
Parameterized Knowledge Transfer for Personalized
Federated Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

In recent years, personalized federated learning (pFL) has attracted increasing1

attention for its potential in dealing with statistical heterogeneity among clients.2

However, the state-of-the-art pFL methods rely on model parameters aggregation3

at the server side, which require all models to have the same structure and size, and4

thus limits the application for more heterogeneous scenarios. To deal with such5

model constraints, we exploit the potentials of heterogeneous model settings and6

propose a novel training framework to employ personalized models for different7

clients. Specifically, we formulate the aggregation procedure in original pFL into a8

personalized group knowledge transfer training algorithm, namely, KT-pFL, which9

enables each client to maintain a personalized soft prediction at the server side to10

guide the others’ local training. KT-pFL updates the personalized soft prediction of11

each client by a linear combination of all local soft predictions using a knowledge12

coefficient matrix, which can adaptively reinforce the collaboration among clients13

who own similar data distribution. Furthermore, to quantify the contributions14

of each client to others’ personalized training, the knowledge coefficient matrix15

is parameterized so that it can be trained simultaneously with the models. The16

knowledge coefficient matrix and the model parameters are alternatively updated17

in each round following the gradient descent way. Extensive experiments on18

various datasets (EMNIST, Fashion_MNIST, CIFAR-10) are conducted under19

different settings (heterogeneous models and data distributions). It is demonstrated20

that the proposed framework is the first federated learning paradigm that realizes21

personalized model training via parameterized group knowledge transfer while22

achieving significant performance gain comparing with state-of-the-art algorithms.23

1 Introduction24

Federated Learning (FL) [1] has emerged as an efficient paradigm to collaboratively train a shared25

machine learning model among multiple clients without directly accessing their private data. By26

periodically aggregating parameters from the clients for global model updating, it can converge27

to high accuracy and strong generalization. FL has shown its capability to protect user privacy28

while there remains a crucial challenge that significantly degrades the learning performance, i.e.,29

statistic heterogeneity in users’ local datasets. Given the Non-Independent and Identically Distributed30

(Non-IID) user data, the trained global model often cannot be generalized well over each client [2–5].31

To deal with the above issues, employing personalized models appears to be an effective solution in32

FL, i.e., personalized federated learning (pFL). Recent works regarding pFL include regularization-33

based methods [6–8] (pFedMe [6], L2SGD [7], FedAMP [8]), meta-learning-based Per-FedAvg [9]34

and cluster-based IFCA [10, 11]. However, in order to aggregate the parameters from all clients, it is35

inevitable for them to have identical model structure and size. Such constraints would prevent status36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

quo pFL methods from further application in practical scenarios, where clients are often willing to37

own unique models, i.e., with customized neural architectures to adapt to heterogeneous capacities in38

computation, communication and storage space, etc.39

Motivated by the paradigm of Knowledge Distillation (KD) [12–16] that knowledge can be transferred40

from a neural network to another via exchanging soft predictions instead of using the whole model41

parameters, we seek to develop a novel training framework that can accommodate heterogeneous42

model structures for each client and achieve personalized knowledge transfer in each FL training43

round. To this end, we formulate the aggregation phase in FL to a personalized group knowledge44

transfer training algorithm dubbed KT-pFL, whose main idea is to allow each client to maintain45

a personalized soft prediction at the server that can be updated by a linear combination of all46

clients’ local soft predictions using a knowledge coefficient matrix. The principle of doing so is to47

reinforce the collaboration between clients with similar data distributions. Furthermore, to quantify48

the contribution of each client to other’s personalized soft prediction, we parameterize the knowledge49

coefficient matrix so that it can be trained simultaneously with the models following an alternating50

way in each iteration round.51

We show that KT-pFL not only breaks down the barriers of homogeneous model restriction, which52

requires to transfer the entire parameters set in each round, whose data volume is much larger53

than that of the soft prediction, but also improves the training efficiency by using a parameterized54

update mechanism. Experimental results on different datasets and models show that our method55

can significantly improve the training efficiency and reduce the communication overhead. Our56

contributions are:57

• To the best of our knowledge, this paper is the first to study the personalized knowledge transfer58

in FL. We propose a novel training framework, namely, KT-pFL, that maintains a personalized soft59

prediction for each client in the server to transfer knowledge among all clients.60

• To encourage clients with similar data distribution to collaborate with each other during the training61

process, we propose the ‘knowledge coefficient matrix’ to identify the contribution from one client to62

others’ local training. To show the efficiency of the parameterized method, we compared KT-pFL63

with two non-parameterized learning methods, i.e., TopK-pFL and Sim-pFL, which calculate the64

knowledge coefficient matrix on the cosine similarity between different model parameters.65

•We provide theoretical performance guarantee for KT-pFL and conduct extensive experiments over66

various deep learning models and datasets. The efficiency superiority of KT-pFL is demonstrated by67

comparing our proposed training framework with traditional pFL methods.68

2 Related Work69

Personalized Federated Learning. Recently, various approaches have been proposed to realize70

personalized FL, which can be categorized into three types according to the number of global models71

applied in the server, i.e., single global model, multiple global models, no global model.72

Single-global-model-based methods extended from the conventional FL algorithms like FedAvg [1]73

combine the optimization of the local models and global model, which consist of four different kinds74

of approaches: local fine-tuning [17–19], regularization [6, 7, 20], mixture [11, 21] and meta learning75

[9, 22]. The straightforward approach for personalization is the local fine-tuning, where all clients76

collaboratively train a global model at beginning and then customize the well-trained global model77

using local data with extra gradient descent steps. Another pFL way is to constrain the deviation78

between local model and global model by adding a regularized term in the objective function (e.g.,79

pFedMe [6], L2SGD [7, 20]). Instead of adding regularized loss function, Mansour et al. [11]80

introduce a general approach for FL by mixing the global and local models, and three different81

personalization methods are proposed with generalization guarantees, namely, client clustering, data82

interpolation, and model interpolation. The third approach is also used in [21] for the adaptive83

personalized federated learning (ApFL) algorithm, which aims to find the optimal combination of the84

global model and the local models. Besides, meta-learning can be used in FL for better personalization85

by generating a highly-adaptable global model that can help to boost the model training with a few86

data samples. Inspired by Model-Agnostic Meta-Learning (MAML) [23], Fallah et al. [9] propose to87

learn personalized models for each client with convergence guarantees (Per-FedAvg).88

All of the above mentioned pFL methods apply a single global model, and only allow limited89

customization to the model at the client side. Therefore, some researchers [8, 10, 11] propose to90

2

train multiple global models at the server, where similar clients are clustered into several groups and91

different models are trained for each group. Mansour et al. [11] provide generalization guarantees92

for multiple global models, while Ghosh [10] take a further step to establish the convergence theory93

regarding the training loss function. FedAMP [8] can be regraded as a special case of the clustered-94

based method that each client owns a personalized global model in the server side.95

As a contrast, some research proposals haven’t applied any global model to deal with the heterogeneity96

problem. Taking an example in [24], the authors use multi-task learning framework to design a new97

training method called MOCHA, to address the statistical and systematic heterogeneity challenges.98

However, multi-task learning based methods need to solve the data-local quadratic subproblem for99

every client, which is computationally intensive. It requires all clients to participate in every training100

round, which is inapplicable for large-scale clients.101

Knowledge Distillation. Knowledge Distillation (KD) [25] is introduced to enhance the performance102

of a small student network by transferring the knowledge from a large teacher network. The principle103

is to update the student model to approximate the soft prediction output of the teacher model [26–30].104

As KD is independent with model structure, some literature [31–33] are proposed to take advantage105

of such flexibility to implement collaborative learning via KD, i.e., distilling the knowledge of an106

ensemble of teacher models to a student model [32]. Most of these schemes construct an ensembling107

teacher by simply averaging the teachers’ soft predictions, or by heuristically combining the output of108

the teacher models, which are hard to achieve optimal combination of teachers. In our framework, KD109

is used in a more efficient way that the weights of the clients’ soft predictions are updated together110

with the model parameters during every FL training iterations.111

3 Problem Formulation112

We aim to collaboratively train personalized models for a set of clients applying different model113

structures in FL. Consider supervised learning whose goal is to learn a function that maps every input114

data to the correct class out of C possible options. We assume that there are N clients, and each115

client n can only access to his private dataset Dn := {xni , yi}, where xi is the i-th input data sample,116

yi is the corresponding label of xi, yi ∈ {1, 2, · · · , C}. The number of data samples in dataset Dn117

is denoted by Dn. D = {D1,D2, · · · ,DN}, N =
∑N

n=1Dn. In conventional FL, the goal of the118

learning system is to learn a global model w that minimizes the total empirical loss over the entire119

dataset D:120

min
w
L(w) :=

N∑
n=1

Dn

D
Ln(w), where Ln(w) =

1

Dn

Dn∑
i=1

LCE(w;xi, yi), (1)

where Ln(w) is the n-th client’s local loss function that measures the local empirical risk over the121

private dataset Dn and LCE is the cross-entropy loss function that measures the difference between122

the predicted values and the ground truth labels.123

However, this formulation requires all local clients to have a unified model structure, which cannot124

be extended to more general cases where each client applies a unique model. Therefore, we need to125

reformulate the above optimization problem to breaks the barrier of homogeneous model structure.126

Besides, given the Non-IID clients’ datasets, it is inappropriate to minimize the total empirical loss.127

To that end, we propose the following training framework:128

Definition 1. Let s(wn, x̂) denote the collaborative knowledge from client n, and x̂ denote a data129

sample from a public dataset Dr that all clients can access to. Define the personalized loss function130

of client n as131

Lper,n(w
n) := Ln(w

n) + λ
∑
x̂∈Dr

LKL

(
N∑

m=1

cmn · s(wm, x̂), s(wn, x̂)

)
, (2)

where λ > 0 is a hyper-parameters, LKL stands for Kullback–Leibler (KL) Divergence function132

and is added to the loss function to transfer personalized knowledge from a teacher to another. cmn133

is the knowledge coefficient which is used to estimate the contribution from client m to n. The134

second term in (2) allows each client to build his own personalized aggregated knowledge in the135

server and enhance the collaboration effect between clients with large c. The concept of collaborative136

knowledge can either refer to soft predictions or model parameters depending on the definition in137

3

..
.

..
.

..
...
.

..
.

..
. ..
. ..
.

..
. ..
.

..
.

..
...
.

..
.

..
.…

①

② ② ②

Private

Public

Soft Prediction

Labels

… *

Client 1 Client 2 Client N

=

⑤

… * = … * =…

③ ③…

⑥

Server

①
Labels

①
Labels

③

④

⑥ ⑥

④ ④

⑤ ⑤

Soft PredictionSoft Prediction

Figure 1: Illustration of the KT-pFL framework. The workflow includes 6 steps: ¬ local training
on private data; , ® each client outputs the local soft prediction on public data and sends it to the
server; ¯ the server calculates each client’s personalized soft prediction via a linear combination of
local soft predictions and knowledge coefficient matrix; ° each client downloads the personalized
soft prediction to perform distillation phase; ± the server updates the knowledge coefficient matrix.

different situations. For example, s(wn, x̂) can be deemed to be a soft prediction of the client n,138

which are calculated with the softmax of logits zn, i.e., s(wn, x̂) =
exp(zn

c /T)∑C
c=1 exp(zn

c /T)
, logits zn is the139

output of the last fully connected layer on client n’s model, T is the temperature hyperparameter of140

the softmax function.141

Definition 2. We define c ∈ RN×N as the knowledge coefficient matrix:142

c =

c11 c12 · · · c1N
c21 c22 · · · c2N

...
...

. . .
...

cN1 cN2 · · · cNN

 . (3)

Our objective is to minimize143

min
w,c
L(w, c) :=

N∑
n=1

Dn

D
Lper,n(w

n) + ρ‖c− 1

N
‖2, (4)

where w = [w1, · · · ,wN] ∈ R
∑N

n=1 dn is the concatenated vector of all weights, dn represents the144

dimensions of model parameter wn. 1 ∈ Rn2

is the identity matrix whose elements are all equal to145

1. The second term in (4) is a regularization term that ensures generalization ability of the whole146

learning system. ρ is a regularization parameter that larger than 0.147

4 KT-pFL Algorithm148

In this section, we introduce the proposed KT-pFL algorithm, where the local model parameters and149

knowledge coefficient matrix are updated alternatively. To enable personalized knowledge transfer in150

FL, we train personalized models locally according to the related collaborative knowledge. Insert151

(2) into (4), and we can design an alternating optimization approach to solve (4), that in each round152

we fix either w or c by turns, and optimize the unfixed one following an alternating way until a153

convergence point is reached.154

Update w: In each communication round, we first fix c and optimize (train) w for several epochs155

locally. In this case, updating w depends on both the private data (i.e., LCE on Dn, n ∈ [1, · · · , N]),156

that can only be accessed by the corresponding client, and the public data (i.e., LKL on Dr), which is157

accessible for all clients. We propose a two-stage updating framework for w:158

• Local Training: Train w on each client’s private data by applying a gradient descent step:159

wn ← wn − η1∇wnLn(w
n; ξn), (5)

where ξn denotes the mini-batch of data Dn used in local training, η1 is the learning rate.160

4

Algorithm 1 KT-pFL Algorithm
Input: Private dataset Dn, public dataset Dr, personalized model wn, n = 1, · · · , N , regularization

parameter ρ and learning rate η1, η2, η3. Total communication rounds T .
Output: Trained personalized models w = [w1, · · · ,wN].

1: Initialize the model parameters w0 and knowledge coefficient matrix c0.
2: procedure SERVER-SIDE OPTIMIZATION
3: Distribute w0 and c0 to each client
4: for each communication round t ∈ {1, 2, ..., T} do
5: for each client n in parallel do
6: wn

t+1 ← ClientLocalUpdate(n,wn
t , ct,n)

7: Update knowledge coefficient matrix c via (7)
8: Distribute ct+1 to all clients
9: procedure CLIENTLOCALUPDATE(n,wn

t , ct,n)
10: Client n receives wn

t and cn from the server
11: for each local epoch i from 1 to E do
12: for mini-batch ξt ⊆ Dn do
13: Local Training: update model parameters on private data via (5)
14: for each distillation step j from 1 to R do
15: for mini-batch ξr,t ⊆ Dr do
16: Distillation: update model parameters on public data via (6)

return local parameters wn
t+1

• Distillation: Transfer knowledge from personalized soft prediction to each local client based on161

public dataset:162

wn ← wn − η2∇wnLKL

(
N∑

m=1

c∗,Tm · s(wm, ξr), s(w
n, ξr)

)
, (6)

where ξr denotes the mini-batch of public data Dr, and η2 is the learning rate. c∗m =163

[cm1, cm2, · · · , cmN] is the knowledge coefficient vector for client m, which can be found in164

m-th row of c. Note that all collaborative knowledge and knowledge coefficient matrix are required165

to obtain the personalized soft prediction in this stage, which can be collected in the server.166

Update c: After updating w locally for several epochs, we turn to fix w and update c in the server.167

c← c− η3λ
N∑

n=1

Dn

D
∇cLKL

(
N∑

m=1

cm · s(wm,∗, ξr), s(w
n,∗, ξr)

)
− 2η3ρ(c−

1

N
), (7)

where η3 is the learning rate for updating c.168

Algorithm 1 demonstrates the proposed KT-pFL algorithm and the idea behind it is shown in Figure 1.169

In every communication round of training, the clients use local SGD to train several epochs based170

on the private data and then send the collaborative knowledge (e.g., soft predictions on public data)171

to the server. When the server receives the collaborative knowledge from each client, it aggregates172

them to form the personalized soft predictions according to the knowledge coefficient matrix. The173

server then sends back the personalized soft prediction to each client to perform local distillation.174

The clients then iterate for multiple steps over public dataset 1. After that, the knowledge coefficient175

matrix is updated in the server while fixing the model parameters w.176

Performance Guarantee. Theorem 1 provides the performance analysis of the personalized model177

when each client owns Non-IID data. Detailed description and derivations are deferred to Appendix.178

Theorem 1. Denote the n-th local distribution and its empirical distribution by Dn and D̂n respec-179

tively, and the hypothesis h ∈ H trained on D̂n by hD̂n
. There always exist c∗m,n,m = 1, . . . , N ,180

such that the expected loss of the personalized ensemble model for the data distribution Dn of client181

n is not larger than that of the single model only trained with local data: LDn(
∑N

m=1 c
∗
m,nhD̂m

) ≤182

LDn
(hD̂n

). Besides, there exist some problems where the personalized ensemble model is strictly183

better, i.e., LDn(
∑N

m=1 c
∗
m,nhD̂m

) < LDn(hD̂n
).184

1Note that our method can work over both labeled and unlabeled public datasets.

5

Theorem 1 indicates that the performance of the personalized ensemble model under some suitable185

coefficient matrices is better than that of the model only trained on its local private data, which186

theoretically demonstrates the necessity of the parameterized personalization. However, it is challeng-187

ing to find such matrices due to the complexity and diversity of machine learning models and data188

distributions. In this paper, our designed algorithm KT-pFL can find the desired coefficient matrix189

in a gradient descent manner, hence achieving the performance boost. Besides, we have the similar190

claim for the relationship between the personalized ensemble model and average ensemble model.191

Remark 1. There always exist c∗m,n,m = 1, . . . , N , such that the expected loss of the personal-192

ized ensemble model for the data distribution Dn of client n is not larger than that of the aver-193

age ensemble model: LDn
(
∑N

m=1 c
∗
m,nhD̂m

) ≤ LDn
(1
N

∑N
m=1 hD̂m

). Besides, there exist some194

problems where the personalized ensemble model is strictly better, i.e., LDn(
∑N

m=1 c
∗
m,nhD̂m

) <195

LDn
(1
N

∑N
m=1 hD̂m

).196

5 Evaluations197

5.1 Experimental Setup198

Task and Datasets We evaluate our proposed training framework on three different image classifi-199

cation tasks: EMNIST [34], Fashion_MNIST [35] and CIFAR-10 [36]. For each dataset, we apply200

two different Non-IID data settings: 1) each client only contains two classes of samples; 2) each201

client contains all classes of samples, while the number of samples for each class is different from202

that of a different client. All datasets are split randomly with 75% and 25% for training and testing,203

respectively. The testing data on each client has the same distribution with its training data. For all204

methods, we record the average test accuracy of all local models for evaluation.205

Model Structure: Four different lightweight model structures including LeNet [37], AlexNet [38],206

ResNet-18 [39], and ShuffleNetV2 [40] are adopted in our experiments. Our pFL system has 20207

clients, who are assigned with four different model structures, i.e., five clients per model.208

Baselines: Although KT-pFL is designed for effective personalized federated learning, it can be209

applied to both heterogeneous and homogeneous model cases. We first conduct experiments on210

heterogeneous systems where the neural architecture of the local models are different among clients.211

We compare the performance of KT-pFL to the non-personalized distillation-based method named212

FedDF [16]2 and other simple versions of KT-pFL including Sim-pFL and TopK-pFL. Sim-pFL213

calculates the knowledge coefficient by using cosine similarity between two local soft predictions.214

Instead of combining the knowledge from all clients, TopK-pFL obtains the personalized soft215

predictions only from K clients 3 who have higher value of cosine similarity.216

To demonstrate the generalization and effectiveness of our proposed training framework, we further217

compare KT-pFL to FedAvg [1] and state-of-the-art pFL methods including Per-Fedavg [9], pFedMe218

[6] and FedAMP [8] under the homogeneous model setting. Note that Per-FedAvg is a MAML-based219

method which aims to optimize the one-step gradient update for its personalized model. pFedMe220

and FedAMP are two regularized-based methods. The former one obtains personalized models by221

controlling the distance between local model and global model, while the later one facilitates the222

collaboration of clients with similar data distribution.223

Implementation The experiments are implemented in PyTorch. We simulate a set of clients and a cen-224

tralized server on one deep learning workstation (i.e., Intel(R) Core(TM) i9-9900KF CPU@3.6GHz225

with one NVIDIA GeForce RTX 2080Ti GPU).226

5.2 Results227

Subject to space constraints, we only report the most important experimental results in this section.228

Please refer to Appendix for the details of different Non-IID data settings on EMNIST, Fash-229

2FedDF exchanges model parameters with the server and performs knowledge transfer after averaging the
local model parameters at the server side. In our heterogeneous setting, the local clients exchange soft predictions
with the server, so we omit the parameters aggregation phase of FedDF in our experiments.

3In our experiments, we set K as 5.

6

0 5 10 15 20 25 30
�������������������

0.56

0.63

0.70

0.77

0.84

0.91

��
��
��
��

��
���

��
��
��
�

����

�������
	������
�
����

(a) EMNIST

0 5 10 15 20 25 30
�������������������

0.60
0.63
0.66
0.69
0.72
0.75

��
��
��
��

��
���

��
��
��
�

����

�������
	������
�
����

(b) Fashion_MNIST

0 5 10 15 20 25 30
�������������������

0.25

0.30

0.35

0.40

0.45

0.50

��
��
��
��

��
���

��
��
��
�

����

�������
	������
�
����

(c) CIFAR-10

Figure 2: Performance comparison of FedDF, TopK-pFD, Sim-pFD, and KT-pFL in average test
accuracy on three datasets (Non-IID case 1: each client contains all labels).

0 5 10 15 20 25 30
�������������������

0.55

0.60

0.65

0.70

0.75

0.80

��
��
��
��

��
���

��
��
��
�

����

�������
	������
�
����

(a) EMNIST

0 5 10 15 20 25 30
�������������������

0.55

0.60

0.65

0.70

0.75

0.80

��
��
��
��

��
���

��
��
��
�

����

�������
	������
�
����

(b) Fashion_MNIST

0 5 10 15 20 25 30
�������������������

0.64

0.68

0.72

0.76

0.80

0.84

��
��
��
��

��
���

��
��
��
�

����

�������
	������
�
����

(c) CIFAR-10

Figure 3: Performance comparison of FedDF, TopK-pFD, Sim-pFD, and KT-pFL in average test
accuracy on three datasets (Non-IID case 2: each client contains only two labels).

ion_MNIST and CIFAR10, the implementation details and the hyperparameter settings of all the230

methods, and also extra results about the convergence and robustness analysis.231

5.2.1 Performance Comparison232

Heterogeneous FL. For all the methods and all the data settings, the batch size on private data and233

public data are 128 and 256, respectively, the number of local epochs is 20 and the distillation steps234

is 1 in each communication round of pFL training. Unless mentioned, otherwise the size of public235

data used in each communication round is 3000, the learning rate is set to 0.01 for EMNIST and236

Fashion_MNIST, and 0.02 for CIFAR-10.237

Table 1: The comparison of final test accuracy on different datasets with heterogeneous models (i.e.,
Lenet, AlexNet, ResNet-18 and ShuffleNetV2).

Method EMNIST (%) FashionMNIST (%) CIFAR-10 (%)

Non-IID_1 Non-IID_2 Non-IID_1 Non-IID_2 Non-IID_1 Non-IID_2

FedDF [16] 72.75 75.41 71.89 72.76 42.03 39.50
Sim-pFD 82.72 74.42 72.82 72.71 42.50 39.90
TopK-pFD 83.00 73.91 72.24 73.39 42.58 39.34
KT-pFL 84.65 76.30 75.48 75.60 43.82 41.04

Figure 2 and 3 show the curves of the average test accuracy during the training process on four238

different models with three datasets, which include the results of FedDF, Sim-pFL, TopK-pFL and KT-239

pFL. We also summarize the final average test accuracy in Table 1. In two cases of Non-IID settings,240

KT-pFL obtains comparable or even better accuracy performance than others. The performance of241

FedDF is worse than the other three methods. The reason is that taking the global aggregation of all242

local soft predictions trained on the Non-IID data from different clients produces only one global243

soft prediction, which cannot be well adapted to each client. The other two personalized methods,244

i.e., Sim-pFL and TopK-pFL, achieve comparably performance on most of cases with FedDF. Our245

proposed method KT-pFL has the best performance, because each client can adaptively aggregate all246

local soft predictions to form a personalized one instead of being restricted to a global soft prediction.247

7

0 200 400 600 800
��������������	����

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

��
��

��
��

��
���

��
��

��
�

�����
���������
�����
�����
�
����

(a) EMNIST

0 200 400 600 800
��������������	����

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

��
��

��
��

��
���

��
��

��
�

�����
���������
�����
�����
�
����

(b) Fashion_MNIST

0 200 400 600 800
��������������	����

−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

��
��

��
��

��
���

��
��

��
�

�����
���������
�����
�����
�
����

(c) CIFAR_10

Figure 4: Performance comparison of FedAvg, Per-Fedavg, pFedMe, FedAMP and KT-pFL in
average test accuracy on three datasets. The Non-IID data setting: each client contains all labels. 20
clients with homogeneous models: CNN [1]. Learning rate: 0.005.

Table 2: The comparison of final test accuracy on different datasets with homogeneous models (i.e.,
the same CNN architecture as [1]).

Method EMNIST (%) Fashion_MNIST (%) CIFAR-10 (%)

Fedavg [1] 85.86 80.69 35.69
Per-Fedavg [9] 86.16 85.91 41.37
pFedMe [6] 84.26 90.97 40.44
FedAMP [8] 88.51 90.79 40.11
KT-pFL 94.40 93.93 52.35

Homogeneous FL. Apart from heterogeneous system, we further extend KT-pFL to homogeneous248

model setting. To conduct fair comparison with baselines, we exchange model parameters with249

the server to perform knowledge transfer. Specifically, each client maintains a personalized global250

model at the server side and each personalized global model is aggregated by a linear combination of251

local model parameters and knowledge coefficient matrix. In this case, we compare the performance252

of homogeneous-version of KT-pFL with FedAvg, Per-Fedavg, pFedMe and FedAMP. Figure 4253

and Table 2 show the curve of the average test accuracy during training and the final average test254

accuracy on three different datasets, respectively. For all datasets, KT-pFL dominates the other four255

methods on average test accuracy with less variance. Besides, the concept of FedAMP is similar256

to our proposed method KT-pFL. The difference is that the weights for each local model during257

personalized aggregation phase are updated in a gradient descent manner in KT-pFL.258

5.2.2 Effect of hyperparameters259

To understand how different hyperparameters such as E, R, ρ, and |ξr| can affect the training260

performance of KT-pFL in different settings, we conduct various experiments on three dataset with261

η1 = η2 = η3 = 0.01.262

Effect of Local Epochs E. To reduce communication overhead, the server tends to allow clients to263

have more local computation steps, which can lead to less global updates and thus faster convergence.264

Therefore, we monitor the behavior of KT-pFL using a number of values ofE, whose results are given265

in Table 3. The results show that larger values of E can benefit the convergence of the personalized266

models. There is, nevertheless, a trade-off between the computations and communications, i.e.,267

while larger E requires more computations at local clients, smaller E needs more global commu-268

nication rounds to converge. To do such trade-off, we fix E = 20 and evaluate the effect of other269

hyperparameters accordingly.270

Effect of Distillation Steps R. As the performance of the knowledge transfer is directly related to271

the number of distillation steps R, we compare the performance of KT-pFL under different setting of272

distillation steps (e.g., R = 1, 2, 3, 5). The number of local epochs is set to 20. The results show that273

larger value of R cannot always lead to better performance, which means a moderate number of the274

distillation steps is necessary to approach to the optimal performance.275

Effect of ρ. As mentioned in (4), ρ is the regularization term to do the trade-off between personal-276

ization ability and generalization ability. For example, larger value of ρ means that the knowledge277

8

Table 3: The comparison of final test accuracy on different datasets with homogeneous models.

Dataset # Local epochs (E) # Distillation steps (R)

5 10 15 20 1 2 3 5

EMNIST (%) 90.15 92.76 91.03 90.15 91.76 91.40 91.18 91.54
Fashion_MNIST (%) 88.73 89.14 88.58 89.42 89.14 89.90 89.07 88.08

CIFAR-10 (%) 58.30 59.38 59.34 59.24 59.24 57.99 59.22 58.91

Table 4: The comparison of final test accuracy on different datasets with homogeneous models

Dataset # Regularization parameter ρ # Batch size of public data (|ξr|)
0.1 0.3 0.5 0.7 500 1000 3000 5000

EMNIST (%) 90.96 90.66 90.88 91.76 91.25 91.47 91.66 91.32
Fashion_MNIST (%) 89.49 89.30 88.56 89.14 88.08 89.40 89.50 89.14

CIFAR-10 (%) 59.08 58.52 59.56 58.40 58.93 58.79 58.91 58.40

coefficient of each local soft prediction should approach to 1
N , and thus more generalization ability278

should be guaranteed. Table 4 shows the results of KT-pFL with different value of ρ. In most settings,279

a significantly large value of ρ will hurt the performance of KT-pFL.280

Effect of |ξr|. Table 4 demonstrates the effect of batch size of public data |ξr| used in local distillation281

phase. When the size of the mini-batch is increased, KT-pFL has higher average test accuracy.282

However, very large |ξr| will not only slow down the convergence of KT-pFL but also incur higher283

computation time at the clients. During the experiments, the value of |ξr| is configured to 3000.284

5.2.3 Efficiency Evaluation285

KT-pFL

Conv-pFL

Data Param Soft prediction

48.1 14.6

4,777.4

EMNIST

KT-pFL

Conv-pFL

Data Param Soft prediction

48.1 14.6

4,777.4

EMNIST

48.1 14.6

4,777.4

Fashion_MNIST

48.1 14.6

4,777.4

Fashion_MNIST

300.0 14.6

4,777.4

CIFAR-10

300.0 14.6

4,777.4

CIFAR-10

Figure 5: Communication Efficiency (X-axis units: MBytes) on three datasets. KL-pFL: soft
prediction-based personalized federated learning; Conv-pFL: conventional parameter-based personal-
ized federated learning. (20 models, 30 communication rounds for all datasets. In this experiment,
the public dataset is stored on the server.)

To evaluate the communication overhead, we record three aspects information: Data (batch size used286

in distillation phase), Param (model parameters) and Soft Prediction without using data compression287

techniques. The results are shown in Figure 5. Compared with conventional parameter-based pFL288

methods, the communication overhead on soft prediction-based KT-pFL is far less than Conv-pFL.289

Broader Impact290

FL has been emerged as new paradigm to collaboratively train models among multiple clients in a291

privacy-preserving manner. Due to the diversity of users (e.g., statistical and systematic heterogeneity,292

etc.), applying personalization in FL is essential for future trend. Our method KT-pFL not only breaks293

the barriers of homogeneous model constraint, which can significantly reduce the communication294

overhead during training, but also improves the training efficiency via a parameterized update295

mechanism without additional computation overhead at the client side. This research has the potential296

to enable various devices to cooperatively train ML tasks based on customized neural network297

architectures.298

9

References299

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.300

Communication-efficient learning of deep networks from decentralized data. In Proceedings of301

the 20th International Conference on Artificial Intelligence and Statistics, AISTATS, 2017.302

[2] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia303

Smith. Federated optimization in heterogeneous networks. In Proceedings of Machine Learning304

and Systems, MLSys, 2020.305

[3] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In306

Proceedings of International Conference on Machine Learning, ICML, pages 4615–4625, 2019.307

[4] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and308

Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In309

Proceedings of International Conference on Machine Learning, ICML, pages 5132–5143, 2020.310

[5] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in311

federated learning. In Proceedings of 8th International Conference on Learning Representations,312

ICLR, 2020.313

[6] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. Personalized federated learning with314

moreau envelopes. In Proceedings of Advances in Neural Information Processing Systems 33:315

Annual Conference on Neural Information Processing Systems, NeurIPS, 2020.316

[7] Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models.317

arXiv preprint arXiv:2002.05516, 2020.318

[8] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong319

Zhang. Personalized cross-silo federated learning on non-iid data. In Proceedings of the AAAI320

Conference on Artificial Intelligence, AAAI, 2021.321

[9] Alireza Fallah, Aryan Mokhtari, and Asuman E. Ozdaglar. Personalized federated learning with322

theoretical guarantees: A model-agnostic meta-learning approach. In Proceedings of Advances323

in Neural Information Processing Systems 33: Annual Conference on Neural Information324

Processing Systems, NeurIPS, 2020.325

[10] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework326

for clustered federated learning. In Proceedings of Advances in Neural Information Processing327

Systems 33: Annual Conference on Neural Information Processing Systems, NeurIPS, 2020.328

[11] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for329

personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.330

[12] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun331

Kim. Communication-efficient on-device machine learning: Federated distillation and augmen-332

tation under non-iid private data. arXiv preprint arXiv:1811.11479, 2018.333

[13] Daliang Li and Junpu Wang. FedMD: Heterogenous federated learning via model distillation.334

arXiv, oct 2019.335

[14] Hongyan Chang, Virat Shejwalkar, Reza Shokri, and Amir Houmansadr. Cronus: Robust336

and heterogeneous collaborative learning with black-box knowledge transfer. arXiv preprint337

arXiv:1912.11279, 2019.338

[15] Sohei Itahara, Takayuki Nishio, Yusuke Koda, Masahiro Morikura, and Koji Yamamoto.339

Distillation-based semi-supervised federated learning for communication-efficient collaborative340

training with non-iid private data. arXiv preprint arXiv:2008.06180, 2020.341

[16] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. Ensemble distillation for342

robust model fusion in federated learning. In Proceedings of Advances in Neural Information343

Processing Systems 33: Annual Conference on Neural Information Processing Systems, NeurIPS,344

2020.345

10

[17] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beaufays,346

and Daniel Ramage. Federated evaluation of on-device personalization. arXiv preprint347

arXiv:1910.10252, 2019.348

[18] Johannes Schneider and Michail Vlachos. Personalization of deep learning. arXiv preprint349

arXiv:1909.02803, 2019.350

[19] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary.351

Federated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.352

[20] Filip Hanzely, Slavomír Hanzely, Samuel Horváth, and Peter Richtárik. Lower bounds and353

optimal algorithms for personalized federated learning. In Proceedings of Advances in Neural354

Information Processing Systems 33: Annual Conference on Neural Information Processing355

Systems, NeurIPS, 2020.356

[21] Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized357

federated learning. arXiv preprint arXiv:2003.13461, 2020.358

[22] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning359

personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.360

[23] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-361

tation of deep networks. In Proceedings of the 34th International Conference on Machine362

Learning, ICML, volume 70, pages 1126–1135, 2017.363

[24] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S. Talwalkar. Federated multi-364

task learning. In Proceedings of Advances in Neural Information Processing Systems 30: Annual365

Conference on Neural Information Processing Systems, NeurIPS, 2017.366

[25] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.367

arXiv preprint arXiv:1503.02531, 2015.368

[26] Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning. In369

Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR,370

pages 4320–4328, 2018.371

[27] Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In Proceedings372

of 2019 IEEE/CVF International Conference on Computer Vision, ICCV, pages 4794–4802,373

2019.374

[28] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student375

improves imagenet classification. In Proceedings of 2020 IEEE/CVF Conference on Computer376

Vision and Pattern Recognition, CVPR, pages 10687–10698, 2020.377

[29] Chenglin Yang, Lingxi Xie, Siyuan Qiao, and Alan L Yuille. Training deep neural networks378

in generations: A more tolerant teacher educates better students. In Proceedings of the AAAI379

Conference on Artificial Intelligence, AAAI, volume 33, pages 5628–5635, 2019.380

[30] Mary Phuong and Christoph H Lampert. Distillation-based training for multi-exit architectures.381

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1355–382

1364, 2019.383

[31] Guile Wu and Shaogang Gong. Peer collaborative learning for online knowledge distillation. In384

Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2021.385

[32] Qiushan Guo, Xinjiang Wang, Yichao Wu, Zhipeng Yu, Ding Liang, Xiaolin Hu, and Ping386

Luo. Online knowledge distillation via collaborative learning. In Proceedings of the IEEE/CVF387

Conference on Computer Vision and Pattern Recognition, CVPR, pages 11020–11029, 2020.388

[33] Ilai Bistritz, Ariana Mann, and Nicholas Bambos. Distributed distillation for on-device learning.389

In Proceedings of Advances in Neural Information Processing Systems 33: Annual Conference390

on Neural Information Processing Systems, NeurIPS, 2020.391

11

[34] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: extending392

MNIST to handwritten letters. In Proceedings of 2017 International Joint Conference on Neural393

Networks, IJCNN, 2017.394

[35] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for395

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.396

[36] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.397

2009.398

[37] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning399

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.400

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep401

convolutional neural networks. In Proceedings of Advances in Neural Information Processing402

Systems 25: 26th Annual Conference on Neural Information Processing Systems, NeurIPS,403

pages 1106–1114, 2012.404

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-405

age recognition. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern406

Recognition, CVPR, pages 770–778, 2016.407

[40] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines408

for efficient cnn architecture design. In Proceedings of the European conference on computer409

vision, ECCV, pages 116–131, 2018.410

Checklist411

1. For all authors...412

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s413

contributions and scope? [Yes]414

(b) Did you describe the limitations of your work? [N/A]415

(c) Did you discuss any potential negative societal impacts of your work? [No] We believe416

our work has the potential to be implemented in practical scenarios.417

(d) Have you read the ethics review guidelines and ensured that your paper conforms to418

them? [Yes]419

2. If you are including theoretical results...420

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 4421

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix422

3. If you ran experiments...423

(a) Did you include the code, data, and instructions needed to reproduce the main experi-424

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix425

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they426

were chosen)? [Yes] See Appendix427

(c) Did you report error bars (e.g., with respect to the random seed after running experi-428

ments multiple times)? [N/A]429

(d) Did you include the total amount of compute and the type of resources used (e.g., type430

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5431

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...432

(a) If your work uses existing assets, did you cite the creators? [Yes]433

(b) Did you mention the license of the assets? [N/A]434

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]435

436

(d) Did you discuss whether and how consent was obtained from people whose data you’re437

using/curating? [N/A]438

12

(e) Did you discuss whether the data you are using/curating contains personally identifiable439

information or offensive content? [N/A]440

5. If you used crowdsourcing or conducted research with human subjects...441

(a) Did you include the full text of instructions given to participants and screenshots, if442

applicable? [N/A]443

(b) Did you describe any potential participant risks, with links to Institutional Review444

Board (IRB) approvals, if applicable? [N/A]445

(c) Did you include the estimated hourly wage paid to participants and the total amount446

spent on participant compensation? [N/A]447

13

	Introduction
	Related Work
	Problem Formulation
	KT-pFL Algorithm
	Evaluations
	Experimental Setup
	Results
	Performance Comparison
	Effect of hyperparameters
	Efficiency Evaluation

