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ABSTRACT

We consider two popular Graph Representation Learning (GRL) methods: mes-
sage passing for node classification and network embedding for link prediction.
For each, we pick a popular model that we: (i) linearize and (ii) and switch
its training objective to Frobenius norm error minimization. These simplifica-
tions can cast the training into finding the optimal parameters in closed-form.
We program in TensorFlow a functional form of Truncated Singular Value De-
composition (SVD), such that, we could decompose a dense matrix M, without
explicitly computing M. We achieve competitive performance on popular GRL
tasks while providing orders of magnitude speedup. We open-source our code at
http://anonymous/url/for/review

1 INTRODUCTION

Many recent graph representation learning (GRL) models are creative and theoretically-justified
(Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018; Qiu et al., 2018; Xu et al.,
2019; Abu-El-Haija et al., 2019; Chen et al., 2020). Unfortunately, however, they contain hyperpa-
rameters that need to be tuned (such as learning rate, regularization coefficient, depth and width of
the network), and training takes a long time (e.g. minutes) even on smaller datasets.

We circumvent these weaknesses. We (i) quickly train (ii) competitive GRL models by posing
convex objectives and estimating optimal solutions in closed-form, hence (iii) relieving practitioners
from hyperparameter tuning or convergence checks. Our goals remind us of a classical learning
technique that has been used for decades. Specifically, Singlar Value Decomposition (SVD).

SVD periodically appears within powerful yet simple methods, competing on state-of-the-art. The
common practice is to design a matrix M, such that its decomposition (via SVD), provides an
estimate for learning a model given an objective. For instance, Levy & Goldberg (2014) show
that the learning of NLP skipgram models such as word2vec (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014), can be approximated by the SVD of a Shifted Positive Pointwise Mutual
Information matrix.

In GRL, Chen et al. (2017); Qiu et al. (2018); Abu-El-Haija et al. (2018) have approximated methods
of DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec, 2016) via decomposition of
some matrix M. However, their decomposition requires M to be either (a) exactly calculated or (b)
sampled entry-wise, but (a) is unnecessarily expensive for real-world large networks (due to Small
World Phenomenon, (Travers & Milgram, 1969)) and (b) incurs unnecessary estimation errors. On
the other hand, known algorithms in matrix theory can decompose any matrix M without explicitly
knowing M. Specifically, it is sufficient to provide a function fM(.) = 〈M, .〉 that can multiply M
with arbitrary vectors (§4). We, argue that if the popular frameworks (e.g., TensorFlow) implement
a functional SVD, that accept fM(.) rather than M, then modern practitioners may find it useful.

We review powerful GRL methods (§2.2) that we convexify (§3), allowing us to use (randomized)
SVD for obtaining (approximate) optimum solutions. Our contributions are:

1. We implement a functional SVD (§4) of the randomized algorithm of Halko et al. (2009).
2. We approximate embedding and message passing methods via SVD (§3), showing competitive

performance with state-of-the-art, yet much faster to train (§5).
3. We analyze that learning is fast and approximation error can be made arbitrarily small (§A.3.2).
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2 PRELIMINARIES

2.1 SINGULAR VALUE DECOMPOSITION (SVD)

Truncated (top-k) Singular Value Decomposition (SVD) estimates input matrix M ∈ Rr×c with
low-rank estimate M̃ that minimizes the Frobenius norm of the error:

min
M̃
||M− M̃||2F , subject to: rank(M̃) ≤ k, (1)

while parameterizing M̃ as M̃ = UkSkV
>
k , subject to, columns of Uk,Vk being orthonormal. It

turns out, the minimizer of Frobenius norm ||.||F recovers the top-k singular values (stored along
diagonal matrix Sk ∈ Rk×k), with their corresponding left- and right-singular vectors, respectively,
stored as columns of the unitary matrices Uk ∈ Rr×k and Vk ∈ Rc×k (a.k.a, the singular bases).

SVD has many applications and we utilize two: (1) it is used for embedding and matrix completion;
and (2) it can estimate the pseudoinverse of matrix M (a.k.a., Moore-Penrose inverse), as:

M† ,M>
(
MM>

)−1 ≈ VkS
−1
k U>k , (2)

where one calculates inverse S−1 by reciprocating entries of diagonal matrix S. The ≈ becomes =
when k ≥ rank(M), due to (Eckart & Young, 1936; Golub & Loan, 1996).

2.2 GRAPH REPRESENTATION LEARNING (GRL)

(i) Many message passing models can be written as:

H = σL

(
gL(A) . . .

output of layer 2︷ ︸︸ ︷
σ2

(
g2(A) σ1 (g1(A)XW1)︸ ︷︷ ︸

output of layer 1

W2

)
. . .WL

)
(3)

where L is the number of layers, matrix X ∈ Rn×d contains d features per node, W’s are
trainable parameters, σ denote activations (e.g. ReLu), and g is some (possibly trainable) trans-
formation of adjacency matrix. GCN (Kipf & Welling, 2017) set g to symmetric normalization
per renormalization trick, GAT (Veličković et al., 2018) set g(A) = A ◦MultiHeadedAttention
and GIN (Xu et al., 2019) as g(A) = A + (1 + ε)I with identity I and ε > 0. For node clas-
sification, it is common to set σL = softmax (applied row-wise), specify the size of WL s.t.
H ∈ Rn×y where y is number of classes, and optimize cross-entropy objective:

min
{Wj}Lj=1

−Y ◦ logH− (1−Y) ◦ log(1−H), (4)

where Y is a binary matrix with one-hot rows indicating node labels. ◦ is Hadamard product.
in semi-supervised node classification settings where not all nodes are labeled, before measuring
the objective, subset of rows can be kept in Y and H that correspond to labeled nodes.

(ii) Network embedding methods map nodes onto a z-dimensional vector space Z ∈ Rn×z . Modern
approaches train skipgram models (e.g. word2vec (Mikolov et al., 2013)) on sampled random
walks. It has been shown that these skipgram network embedding methods, including DeepWalk
(Perozzi et al., 2014)) and node2vec (Grover & Leskovec, 2016), with a learning process of
walk sampling followed by positional embedding, can be approximated as a matrix deomposition
(Chen et al., 2017; Abu-El-Haija et al., 2018; Qiu et al., 2018). We point the curious reader to
the listed papers for how the decomposition was derived, but show here the derivation of Abu-El-
Haija et al. (WYS, 2018), as it performs well in our experiments:

min
Z
−M

(WYS)
◦ log h(Z)− (1−A) ◦ log(1− h(Z)), (5)

where h(Z) = h([L R]) = (1 + exp(L × R>))−1 i.e. Z concatenates L,R ∈ Rn× z
2 and

h is the logistic of their cross-correlation (pairwise dot-products). M
(WYS)

=
∑C

i (D
−1A)ici =∑C

i=1 T ici, where T is the transition matrix, D = diag(1>A) is diagonal degree matrix, and
we fix vector c to staircase: ci = C−i+1

C . For instance, c = [1, 34 ,
2
4 ,

1
4 ] for context size C = 4.
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3 OUR PROPOSED CONVEX OBJECTIVES

3.1 NETWORK EMBEDDING MODEL

Objective in Eq 5 learns node embeddings Z = [L R] ∈ Rn×z using cross-entropy. The terms:
model output (outer product, σ(L ×R>)), negatives (non-edges, 1 −A), and positives (expected
number of node pairs covisits, M), are all dense matrices with n2 � m nonzero entries. For
instance, even a relatively-small social network with n=100,000 and average degree of 100 (i.e. m =
100n) would produce an M occupying≈40GB memory, whereas one can do the entire learning with
≈40MB memory using functional SVD (§4). We start by designing a matrix M̂

(WYS)
incorporating

positive and negative information (M
(WYS)

and 1−A) as:

M̂
(WYS)

= M
(WYS)
− λ(1−A) =

∑
i

T ici − λ(1−A), (6)

with coefficient λ ≥ 0 weighing negative samples. We use .̂ to denote our convexification.

Learning: We can directly set Z to the SVD basis (U,S,V). Matrix M̂
(WYS)

has large entry M̂uv

when nodes (u, v) are well-connected (co-visited many times, during random walks) and small if
they are non-edges. SVD provides a rank k estimator of M̂ as L̂R̂> ≈ M̂ i.e. with minimum
Frobenius norm of error. We can set the network embedding model parameters Z = [L̂ R̂] as:

SVD(M̂, k)← argmin
ÛkŜkV̂k

∣∣∣∣∣∣M̂− ÛkŜkV̂
>
k

∣∣∣∣∣∣2
F
= argmin

ÛkŜkV̂k

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣M̂−

(
ÛkŜ

1
2

k

)
︸ ︷︷ ︸

,L̂

(
Ŝ

1
2

k V̂
>
k

)
︸ ︷︷ ︸

,R̂>

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

F

(7)

Learning follows as: Ûk, Ŝk, V̂k ← SVD(M̂
(WYS)

, k); L̂← ÛkŜ
1
2

k ; R̂← V̂kŜ
1
2

k (8)

Inference: Given query edges Q = {(ui, vi)}i, one can compute model: HQ = R̂>{v}iL̂{u}i ,

(9)

where the (RHS) set-subscript denotes gathering rows (a.k.a, advanced indexing), and HQ ∈ R|Q|.

3.2 MESSAGING PASSING MODELS

We can linearize message passing models (Eq. 3) by assuming all σ’s are identity (σ(.) = .). Let
g = g1 = g2 = . . . , specifically let g(A) = (D+ I)

− 1/2(A+ I)(D+ I)
− 1/2 per renormalization

trick of (Kipf & Welling, 2017). A linear L-layer message passing network can be:

Ĥ =
[
X g(A)X g(A)2X . . . g(A)LX

]︸ ︷︷ ︸
∆
= M̂(JKN)

Ŵ. (10)

Concatenation of all layers was proposed in Jumping Knowledge Networks (JKN, Xu et al., 2018).

Learning: We optimize Ŵ with: min
Ŵ
||Ĥ−Y||2F = min

Ŵ
||M̂(JKN)Ŵ −Y||2F (11)

Loss in Equation 11 can perform well on classification tasks, and according to Hui & Belkin (2021),
as well as the cross entropy loss defined in Equation 4. Taking∇

Ŵ
of Eq. 11 then setting to zero,

yields minimizer: Ŵ∗ , argmin
Ŵ

||M̂(JKN)Ŵ −Y||2F =
(
M̂(JKN)

)†
Y. (12)

Rank-k SVD can estimate
(
M̂(JKN)

)†
and hence Ŵ∗ as:

Ûk, Ŝk, V̂k ← SVD(M̂
(JKN)

, k); Ŵ∗ ← (V̂k(Ŝ
−1
k (Û>k Y))). (13)

Order of multiplications in Eq. 13 is for efficiency. Further, in the case when only subset of nodes
V = {v}v have labels, the right-most multiplication of Eq. 13 could restricted to the labeled nodes.
Let YV be a matrix of |V| rows selected from Y according to elements V . The right-most multipli-
cation of Eq. 13 can modified to: Û>kVYV .
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4 FUNCTIONAL SINGULAR VALUE DECOMPOSITION

We do not have to explicitly calculate the matrices M̂. Rather, we only need to implement product
functions f

M̂
(v) = 〈M̂,v〉 that can multiply M̂ with arbitrary (appropriately-sized) vector v. We

implement a (TensorFlow) functional version of the randomized SVD algorithm of Halko et al.
(2009), that accepts f

M̂
rather than M̂. We show that it can train our models quickly and with

arbitrarily small approximation error (in linear time of graph size, in practice, with less than 10
passes over the data) and can yield l2-regularized solutions for classification (see Appendix). We
now need the (straightforward f

M̂(WYS) and f
M̂(JKN) . We leave the second outside this writing. For the

first, the non-edges term, (1−A), can be re-written by explicit broadcasting as (11> −A) giving

f
M̂(WYS) (v) =

∑
i

(T )iv︸ ︷︷ ︸
O(m)

ci − λ1 (1>v)︸ ︷︷ ︸
O(n)

+λAv. (14)

All matrix-vector products can be efficiently computed when A is sparse.

5 EXPERIMENTAL RESULTS (DETAILS IN APPENDIX)
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Figure 1: ROC-AUC versus train time of methods on datasets. Each dataset has a distinct shape,
with shape size proportional to graph size. Each method uses a different color. Our methods are in
blue (dark uses SVD rank k = 32, light uses k = 100, trading estimation accuracy for train time).
Ideal methods should be placed on top-left corner (i.e., higher test ROC-AUC and faster training).
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Figure 2: Sensitivity Analysis. Left: Test Accuracy VS Depth of model defined by M̂
(JKN)

. Right:
Test ROC-AUC VS rank of SVD on M̂

(WYS)
.

Table 1: Test Performance. Left: accuracy (training time) for Semi-supervised Node Classification,
over citation datasets. Right: ROC-AUC for link prediction when embedding with z=64=2k.

Cora Citeseer Pubmed
Planetoid 75.7 (13s) 64.7 (26s) 77.2 (25s)

GCN 81.5 (4s) 70.3 (7s) 79.0 (83s)
GAT 83.2 (1m23s) 72.4 (3m27) 77.7 (5m33s)

MixHop 81.9 (26s) 71.4 (31s) 80.8 (1m16s)
GCNII 85.5 (2m29s) 73.4 (2m55s) 80.3 (1m42s)
f
M̂(JKN) 82.4 (0.28s) 72.2 (0.13s) 79.7 (0.14s)

FB AstroPh HepTh PPI
WYS 99.4 97.9 93.6 89.8

n2v 99.0 97.8 92.3 83.1
NetMF 97.6 96.8 90.5 73.6
ÑetMF 97.0 81.9 85.0 63.6
f
M̂(WYS) 98.7 92.1 89.2 87.9

(k=100) 98.7 96.0 90.5 86.2
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A APPENDIX: IMPLEMENTATION OF FUNCTIONAL SVD

A.1 CALCULATING THE SVD

SVD of M yields its left and right singular orthonormal (basis) vectors, respectively, in columns of
U and V. Since U and V, respectively, are the eigenvectors of MM> and M>M, then perhaps the
most intuitive algorithms for SVD are variants of the power iteration, including Arnoldi iteration
(Arnoldi, 1951) and Lanczos algorithm (Lanczos, 1950). In practice, randomized algorithms for
estimating SVD run faster than these variants, including the algorithm of Halko et al. (2009) which
is implemented in scikit-learn. None of these methods require individual access to M’s entries, but
rather, require two operations: ability to multiply any vector with M and with M>. Therefore, it is
only a practical gap that we fill in this section: we open-source a TensorFlow implementation that
accept product and transpose operators.

A.2 TENSORFLOW IMPLEMENTATION

Since we do not explicitly calculate the M̂ matrices displayed in Equations 6 and 10, as doing
so consumes quadratic memory O(n2), we implement a functional form SVD of the celebrated
randomized SVD algorithm of Halko et al. (2009). To run our Algorithm 1, one must specify
k ∈ N+ (rank of decomposition), as well as functions f, l, s that the program provider promises
they operate as:

1. Product function f that exactly computes f(v) = 〈M,v〉 for any v ∈ Rc (recall: M ∈ Rr×c)
2. Transpose1 function t. ∀v ∈ Rr, (t ◦ f)(v) = 〈M>,v〉
3. Shape (constant) function s that knows and returns (r, c). Once transposes, should return (c, r).

A.3 ANALYSIS

A.3.1 NORM REGULARIZATION OF WIDE MODELS

If M̂ is too wide, then we need not to worry much about overfitting, due to the following Theorem.

1An alternative to t can be a left-multiply function l(u) = 〈u,M〉, however, in practice, TensorFlow is
optimized for CSR matrices and computationally favors sparse-times-dense

6
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Algorithm 1 Functional Randomized SVD, following prototype of Halko et al. (2009)
1: input: rank k ∈ N+, product fn f : Rc → Rr, shape fn s, transpose fn t : (Rc → Rr) →

(Rc → Rr)
2: procedure fSVD(f, t, s, k)
3: (r, c)← s()
4: Q ∼ N (0, 1)c×2k . IID Gaussian. Shape: (c× 2k)
5: for i← 1 to iterations do
6: Q, ← tf.linalg.qr(f(Q)) . (r × 2k)
7: Q, ← tf.linalg.qr((t ◦ f)(Q)) . (c× 2k)

8: Q, ← tf.linalg.qr(f(Q)) . (r × 2k)
9: B ← ((t ◦ f)(Q))> . (2k × c)

10: U, s, V > ← tf.linalg.svd(B)
11: U ← Q× U . (r × 2k)
12: return U [:, : k], s[: k], V [:, : k]>

Theorem 1 (Min. Norm) If system M̂Ŵ = Y is underdetermined2 with rows of M̂ being linearly
independent, then there are infinitely many solutions. Denote solution space Ŵ∗ =

{
Ŵ
∣∣∣ M̂Ŵ =

Y
}

. Then, for k ≥ rank(M̂), matrix Ŵ∗, defined in Eq.13 satisfies: Ŵ∗ = argmin
Ŵ∈Ŵ∗ ||Ŵ||

2
F

Proof Assume Y = y is a column vector (the proof can be generalized to matrix Y by repeated
column-wise application3). SVD(M̂, k), k ≥ rank(M̂), recovers the solution:

Ŵ∗ =
(
M̂
)†

y = M̂>
(
M̂M̂>

)−1
y. (15)

The Gram matrix M̂M̂> is nonsingular as the rows of M̂ are linearly independent. To prove the
claim let us first verify that Ŵ∗ ∈ Ŵ∗:

M̂Ŵ∗ = M̂M̂>
(
M̂M̂>

)−1
y = y.

Let Ŵp ∈ Ŵ∗. We must show that ||Ŵ∗||2 ≤ ||Ŵp||2. Since M̂Ŵp = y and M̂Ŵ∗ = y, their
subtraction gives:

M̂(Ŵp − Ŵ∗) = 0. (16)

It follows that (Ŵp − Ŵ∗) ⊥ Ŵ∗:

(Ŵp − Ŵ∗)>Ŵ∗ = (Ŵp − Ŵ∗)>M̂>
(
M̂M̂>

)−1
y

= (M̂(Ŵp − Ŵ∗))>︸ ︷︷ ︸
=0 due to Eq. 16

(
M̂M̂>

)−1
y = 0

Finally, using Pythagoras Theorem (due to ⊥):

||Ŵp||22 = ||Ŵ∗ + Ŵp − Ŵ∗||22
= ||Ŵ∗||22 + ||Ŵp − Ŵ∗||22 ≥ ||Ŵ∗||22 �

As a consequence, solution for classification models recovered by SVD follow a strong standard
Gaussian prior, which may be regarded as a form of regularization.

2E.g., if the number of labeled examples i.e. height of M and Y is smaller than the width of M.
3The minimizer for the Frobenius norm is composed, column-wise, of the minimizers

argminM̂W:,j=Y:,j
||W:,j ||22 for all j.
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A.3.2 COMPUTATIONAL COMPLEXITY AND ERROR

Theorem 2 (Linear Time) Functional SVD (Alg. 1) trains our convexified GRL models in time linear
in the graph size.

Proof of Theorem 2 for our two model families:

1. For rank-k SVD over f
M̂(WYS) : Let cost of running f

M̂(WYS) = Tmult. The run-time to compute
SVD, as derived in Section 1.4.2 of (Halko et al., 2009), is:

O(kTmult + (r + c)k2). (17)

Since f
M̂(WYS) can be defined as C (context window size) multiplications with sparse n×nmatrix

T with m non-zero entries, then running fSVD(f
M̂(WYS) , k) costs:

O(kmC + nk2) (18)

2. For rank-k SVD over f
M̂(JKN) : Suppose feature matrix contains d-dimensional rows. One can

calculate M̂(JKN) ∈ Rn×Ld with L sparse multiplies in O(Lmd). Calculating and running SVD
(see Section 1.4.1 of Halko et al., 2009) on M̂(JKN) costs total of:

O(ndL log(k) + (n+ dL)k2 + Lmd). (19)

Therefore, training time is linear in n and m. �

Contrast with methods of WYS (Abu-El-Haija et al., 2018) and NetMF (Qiu et al., 2018), which
require assembling a dense n × n matrix requiring O(n2) time to decompose. One wonders: how
far are we from the optimal SVD with a linear-time algorithm? The following bounds the error.

Theorem 3 (Exponentially-decaying Approx. Error) Rank-k randomized SVD algorithm of Halko
et al. (2009) gives an approximation error that can be brought down, exponentially-fast, to no more
than twice of the approximation error of the optimal (true) SVD.

Proof is in Theorem 1.2 of Halko et al. (2009). �
Consequently, compared to ÑetMF of (Qiu et al., 2018), which incurs unnecessary estimation error,
our estimation error can be brought-down exponentially by increasing the iters parameter of
Alg. 1

B APPENDIX: EXPERIMENTAL DETAILS

B.1 DATASETS

We apply our functional SVD on popular datasets that can be trained using our simplified (i.e., con-
vexified) models. Specifically either (1) semi-supervised node-classification datasets, where features
are present, or (2) link-prediction datasets where features are absent. It is possible to convexify other
setups, e.g., link prediction when node features are present, but we leave this as future work. We run
experiments on seven graph datasets:

• Protein-Protein Interactions (PPI): a large graph where every node is a protein and an edge
between two nodes indicate that the two proteins interact. Processed version of PPI was
downloaded from (Grover & Leskovec, 2016).

• Three citation networks that are extremely popular: Cora, Citeseer, Pubmed. Each node
is an article and each (directed) edge implies that an article cites another. Additionally,
each article is accompanied with a feature vector (containing NLP-extracted features of the
article’s abstract), as well as a label (article type).

• Two collaboration datasets: ca-AstroPh and ca-HepTh, where nodes are researchers and
an edge between two nodes indicate that the researchers co-published together at least one
article, in the areas Astro-Physics and High Energy Physics.

• ego-Facebook: an ego-centered social network.
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Table 2: Dataset Statistics
Dataset Nodes Edges Source

PPI 3,852 proteins 20,881 chemical interactions http://snap.stanford.edu/node2vec
ego-Facebook 4,039 users 88,234 friendships http://snap.stanford.edu/data

ca-AstroPh 17,903 researchers 197,031 co-authorships http://snap.stanford.edu/data
ca-HepTh 8,638 researchers 24,827 co-authorships http://snap.stanford.edu/data

Cora 2,708 articles 5,429 citations Planetoid (Yang et al., 2016)
Citeseer 3,327 articles 4,732 citations Planetoid (Yang et al., 2016)
Pubmed 19,717 articles 44,338 citations Planetoid (Yang et al., 2016)

For citation networks, we processed node features and labels. For all other datasets, we did not
process features during training nor inference. For train/validation/test partitions: we used the splits
of Yang et al. (2016) for Citeseer, Cora, Pubmed; we used the splits of Abu-El-Haija et al. (2018) for
PPI, Facebook, ca-AstroPh and ca-HepTh; we used the splits of OGB (Hu et al., 2020) for ogbl-ddi.
All datasets and statistics are summarized in Table 2. In §B.2 and §B.3, unless otherwise noted,
we download authors’ source code from github, modify4 it to record wall-clock run-time, and run
on GPU NVidia Tesla k80. Thankfully, downloaded code has one script to run each dataset, or
hyperparameters are clearly stated in the source paper.

B.2 SEMI-SUPERVISED NODE CLASSIFICATION

We consider a transductive setting where a graph is entirely visible (all nodes and edges). Addition-
ally, some of the nodes are labeled. The goal is to recover the labels of unlabeled nodes. All nodes
have feature vectors.

Baselines: We download code of GAT (Veličković et al., 2018), MixHop (Abu-El-Haija et al.,
2019), GCNII (Chen et al., 2020) and re-ran them, with slight modifications to record training time.
However, for baselines Planetoid (Yang et al., 2016) and GCN (Kipf & Welling, 2017), we copied
them from the GCN paper (Kipf & Welling, 2017).

In these experiments, to train our method, we run our functional SVD twice per graph. We take the
feature matrix X bundled with the datasets, and concatenate to it two matrices, L̂ and R̂, calculated
per Equation 8: the calculation itself invokes our functional SVD (the first time) on f

M̂(WYS) with
rank = 32. Hyperparameters of f

M̂(WYS) are λ (negative coefficient) and C (context window-size).
After concatenating L̂ and R̂ into X, we PCA the resulting matrix to 1000 dimensions, which forms
our new X. Finally, we express our model as the linear L-layer messaging passing network (Eq. 10)
and learn its parameters via rank k SVD on f

M̂(JKN) (the second time), as explained in §3.2. We use
the validation partition to tune L, k, λ, and C.

Table 1 (left) summarizes the performance of our approach (f
M̂(JKN) ) against aforementioned base-

lines, showing both test accuracy and training time. While our method is competitive with state-of-
the-art, it trains much faster.

B.3 ROC-AUC LINK PREDICTION

Given a partial graph: only of a subset of edges are observed. The goal is to recover unobserved
edges. This has applications in recommender systems: when a user expresses interest in products,
the system wants to predict other products the user is interested in. The task is usually setup by
partitioning the edges of the input graph into train and test edges. Further, it is common to sample
negative test edges e.g. uniformly from the graph compliment. Lastly, a GRL method for link
prediction can be trained on the train edges partition, then can be asked to score the test partition
edges versus the negative test edges. The quality of the scoring can be quantified by a ranking
metric, e.g., ROC-AUC.

4Modified files are in our code repo
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Baselines: We download code of WYS (Abu-El-Haija et al., 2018) and update it to for TensorFlow-
2.0. We download code of Qiu et al. (2018) and denote their methods as NetMF and ÑetMF, where
the first computes complete matrix M before SVD decomposition and the second sample M entry-
wise – the second is faster for larger graphs but sacrifices on estimation error and performance. For
node2vec (n2v), we use its PyG implementation (Fey & Lenssen, 2019).

Table 1 (right) summarizes results test ROC-AUC. For our method (denoted f
M̂(WYS) ), we call our

functional SVD (Alg. 1) and pass it f
M̂(WYS) as defined in Eq. 14. Embeddings are set to the SVD

basis (as in, §3.1) and edge score of nodes (u, v) is∝ dot-product of embeddings. The last row of the
table shows results when svd rank =100. Lastly, we set the context window hyperparameter (a.k.a,
length of walk) as follows. For WYS, we trained with their default context (as WYS learns the
context), but for all others (NetMF, n2v, ours) we used context window of length C=5 for datasets
Facebook and PPI (for us, this sets c = [1, 45 ,

3
5 ,

2
5 ,

1
5 ]) and C=20 for AstroPh and HepTh.

B.4 SENSITIVITY ANALYSIS

While in §B.2 we tune the number of layers (L) using the performance on the validation partition, in
this section, we show impact of varying L on test accuracy. According to the summary in Figure 2
(left), accuracy of classifying a node improves when incorporating information from further nodes.
We see little gains beyond L > 6. Note that L = 0 corresponds to ignoring the adjacency matrix
altogether when running f

M̂(JKN) . Here, we fixed λ = C = 1 and averaged 5 runs. The (tiny) error
bars show the standard deviation.

Further, while in §B.3 we do SVD on f
M̂(WYS) with rank k = 32 or k = 100, Figure 2 (right) shows

test accuracy while sweeping k ≤ 32. In general, increasing the rank improves estimation accuracy
and test performance. However, if k is larger than the inherit dimensionality of the data, then this
could cause overfitting (though perfect memorization of training edges). The Norm Regularization
note (§A.3.1) applies only to pseudoinversion i.e. our classification models.
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