

The above results also justify a recent line of works studying the so-called simplicity bias: GD biases74

towards linear or other simple classes of solutions, and the complexity of the solution increases as75

training goes on (Kalimeris et al., 2019; Hu et al., 2020; Shah et al., 2020). In the lens of simplicity76

bias, the conceptual message of our results is: if the dataset can be fitted by a linear classifier, then77

GD learns a linear classifier.78

On the pessimistic side, this paper suggests that such global margin maximization result could be79

fragile. Even for linearly separable data, global max margin may be nonlinear without the symmetry80

assumption. In particular, we show that for any linearly separable dataset, gradient flow can be led81

to converge to a linear classifier with a suboptimal margin by adding 3 only extra data points.82

2 Related Works83

Generalization Aspect of Margin Maxmization. On the generalization aspect, margin often84

appears in the generalization bounds for neural networks (Bartlett et al., 2017; Neyshabur et al.,85

2018), and larger margin leads to smaller bounds. Jiang et al. (2020) studied the causal relationships86

between complexity measures and generalization errors, and showed positive results for normalized87

margin, which is defined by the output margin divided by the product (or powers of the sum) of88

Frobenius norms of weight matrices from each layer. On the pessimistic side, negative results are89

2

also shown if Frobenius norm is replaced by spectral norm. In this paper, we do use the normalized90

margin with Frobenius norm (see Section 3).91

Learning on Linearly Separable Data. A line of works studied the training dynamics of (nonlin-92

ear) neural networks on linearly separable data. Brutzkus et al. (2018) showed that SGD on two-layer93

LeakyReLU networks with hinge loss can fit the training set in finite steps and generalize, but they94

do not provide any characterization for the decision boundary of the learned classifier. The work95

by Sarussi et al. (2021) is the most relevent to our paper. Sarussi et al. (2021) showed that gradient96

flow on two-layer Leaky ReLU networks with logistic loss converges to a linear classifier, based97

on an assumption called Neural Agreement Regime (NAR): starting from some time point, for any98

training sample, the outputs of all the neurons have the same sign. However, it is unclear why this99

can happen a priori. Comparing with our work, we establish the convergence to linear classifiers on100

linearly separable and symmetric datasets, without assuming NAR.101

Simplicity Bias. Kalimeris et al. (2019) empirically observed that neural networks in the early102

phase of training are learning linear classifiers, and provided evidence that SGD learns functions of103

increasing complexity. Hu et al. (2020) justified this view by proving that the learning dynamics of104

two-layer neural nets and simple linear classifiers are close to each other in the early phase, for dataset105

drawn from some sub-gaussian distribution. Shah et al. (2020) pointed out that extreme simplicity106

bias can lead to suboptimal generalization and negative effects on adversarial robustness.107

Small Initialization. Several theoretical works studying neural network training with small initial-108

ization can be connected to simplicity bias. Maennel et al. (2018) provided theoretical evidence that109

gradient flow with small initialization biases the weight vectors to a certain number of directions110

determined by the input data (independent of neural network width) and thus has a bias towards111

“simple” functions, but their proof is not entirely rigorous and no clear definition of simplicity is112

given. Williams et al. (2019) studied the regression problem for univariate functions and showed113

the two-layer ReLU network with small initialization tends to learn linear splines. For the matrix114

factorization problem, which can be related to training networks with linear or quadratic activations,115

we can measure the complexity of the learned solution by rank. A line of works showed that gradient116

descent learns solutions with gradually increasing rank (Arora et al., 2019; Gidel et al., 2019; Gissin117

et al., 2020; Li et al., 2021). Such results have been generalized to tensor factorization where the118

complexity measure is replaced by tensor rank (Razin et al., 2021). Beyond small initialization of our119

interest and large initialization in the lazy or NTK regime, Woodworth et al. (2020); Moroshko et al.120

(2020); Mehta et al. (2021) studied feature learning when the initialization scale transitions from121

small to large scale.122

3 Preliminaries123

We use [n] to stand for the set {1, . . . , n}. We use Sd−1 to stand for the unit sphere {x ∈ Rd : ‖x‖2 =124

1}. We say that a function h : RD → R is L-homogeneous if h(cθ) = cLh(θ) for all θ ∈ RD and125

c > 0. For S ⊆ RD, we use conv(S) to denote the convex hull of S. For locally Lipschitz function126

f : RD → R, we define Clarke’s sub-differential (Clarke, 1975; Clarke et al., 2008; Davis et al.,127

2020) to be ∂◦f(θ) := conv {limn→∞∇f(θn) : f differentiable at θn, limn→∞ θn = θ}.128

3.1 Logistic Loss Minimization and Margin Maximization129

For a neural net, we use fθ(x) to denote the output logit on input x ∈ Rd when the parameter is130

θ ∈ RD. We say that the neural net is L-homogeneous if fθ(x) is L-homogeneous with respect to θ,131

i.e., fcθ(x) = cLfθ(x) for all θ ∈ RD and c > 0. VGG-like CNNs can be made homogeneous if we132

remove all the bias terms expect those in the first layer (Lyu and Li, 2020).133

Throughout this paper, we restrict our attention to L-homogeneous neural nets with fθ(x) definable134

with respect to θ in an o-minimal structure for all x. (See (Coste, 2000) for reference for o-minimal135

structures) This is a mild regularity condition as almost all modern neural networks satisfy this136

condition, including the two-layer Leaky ReLU networks studied in this paper. This is a technical137

condition needed by Theorem 3.1.138

For a dataset S = {(x1, y1), . . . , (xn, yn)}, we define qi(θ) := yifθ(xi) to be the output margin on139

the data point (xi, yi), and qmin(θ) := mini∈[n] qi(θ) to be the output margin on the dataset S (or140

margin for short). It is easy to see that q1(θ), . . . , qn(θ) are L-homogeneous functions, and so is141

3

qmin(θ). We define the normalized margin γ(θ) := qmin

(
θ
‖θ‖2

)
= qmin(θ)

‖θ‖L2
to be the output margin142

(on the dataset) for the normalized parameter θ
‖θ‖2 .143

We refer the problem of finding θ that maximizes γ(θ) as margin maximization. Note that once we144

have found an optimal solution θ∗ ∈ RD, cθ∗ is also optimal for all c > 0. We can put the norm145

constraint on θ to eliminate this freedom on rescaling:146

max
θ∈SD−1

γ(θ). (M)

Alternatively, we can also constrain the margin to have qmin ≥ 1 and minimize the norm:147

min
1

2
‖θ‖22 s.t. qi(θ) ≥ 1, ∀i ∈ [n]. (P)

One can easily show that θ∗ is a global maximizer of (M) if and only if θ∗

q
1/L
min (θ∗)

is a global minimizer148

of (P). For convenience, we make the following convention: if θ
‖θ‖2 is a local/global maximizer of149

(M), then we say θ is along a local-max-margin direction/global-max-margin direction; if θ

q
1/L
min (θ)

150

satisfies the KKT conditions of (P), then we say θ is along a KKT-margin direction.151

Gradient flow with logistic loss is defined by the following differential inclusion:152

dθ
dt
∈ −∂◦L(θ), with L(θ) :=

1

n

n∑
i=1

`(qi(θ)), (1)

where `(q) := ln(1 + e−q) is the logistic loss. Lyu and Li (2020); Ji and Telgarsky (2020) have153

shown that θ(t)/‖θ(t)‖2 always converges to a KKT-margin direction. We restate the results below.154

Theorem 3.1 (Lyu and Li 2020; Ji and Telgarsky 2020). For homogeneous nets, if L(θ(0)) < ln 2
n ,155

then as t→ +∞, L(θ(t))→ 0, ‖θ(t)‖2 → +∞, and θ(t)
‖θ(t)‖2 converges to a KKT-margin direction.156

3.2 Two-Layer Leaky ReLU Networks on Linearly Separable Data157

Let φ(x) = max{x, αleakyx} be Leaky ReLU, where αleaky ∈ (0, 1). Throughout the following158

sections, we consider a two-layer neural net defined as below,159

fθ(x) =

m∑
k=1

akφ(w>k x).

where w1, . . . ,wm ∈ Rd are the weights in the first layer, a1, . . . , am ∈ R are the weights in160

the second layer, and θ = (w1, . . . ,wm, a1, . . . , am) ∈ RD is the concatenation of all trainable161

parameters, where D = md+m. We can verify that fθ(x) is 2-homogeneous with respect to θ.162

Let S := {(x1, y1), . . . , (xn, yn)} be the training set. For simplicity, we assume that ‖xi‖2 ≤ 1.163

The main focus of this paper is linearly separable data, and thus we assume that S is linearly separable164

throughout this paper, which is stated formally as below.165

Assumption 3.2 (Linear Separable). There exists a w ∈ Rd such that yi 〈w,xi〉 ≥ 1 for all i ∈ [n].166

Definition 3.3 (Max-margin Linear Separator). For the linearly separable dataset S, we say that167

w∗ ∈ Sd−1 is the max-margin linear separator if w∗ maximizes mini∈[n] yi 〈w,xi〉 over w ∈ Sd−1.168

4 Training on Linearly Separable and Symmetric Data169

In this section, we study the implicit bias of gradient flow assuming the training data is linearly170

separable and symmetric. We say a dataset is symmetric if the input −x is also present in the training171

set whenever x is present. By linear separability, x and −x must have different labels because172

〈w∗,x〉 = −〈w∗,−x〉, where w∗ is the max-margin linear separator. The formal statement for this173

assumption is given below.174

Assumption 4.1 (Symmetric). n is even and xi = −xi+n/2, yi = 1, yi+n/2 = −1 for 1 ≤ i ≤ n/2.175

4

1 0 1

1

0

1

Symmetric Data (without bias)

Global-max-margin boundary
KKT-margin boundary

2 1 0 1 2

1

0

1

Non-symmetric Data (with bias)

Global-max-margin boundary
Max-margin-linear boundary

3 2 1 0 1 2 3

3

2

1

0

1

2

3

Non-symmetric hinted Data (without bias)

Global-max-margin boundary
Max-margin-linear boundary

Figure 1: Two-layer Leaky ReLU nets (αleaky = 1/2) with KKT margin and global max margin on linearly
separable data. Left: KKT-margin classifiers (purple) may not be global-max-margin (black) even for symmetric
data, but gradient flow always finds the global-max-margin direction in theory. Middle: The linear classifier
(orange) is along a KKT-margin direction, but has much smaller margin comparing to the (nonlinear) global-
max-margin classifier (black), but our theory suggests that gradient flow converges to the linear classifier. Right:
Adding three extra data points (Definition 6.1) to a linearly separable dataset makes the linear classifier (orange)
has suboptimal margin but causes the neural net to be biased to it. See Appendix H for proofs.

This symmetry can also be related to data augmentation. Given a dataset, if it is known that the176

ground-truth labels are produced by some unknown linear classifier, then one can augment each data177

point (x, y) by flipping the sign, i.e., replace it with two data points (x, y), (−x,−y) (and thus the178

dataset size is doubled).179

Our results show that gradient flow directionally converges to a global-max-margin direction for180

two-layer Leaky ReLU networks to linear classifiers, when the training is done on linearly separable181

and symmetric datasets. To achieve such result, the key insight is that any global-max-margin182

direction represents a linear classifier, which we will see in Section 4.1. Then we will present our183

main convergence results on margin in Section 4.2.184

4.1 Global-Max-Margin Directions185

The global-max-margin direction in our case is characterized by the following theorem.186

Theorem 4.2. Under Assumptions 3.2 and 4.1, for the two-layer Leaky ReLU network with width187

m ≥ 2, any global-max-margin direction θ∗ ∈ SD−1, fθ∗ represents a linear classifier. Moreover,188

we have fθ∗(x) =
1+αleaky

4 〈w∗,x〉 for all x ∈ Rd, where w∗ is the max-margin linear separator.189

Theorem 4.2 shows that margin maximization and simplicity bias align with each other: global-max-190

margin direction of a two-layer Leaky ReLU net represents a linear classifier, and the max-margin191

linear classifier is just the classifier with the global max margin for the two-layer Leaky ReLU net.192

The result of Theorem 4.2 is based on the observation that replacing each neuron (ak,wk) in a193

network with two neurons of oppositing parameters (ak,wk) and (−ak,−wk) does not decrease the194

normalized margin on the symmetric dataset, while making the classifier linear in function space.195

Thus if any direction attains global max margin, we can construct a new global-max-margin direction196

which corresponds to a linear classifier. Therefore, the linear classifier must be in the direction of197

w∗ or −w∗, so are the weights of individual neurons of the original nets. It follows that the original198

classifier must also be linear.199

4.2 Convergence to Global-Max-Margin Directions200

Though Theorem 3.1 guarantees that gradient flow directionally converges to a KKT-margin direction,201

if the loss is optimized successfully, we note that KKT-margin directions can be non-linear and have202

more complicated decision boundaries. See Figure 1 (left) for an example. Therefore, to establish203

the simplicity bias, the convergence to KKT-margin directions is not enough, and we perform a204

trajectory-based analysis for gradient flow to prove the convergence to global-max-margin directions205

(Theorem 4.3).206

We use initializationwk
i.i.d.∼ N (0, σ2

initI), a ∼ N (0, c2ainitσ
2
initI), where cainit is a fixed constant207

throughout this paper and σinit controls the initialization scale. We call this distribution as θ0 ∼208

5

Dinit(σinit). An alternative way to generate this distribution is to first draw θ̄0 ∼ Dinit(1), and then209

set θ0 = σinitθ̄0. With small initialization, we can establish the following convergence to max-margin210

linear classifier.211

Theorem 4.3. Under Assumptions 3.2 and 4.1 and certain regularity conditions (see Assumptions 4.5212

and 4.6 below), for any δ > 0, consider gradient flow on a Leaky ReLU network with width213

m = Ω(log(1/δ)) and initialization θ0 = σinitθ̄0 where θ̄0 ∼ Dinit(1). With probability 1− δ over214

the random draw of θ̄0, if the initialization scale is sufficiently small, then gradient flow directionally215

converges and f∞(x) := limt→+∞ fθ(t)/‖θ(t)‖2(x) exists and is equivalent to the max-margin216

linear classifier. That is,217

Pr
θ̄0∼Dinit(1)

[
∃σmax

init > 0 s.t. ∀σinit < σmax
init ,∀x ∈ Rd, f∞(x) = C 〈w∗,x〉

]
≥ 1− δ,

where C :=
1+αleaky

4 is a scaling factor.218

Combining Theorem 4.2 and Theorem 4.3, we can conclude that gradient flow achieves the global219

max margin in our case.220

Corollary 4.4. In the settings of Theorem 4.3, gradient flow on linearly separable and symmetric221

data directionally converges to the global-max-margin direction with probability 1− δ.222

4.3 Additional Notations and Assumptions223

Let µ := 1
n

∑n
i=1 yixi. µ 6= 0 since 〈µ,w∗〉 = 1

n

∑
i∈[n] yiw

>
∗ xi ≥ 1. Let µ̄ := µ

‖µ‖2 .224

We make the following technical assumption, which holds if we are allowed to add a slight perturbation225

to the training set.226

Assumption 4.5. For all i ∈ [n], 〈µ,xi〉 6= 0.227

Another technical issue we face is that the gradient flow may not be unique due to non-smoothness.228

Recall we use ϕ(θ0, t) ∈ Rd to the value of θ at time t for θ(0) = θ0, it is possible that ϕ(θ0, t) is229

not well-defined as the solution of (1) may not be unique. In this case, we assign ϕ(θ0, t) to be an230

arbitrary gradient flow trajectory starting from t. In the case where ϕ(θ0, t) has only one possible231

value for any t ≥ 0, we say that θ0 is a non-branching starting point. We assume the following232

technical assumption.233

Assumption 4.6. For any m ≥ 2, there exists r, ε such that θ is a non-branching starting point if the234

neurons can be partitioned into two groups: in the first group, ak = ‖wk‖2 ∈ (0, r) and all wk point235

to the same directionw+ ∈ Sd−1 with ‖w+− µ̄‖2 ≤ ε; in the second group, −ak = ‖wk‖2 ∈ (0, r)236

and all wk point to the same direction w− ∈ Sd−1 with ‖w− + µ̄‖2 ≤ ε.237

5 Proof Sketch for the Symmetric Case238

In this section, we provide a proof sketch for Theorem 4.3. We divide the training process into 3239

phases, and we will now elaborate the analyses for them one by one.240

5.1 Phase I: Dynamics Near Zero241

In Phase I, we analyze the dynamics of gradient flow with small initialization when it is not far from242

zero. Inspired by (Li et al., 2021), we relate such dynamics to power iterations. To see this, the first243

step is to note that fθ(xi) ≈ 0 when θ is close to 0. Applying Taylor expansion on `(−yifθ(xi)),244

L(θ) =
1

n

∑
i∈[n]

`(−yifθ(xi)) ≈
1

n

∑
i∈[n]

(`(0)− `′(0)yifθ(xi)) . (2)

Expanding fθ(xi) and reorganizing the terms, we have245

L(θ) =
1

n

∑
i∈[n]

`(0)− 1

n

∑
i∈[n]

`′(0)
∑
k∈[m]

yiakφ(w>k xi) = `(0)− `′(0)

n

∑
k∈[m]

∑
i∈[n]

yiakφ(w>k xi)

= `(0) +
∑
k∈[m]

akG(wk),

6

where G-function (Maennel et al., 2018) is defined below:246

G(w) :=
−`′(0)

n

∑
i∈[n]

yiφ(w>xi) =
1

2n

∑
i∈[n]

yiφ(w>xi).

This means gradient flow optimizes each akG(wk) separately near origin.247

dwk
dt
≈ ak∂◦G(wk),

dak
dt
≈ G(wk). (3)

In the case where Assumption 4.1 holds, we can pair each xi with −xi and use the identity φ(z)−248

φ(−z) = max{z, αleakyz} −max{−z,−αleakyz} = (1 + αleaky)z to show that G(w) is linear:249

G(w) =
1

2n

∑
i∈[n/2]

(
φ(w>xi)− φ(−w>xi)

)
=

1

2n

∑
i∈[n/2]

(1 + αleaky)w>xi = 〈w, µ̃〉 ,

where µ̃ :=
1+αleaky

2 µ =
1+αleaky

2n

∑
i∈[n] yixi. Substituting this formula for G into (3) reveals that250

the dynamics of two-layer neural nets near zero has a close relationship to power iteration (or matrix251

exponentiation) of a matrixMµ̃ ∈ R(d+1)×(d+1) that only depends on data.252

d
dt

[
wk
ak

]
≈Mµ̃

[
wk
ak

]
, where Mµ̃ :=

[
0 µ̃
µ̃> 0

]
.

Simple linear algebra shows that λ0 := ‖µ̃‖2, 1√
2
(µ̄, 1) ∈ Rd+1 is the unique top eigenvalue253

and eigenvector of Mµ̃, which suggests that (wk(t), ak(t)) ∈ Rd+1 aligns to this top eigenvector254

direction if the approximation (3) holds for a sufficiently long time. We realize this via small255

initialization and obtain the following lemma.256

Lemma 5.1. Let r > 0 be a small value and fix time T1(r) := 1
λ0

ln r√
mσinit

. With probability 1− δ257

over the random draw of θ̄0 = (w̄1, . . . , w̄m, ā1, . . . , ām) ∼ Dinit(1), if we take σinit to be as small258

as O
(

(
√
d+log(m/δ))2√

m
r3
)

, then any neuron (wk, ak) can be decomposed into259

wk(T1(r)) = rb̄kµ̄+ ∆wk, ak(T1(r)) = rb̄k + ∆ak,

where b̄k := 〈w̄k,µ̄〉+āk
2
√
m

and ∆wk ∈ Rd, ∆ak ∈ R are error terms bounded by260

max
k∈[m]

{max{‖∆wk‖2, |∆ak|}} ≤ O

(
(
√
d+ log(m/δ))3

√
m

r3

)
.

5.2 Phase II: Near-Two-Neuron Dynamics261

By Lemma 5.1, we know that at time T1(r) we have wk(T1(r)) ≈ rb̄kµ̄ and ak(T1(r)) ≈ rb̄k,262

where b ∈ Rd is some fixed vector. This motivates to compare the training dynamics of θ =263

(w1, . . . ,wm, a1, . . . , am) starting from time T1(r) with another gradient flow starting from the264

point (rb̄1µ̄, . . . , rb̄mµ̄, rb̄1, . . . , rb̄m). Interestingly, we found that the latter dynamics can be265

exactly characterized by the dynamics of two neurons. Before going further, we first introduce our266

general idea of embedding a two-neuron network into an m-neuron network.267

Embedding. For any b ∈ Rm, we say that b is a good embedding vector if it has at least one268

positive entry and one negative entry, and all the entries are non-zero. For a good embedding vector269

b, we use b+ :=
√∑

j∈[m] 1[bj>0]b
2
j to denote the root-sum-squared of the positive entries and use270

b− := −
√∑

j∈[m] 1[bj<0]b
2
j to denote the negative value of the root-sum-squared of the negative271

entries. For parameter θ̂ := (ŵ1, ŵ2, â1, â2) of a two-neuron neural net with â1 > 0 and â2 < 0,272

we define the embedding from two-neuron into m-neuron neural nets as πb(ŵ1, ŵ2, â1, â2) =273

(w1, . . . ,wm, a1, . . . , am), where274

ak =

{
bk
b+
â1, if bk > 0

bk
b−
â2, if bk < 0

, wk =

{
bk
b+
ŵ1, if bk > 0

bk
b−
ŵ2, if bk < 0

.

7

It is easy to check that fθ̂(x) = fπb(θ̂)(x) by the homogeneity of the activation: φ(cz) = cφ(z) for275

c > 0.276

fπb(θ̂)(x) =
∑
bk>0

akφ(w>k x) +
∑
bk<0

akφ(w>k x)

=
∑
bk>0

b2k
b2+
â1φ(ŵ>1 x) +

∑
bk<0

b2k
b2−
â2φ(ŵ>2 x) = â1φ(ŵ>1 x) + â2φ(ŵ>2 x) = fθ̂(x).

Moreover, by taking the chain rule, we can obtain the following lemma showing that the trajectories277

starting from θ̂ and πb(θ̂) are essentially the same.278

Lemma 5.2. Given θ̂ := (ŵ1, ŵ2, â1, â2) with â1 > 0 and â2 < 0, if both θ̂0 and πb(θ̂0) are a279

non-branching starting points, then ϕ(πb(θ̂0), t) = πb(ϕ(θ̂0, t)) for all t ≥ 0.280

Approximate Embedding. Back to our analysis for Phase II, we set θ̂ := (b̄+, b̄+µ̄, b̄−, b̄−µ̄).281

Then it is easy to check that πb̄(rθ̂) = (rb̄1µ̄, . . . , rb̄mµ̄, rb̄1, . . . , rb̄m) ≈ θ(T1(r)), which is an282

approximate embedding. Suppose that the approximation happens to be exact, namely πb̄(rθ̂) =283

θ(T1(r)), then θ(T1(r) + t) = πb̄(ϕ(rθ̂, t)) by Lemma 5.2. Inspired by this, we prove the following284

lemma in the general case, where we take r → 0 to make the approximate embedding infinitely close285

to the exact near the exact one. We shift the training time by T2(r) to avoid trivial limits (such as 0).286

Lemma 5.3. Let T2(r) := 1
λ0

ln 1
r , then T12 := T1(r)+T2(r) = 1

λ0
ln 1√

mσinit
regardless the choice287

of r. With probability 1− δ over the random draw of θ̄0 = (w̄1, . . . , w̄m, ā1, . . . , ām) ∼ Dinit(1),288

if m ≥ Ω(log 1
δ), then the vector b̄k := 〈w̄k,µ̄〉+āk

2
√
m

is a good embedding vector, and for the two-289

neuron dynamics starting with rescaled initialization in the direction of θ̂ := (b̄+, b̄+µ̄, b̄−, b̄−µ̄),290

the following limit exists for all t ≥ 0,291

θ̃(t) := lim
r→0

ϕ
(
rθ̂, T2(r) + t

)
6= 0, (4)

and moreover, for the m-neuron dynamics of θ(t), the following holds for all t ≥ 0,292

lim
σinit→0

θ (T12 + t) = πb̄(θ̃(t)). (5)

5.3 Phase III: Dynamics near Global-Max-Margin Direction293

With some efforts, we have the following characterization for two-neuron dynamics.294

Theorem 5.4. Form = 2, if initially a1 = ‖w1‖2, a2 = −‖w2‖2, 〈w1,w
∗〉 > 0 and 〈w2,w

∗〉 < 0,295

then θ(t) directionally converges to the following global-max-margin direction,296

lim
t→+∞

θ(t)

‖θ(t)‖2
=

1

4
(w∗,−w∗, 1,−1).

It is not hard to verify that θ̃(t) satisfies the conditions required by Theorem 5.4. Given this result, a297

first attempt to establish the convergence of θ(t) to global-max-margin direction is to take t→ +∞298

on both sides of (5). However, this only proves that θ (T12 + t) directionally converges to the299

global-max-margin direction if we take the limit σinit → 0 first then take t → +∞. However, we300

are interested in the convergent solution when the initialization is small, which corresponds to the301

case where we take the limit t → +∞ first then take σinit → 0. These two double limits are not302

equivalent because the order of limits cannot be exchanged without extra conditions.303

To overcome this issue, we follow a similar proof strategy as (Ji and Telgarsky, 2020) to prove local304

convergence near a local-max-margin direction, as formally stated below. Theorem 5.5 holds for305

L-homogeneous neural networks in general and we believe is of independent interest.306

Theorem 5.5. Consider any L-homogeneous neural networks with logistic loss. Given a local-max-307

margin direction θ̄∗ ∈ SD−1 and any δ > 0, there exists ε0 > 0 and ρ0 ≥ 1 such that for any θ0 with308

norm ‖θ0‖2 ≥ ρ0 and direction
∥∥∥ θ0
‖θ0‖2 − θ̄

∗
∥∥∥

2
≤ ε0, gradient flow starting with θ0 directionally309

converges to some direction θ̄ as t→ +∞, and
∥∥θ̄ − θ̄∗∥∥

2
≤ δ.310

8

Using Theorem 5.5, we can finish the proof for Theorem 4.3 as follows. First we note that the two-311

neuron global-max-margin direction 1
4 (w∗,−w∗, 1,−1) after embedding is a global-max-margin312

direction for m-neurons, and we can prove that there is a small δ such that any direction with distance313

at most δ is still a global-max-margin direction. Then we can take t to be large enough so that314

πb̄(θ̃(t)) satisfies the conditions in Theorem 5.5. According to (5), we can also make the conditions315

hold for θ (T12 + t) by taking σinit to be sufficiently small. Finally, applying Theorem 5.5 finishes316

the proof.317

6 Non-symmetric Data Complicates the Picture318

Now we turn to study the more general case without assuming symmetry and the question is whether319

the implicit bias of global-max-margin still holds. Unfortunately, it turns out the global-max-margin320

property is very fragile — for any given linearly separable dataset, if we are allowed to add 3 new321

data points, then we can show gradient flow with small initialization converges to a linear classifier322

with suboptimal margin.323

Unlike the symmetric case, we use balanced Gaussian initialization instead of purely random Gaussian324

initialization for technical simplicity: wk ∼ N (0, σ2
initI), ak = sk‖wk‖2, where sk ∼ unif{±1}.325

We call this distribution as θ0 ∼ D̃init(σinit). Similar as the symmetric case, an alternative way to326

generate this distribution is to first draw θ̄0 ∼ D̃init(1), and then set θ0 = σinitθ̄0. This adaptation327

can greatly simplify our analysis since it ensures that ak(t) = sk‖wk(t)‖2 for all t ≥ 0.328

Definition 6.1 ((H ,K ε,w⊥)-Hinted Dataset). Given a linearly separable dataset S with max-margin329

linear separator w∗, for constants H,K, ε > 0 and unit vector w⊥ ∈ Sd−1 perpendicular to w∗, we330

define the (H , K, ε, w⊥)-hinted dataset S ′ by the dataset containing all the data points in S and331

the following 3 data points (numbered by 1, 2, 3) that can serve as hints to the max-margin linear332

separator w∗:333

(x1, y1) = (Hw∗, 1), (x2, y2) = (εw∗ +Kw⊥, 1), (x3, y3) = (εw∗ −Kw⊥, 1).

Theorem 6.2. Given a linearly separable dataset S and a unit vector w⊥ ∈ Sd−1 perpendicular to334

the max-margin linear separatorw∗, for any sufficiently large H > 0,K > 0 and sufficiently small335

ε > 0, the following statement holds for the (H , K, ε,w⊥)-Hinted Dataset S ′. Under some regularity336

assumption for gradient flow (see Assumption A.5), for any δ > 0, consider gradient flow on a Leaky337

ReLU network with width m = Ω(log(1/δ)) and initialization θ0 = σinitθ̄0 where θ̄0 ∼ D̃init(1).338

With probability 1 − δ over the draw of θ̄0, there is an sufficiently small initialization scale, such339

that gradient flow directionally converges and f∞(x) := limt→+∞ fθ(t)/‖θ(t)‖2(x) exists and is340

equivalent to φ(〈w∗,x〉) up to a scaling factor. That is,341

Pr
θ̄0∼Dinit(1)

[
∃σmax

init > 0 s.t. ∀σinit < σmax
init ,∀x ∈ Rd, f∞(x) =

1

2
φ(〈w∗,x〉)

]
≥ 1− δ.

Moreover, this linear classifier attains only suboptimal margin comparing to the best two-layer Leaky342

ReLU network.343

Theorem 6.2 is actually a simple corollary general theorem under data assumptions that hold for a344

broader class of linearly separable data. At a high-level speaking, we only require two assumptions:345

(1). There is a direction such that µ has a large component on this direction; (2). The support vectors346

of the max-margin linear classifier 〈w∗,x〉 have nearly the same labels. The first hint data point is347

for the first condition and the second and third data point is for the second condition. We defer formal348

statements of the assumptions and theorems to Appendix A.1.349

7 Conclusions and Future Works350

We study the implicit bias of training two-layer Leaky ReLU network with gradient flow from small351

initialization on linearly separable datasets. When the dataset is symmetric, we show any global-max-352

margin classifier is exactly linear and gradient flow will converge to a global-max-margin direction.353

On the pessimistic side, we show such margin maximaization result is fragile – for any linearly354

separable dataset, we can lead gradient flow to converge to a linear classifier with a sub-optimal355

margin by adding only 3 extra data points. One limitation of this work is the assumption of linearly356

separability, which is critical to our convergence analysis. We left it as a future work to study the357

simplicity bias and possiblity of global margin maximization on more general datasets.358

9

References359

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-360

parameterization. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of361

the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine362

Learning Research, pages 242–252, Long Beach, California, USA, 09–15 Jun 2019. PMLR.363

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix364

factorization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and365

R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 7411–7422.366

Curran Associates, Inc., 2019.367

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for368

neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,369

and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 6240–6249.370

Curran Associates, Inc., 2017.371

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns over-372

parameterized networks that provably generalize on linearly separable data. In International373

Conference on Learning Representations, 2018.374

Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks375

trained with the logistic loss. volume 125 of Proceedings of Machine Learning Research, pages376

1305–1338. PMLR, 09–12 Jul 2020.377

Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.378

In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,379

Advances in Neural Information Processing Systems 32, pages 2937–2947. Curran Associates,380

Inc., 2019.381

Francis H. Clarke, Yuri S. Ledyaev, Ronald J. Stern, and Peter R. Wolenski. Nonsmooth analysis and382

control theory, volume 178. Springer Science & Business Media, 2008.383

Frank H. Clarke. Generalized gradients and applications. Transactions of the American Mathematical384

Society, 205:247–262, 1975.385

Michel Coste. An introduction to o-minimal geometry. Istituti editoriali e poligrafici internazionali386

Pisa, 2000.387

Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D. Lee. Stochastic subgradient388

method converges on tame functions. Foundations of Computational Mathematics, 20(1):119–154,389

Feb 2020.390

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global391

minima of deep neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,392

Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings393

of Machine Learning Research, pages 1675–1685, Long Beach, California, USA, 09–15 Jun 2019a.394

PMLR.395

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes396

over-parameterized neural networks. In International Conference on Learning Representations,397

2019b.398

Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient399

dynamics in linear neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc,400

E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages401

3196–3206. Curran Associates, Inc., 2019.402

Daniel Gissin, Shai Shalev-Shwartz, and Amit Daniely. The implicit bias of depth: How incremental403

learning drives generalization. In International Conference on Learning Representations, 2020.404

10

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in405

terms of optimization geometry. In Jennifer Dy and Andreas Krause, editors, Proceedings of406

the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine407

Learning Research, pages 1832–1841, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018a.408

PMLR.409

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on410

linear convolutional networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-411

Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages412

9482–9491. Curran Associates, Inc., 2018b.413

Wei Hu, Lechao Xiao, Ben Adlam, and Jeffrey Pennington. The surprising simplicity of the early-414

time learning dynamics of neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.415

Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,416

pages 17116–17128. Curran Associates, Inc., 2020.417

Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. arXiv preprint418

arXiv:1803.07300, 2018.419

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In420

International Conference on Learning Representations, 2019a.421

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In Alina422

Beygelzimer and Daniel Hsu, editors, Proceedings of the Thirty-Second Conference on Learning423

Theory, volume 99 of Proceedings of Machine Learning Research, pages 1772–1798, Phoenix,424

USA, 25–28 Jun 2019b. PMLR.425

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. In426

H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neu-427

ral Information Processing Systems, volume 33, pages 17176–17186. Curran Associates, Inc.,428

2020.429

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic430

generalization measures and where to find them. In International Conference on Learning431

Representations, 2020.432

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz Barak,433

and Haofeng Zhang. SGD on neural networks learns functions of increasing complexity. In434

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,435

Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.436

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent437

for matrix factorization: Greedy low-rank learning. In International Conference on Learning438

Representations, 2021.439

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.440

In International Conference on Learning Representations, 2020.441

Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013.442

Hartmut Maennel, Olivier Bousquet, and Sylvain Gelly. Gradient descent quantizes relu network443

features. arXiv preprint arXiv:1803.08367, 2018.444

Harsh Mehta, Ashok Cutkosky, and Behnam Neyshabur. Extreme memorization via scale of initial-445

ization. In International Conference on Learning Representations, 2021.446

Edward Moroshko, Blake E Woodworth, Suriya Gunasekar, Jason D Lee, Nati Srebro, and Daniel447

Soudry. Implicit bias in deep linear classification: Initialization scale vs training accuracy. In448

H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural449

Information Processing Systems, volume 33, pages 22182–22193. Curran Associates, Inc., 2020.450

11

Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan451

Srebro, and Daniel Soudry. Convergence of gradient descent on separable data. In Kamalika452

Chaudhuri and Masashi Sugiyama, editors, Proceedings of Machine Learning Research, volume 89453

of Proceedings of Machine Learning Research, pages 3420–3428. PMLR, 16–18 Apr 2019a.454

Mor Shpigel Nacson, Nathan Srebro, and Daniel Soudry. Stochastic gradient descent on separable455

data: Exact convergence with a fixed learning rate. In Kamalika Chaudhuri and Masashi Sugiyama,456

editors, Proceedings of Machine Learning Research, volume 89 of Proceedings of Machine457

Learning Research, pages 3051–3059. PMLR, 16–18 Apr 2019b.458

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to459

spectrally-normalized margin bounds for neural networks. In International Conference on Learning460

Representations, 2018.461

Mary Phuong and Christoph H Lampert. The inductive bias of ReLU networks on orthogonally462

separable data. In International Conference on Learning Representations, 2021.463

Noam Razin, Asaf Maman, and Nadav Cohen. Implicit regularization in tensor factorization. arXiv464

preprint arXiv:2102.09972, 2021.465

Roei Sarussi, Alon Brutzkus, and Amir Globerson. Towards understanding learning in neural466

networks with linear teachers. arXiv preprint arXiv:2101.02533, 2021.467

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The468

pitfalls of simplicity bias in neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.469

Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,470

pages 9573–9585. Curran Associates, Inc., 2020.471

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit472

bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):1–57,473

2018a.474

Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gradient descent on separable475

data. In International Conference on Learning Representations, 2018b.476

Francis Williams, Matthew Trager, Daniele Panozzo, Claudio Silva, Denis Zorin, and Joan Bruna.477

Gradient dynamics of shallow univariate relu networks. In H. Wallach, H. Larochelle, A. Beygelz-478

imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing479

Systems, volume 32. Curran Associates, Inc., 2019.480

Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay Golan,481

Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Jacob482

Abernethy and Shivani Agarwal, editors, Proceedings of Thirty Third Conference on Learning483

Theory, volume 125 of Proceedings of Machine Learning Research, pages 3635–3673. PMLR,484

09–12 Jul 2020.485

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-486

ing deep learning requires rethinking generalization. In International Conference on Learning487

Representations, 2017.488

Checklist489

1. For all authors...490

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s491

contributions and scope? [Yes]492

(b) Did you describe the limitations of your work? [Yes]493

(c) Did you discuss any potential negative societal impacts of your work? [N/A]494

(d) Have you read the ethics review guidelines and ensured that your paper conforms to495

them? [Yes]496

12

2. If you are including theoretical results...497

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Sections 4498

and 6.499

(b) Did you include complete proofs of all theoretical results? [Yes] See appendix.500

3. If you ran experiments...501

(a) Did you include the code, data, and instructions needed to reproduce the main experi-502

mental results (either in the supplemental material or as a URL)? [N/A]503

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they504

were chosen)? [N/A]505

(c) Did you report error bars (e.g., with respect to the random seed after running experi-506

ments multiple times)? [N/A]507

(d) Did you include the total amount of compute and the type of resources used (e.g., type508

of GPUs, internal cluster, or cloud provider)? [N/A]509

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...510

(a) If your work uses existing assets, did you cite the creators? [N/A]511

(b) Did you mention the license of the assets? [N/A]512

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]513

514

(d) Did you discuss whether and how consent was obtained from people whose data you’re515

using/curating? [N/A]516

(e) Did you discuss whether the data you are using/curating contains personally identifiable517

information or offensive content? [N/A]518

5. If you used crowdsourcing or conducted research with human subjects...519

(a) Did you include the full text of instructions given to participants and screenshots, if520

applicable? [N/A]521

(b) Did you describe any potential participant risks, with links to Institutional Review522

Board (IRB) approvals, if applicable? [N/A]523

(c) Did you include the estimated hourly wage paid to participants and the total amount524

spent on participant compensation? [N/A]525

13

