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Abstract

Fine-tuning large pre-trained models on downstream tasks has been adopted in a1

variety of domains recently. However, it is costly to update the entire parameter2

set of large pre-trained models. Although recently proposed parameter-efficient3

transfer learning (PETL) techniques allow updating a small subset of parameters4

inside a pre-trained backbone network for a new task, they only reduce the training5

memory requirement by up to 30%. This is because the gradient computation6

for the trainable parameters still requires backpropagation through the large pre-7

trained backbone model. To address this, we propose Ladder Side-Tuning (LST),8

a new PETL technique that can also reduce training memory requirements by9

more substantial amounts. Unlike existing parameter-efficient methods that insert10

additional parameters inside backbone networks, we train a ladder side network, a11

small and separate network that takes intermediate activations as input via short-12

cut connections (ladders) from backbone networks and makes predictions. LST13

has significantly lower memory requirements than previous methods, because it14

does not require backpropagation through the backbone network, but instead only15

through the side network and ladder connections. We conduct our experiments16

on various models (T5 and CLIP-T5) and tasks (GLUE, VQA, GQA, NLVR2,17

MSCOCO). LST saves 69% of the memory costs to fine-tune the whole network,18

while other methods only save 26% of that in similar parameter usages (hence,19

2.7x more memory savings). Moreover, LST outperforms Adapter and LoRA in20

a low-memory regime. To further show the advantage of this memory efficiency,21

we also apply LST to large T5 models (T5-large, T5-3B), attaining better GLUE22

performance than full fine-tuning and other PETL methods. The trend also holds in23

the experiments on vision-and-language tasks, where LST performs comparably to24

other PETL methods when training a similar number of parameters but only uses25

46% of their GPU memory.26

1 Introduction27

Recently, large-scale pre-training and fine-tuning of transformers [48] have been successful in various28

domains [8, 31, 38, 33, 47, 7, 19, 2, 10]. As the model size grows rapidly, fine-tuning the entire29

parameter set of the large pre-trained model has become very costly. Parameter-efficient transfer30

learning (PETL) [26, 21, 34, 35, 29, 45, 52, 16, 22, 17, 36, 54, 14, 46, 53] is a recent research31

direction for the online setting, where tasks arrive in an online or multi-task setting. The goal is32

to build a system that performs well on all tasks without training an entire new model for every33

new task. Concretely, PETL methods select a small subset of pre-trained parameters and/or insert a34

few parameters to a pre-trained network and update those parameters for new tasks, while freezing35

most of the original parameters. In the natural language processing (NLP), computer vision (CV),36

and vision-and-language (VL) domains, two types of parameters have been commonly updated37
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Figure 1: Comparison between full fine-
tuning, Adapter, LoRA, BitFit, and Ladder
Side-Tuning over GLUE tasks. The y-axis
is the average accuracy of 8 GLUE tasks,
while the x-axis is the GPU memory usage
during training. Unless specially stated,
we use the T5-base in the figure.
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Figure 2: Comparison between transfer learning with (a)
Adapters, (b) Prompt Tuning, and our (b) Ladder Side-
Tuning (LST). LST reduces memory usage by removing
the need of backpropgation through backbone networks.

for parameter-efficient transfer learning: (1) Adapters [21, 35, 34]: small modules inserted into38

transformer blocks; (2) Prompt [29, 26]: small parameters concatenated with input embeddings.39

However, while parameter-efficient techniques reduce the number of parameters to update, they40

do not reduce the memory requirement during training by much (up to 30%). In other words, if a41

large pre-trained language model does not fit on a GPU, these techniques usually do not help to fit42

the model on the GPU. Since the updated parameters are inside the backbone language models, to43

calculate gradients for these parameters for backpropagation, we still need to run the backward pass44

through the large pre-trained language models. This prevents PETL methods from being applied to45

many real-world applications with limited computational resources.46

To address this issue, we propose Ladder Side-Tuning (LST), a memory-efficient PETL method.47

LST separates trainable parameters from the backbone model to construct a side network, which is48

responsible for adapting the entire model to new tasks. Concretely, we train a ladder side network,49

a lightweight network that takes intermediate activations via shortcut connections (ladders) from50

the backbone networks as input and makes predictions. As shown in Fig. 2, unlike previous (a)51

adapters, (b) prompt tuning methods, (c) our LST does not add trainable parameters inside the52

pre-trained model. This completely eliminates the need for expensive backpropagation of a large53

backbone network and saves substantial memory during transfer learning. Instead of initializing the54

side network’s weights randomly, we utilize a network pruning technique to retrieve a smaller pruned55

network and use it as the side network. In addition to our standard design of the side network, we56

also boost the efficiency of LST by dropping layers of the side network. We empirically demonstrate57

that the layer dropping can significantly improve both memory and parameter efficiency without58

sacrificing performance. Furthermore, during inference, even though we have to propagate forward59

through two distinct networks, LST does not necessarily use more inference time because the same60

level of the backbone network and the side network can be computed in parallel.61

We conduct comprehensive studies on LST using diverse NLP and VL tasks, namely, GLUE [49],62

VQA [15], GQA [23], NLVR2 [44] and MSCOCO [6]. Overall, in GLUE experiments, LST saves63

69% of the GPU memory that is needed for fine-tuning the entire backbone model, saving 2.7x64

memory compared against Adapter and LoRA. Also, LST outperforms other PETL methods in65

a low-memory regime. To take advantage of this memory efficiency, we also apply LST to large66

language models (T5-large and T5-3B) and find that it outperforms other techniques when GPU67

memory utilization is similar. The findings still hold in the VL experiments; LST is not only a68

method that can fit in a 16GB GPU with 7.5% trainable parameters, but it also has comparable or69

better performance than other PETL methods. To justify our design of LST, we conduct ablation70

studies on initialization strategies and alternatives to add shortcut connections. The results reveal that71

these components considerably help performance, while only adding minor computation overhead.72
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2 Related Work73

2.1 Parameter-efficient Transfer Learning (PETL)74

PETL for NLP. In the past few years, large pre-trained language models have made huge success in75

NLP. Parameter-efficient transfer learning (PETL) is a research direction that reduces computational76

cost of adapting large pre-trained models to new tasks, by avoiding updates of the entire parameters.77

A popular line of work on PETL is to add a few trainable parameters and only tune them. For78

example, Adapters [42, 21] are small bottleneck modules that are inserted into transformer layers, and79

experiments have shown that training adapters with layer normalization layers is sufficient to achieve80

full fine-tuning performance. In a similar trend, LoRA [22] injects trainable rank decomposition81

matrices into a frozen pre-trained model. Instead of inserting new parameters into pre-trained models,82

prompt-based [26, 29] methods add trainable parameters to the input and keep the entire pre-trained83

model unchanged during training. The inserted prompts learn to make use of the knowledge of the84

pre-trained model to solve new tasks. Although the concept of adapter-based and prompt-based85

approaches is different, He et al. [17] unifies the two lines of approaches (including LoRA) into86

adapter-based methods. In addition to approaches that introduce new parameters, there are also87

various methods [45, 52, 16] that select a sparse subset of parameters from the pre-trained model to88

update, without adding any new parameters. One of such representative methods is BitFit [52], which89

updates every bias term in the model.90

PETL for CV/VL. While most of the progress in PETL is made in NLP domain, researchers have91

also applied this technique to the CV [41, 40, 25, 53, 56, 1, 54, 20] and VL [46, 55, 56, 1, 54] domains.92

VL-Adapter [46] benchmarks adapter-based and prompt-based methods on multiple image-text and93

video-text tasks, and shows adapters enable us to efficiently learn fusion information of vision and94

language. On the CV side, benefitting from the parameter efficiency of adapters and prompt-tuning,95

some works [56, 1, 54] apply these approaches to CLIP [37] to achieve strong few-shot performance96

in image classification tasks. Side-Tuning [53] applies an additive side network, which sums its97

representation with the backbone network in the last layer, to solve various tasks with ResNet [18]98

and BERT [8]. Although LST bears similarities and takes inspiration from Side-Tuning, we argue99

that there are major differences in motivations, architecture designs, and applied tasks between the100

two methods. LST aims to reduce the memory requirement of current PETL methods, whereas101

Side-Tuning does not focus on memory reduction (sometimes their side network is even as big as the102

backbone network), but instead their motivation is to ease the forgetfulness in incremental learning103

by freezing the backbone model. Our ladder side network is more robust than their design because104

the shortcuts fuse the intermediate information from the backbone network, and we also use layer105

dropping and network pruning techniques to make LST more efficient and stronger. Lastly, we further106

extend LST in VL architecture and demonstrate its usefulness on multiple VL tasks.107

Current PETL approaches explore how to achieve competitive results using as few parameters as108

possible. However, parameter efficiency does not necessarily mean memory efficiency. In this work,109

we propose LST that has these two benefits simultaneously. Concurrently, Liu et al. [32] also propose110

Y-tuning to address a similar issue; it exhausts all possible labels and feeds them into a model to111

select the best answer from the input. However, it is intractable oftentimes to list all answers in some112

tasks, for example, regression and open-ended generation tasks. On the other hand, LST is more113

flexible in applying to different architectures and tasks. We show that LST can outperform Y-tuning114

with fewer parameter updates in Table 2.115

2.2 Network Pruning116

In this paper, we use network pruning to extract a sub-network that contains critical information of117

the backbone model, and use it as the initialization for our side network. Network pruning makes118

models lighter by removing unimportant parameters or neurons. This technique aims to produce119

pruned architectures with fast inference speed, low memory footprint, and competitive performance.120

While PETL still uses those untrained parameters in the forward pass, network pruning entirely121

discards them or sets them to zero. As a result, network pruning can generate models for faster122

inference speed while PETL can achieve sufficient performance by updating fewer parameters. The123

standard procedure of network pruning is (1) learn [12, 13] or heuristically define [28] an "importance124

measure" to identify the importance of parameters, (2) prune p% of parameters with lower importance125

scores, (3) repeat the first and second steps until reaching the target sparsity. The rewinding procedure126
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enables pruning techniques to find a more sparse sub-network. In this paper, to keep the whole127

pruning process efficient, we either use weights magnitude [28] or Fisher Information [45, 30] as the128

importance measure, and reach the target sparsity in one shot. As a PETL method, LST makes use of129

the intermediate information of the backbone model as the inputs, and we empirically demonstrate130

those additional inputs significantly improve the performance.131

3 Ladder Side-Tuning (LST)132

We introduce Ladder Side-Tuning (LST), a new PETL technique that can also reduce training133

memory requirements by substantial amounts than previous methods. In Section 3.1, we analyze134

the computational cost for fine-tuning with trainable modules in backbone models. Then we explain135

the architectural details (Section 3.2), structural weight initialization based on network pruning136

(Section 3.3), and dropping side network layers for more efficiency (Section 3.4).137

3.1 Dependency on Backpropagation through Large Backbone Model138

We consider a N multilayer perceptron (MLP): fN (fN−1(...f2(f1(x))...)), where the ith layer139

fi(x) = σi(Wix + bi) consists of weight Wi, bias bi, and nonlinear function σi. We denote the140

output of ith layer as ai+1 and the pre-activation as zi+1, where ai+1 = σi(zi+1) = σi(Wiai + bi).141

In backpropagation with loss L, the gradient with respect to Wi and bi:142

∂L

dWi
=

∂L

∂ai+1

∂ai+1

∂zi+1

∂zi+1

∂Wi
=

∂L

∂ai+1
σ′
iai,

∂L

dbi
=

∂L

∂ai+1
σ′
i (1)

where σ′
i is the derivative of σi. ∂L

∂ai+1
, the gradient with respect to ai, can be calculated with the143

gradients with respect to ai+2, using the chain rule:144

∂L

∂ai+1
=

∂L

∂ai+2

∂ai+2

∂zi+2

∂zi+2

∂ai+1
=

∂L

∂ai+2
σ′
i+1Wi+1 (2)

As shown in Eqs. (1) and (2), during backpropagation, 1) {a} corresponding to updated parameters145

{W} and {b} and 2) {σ′} for the chain rule must be cached and thus dominate the memory footprint,146

where we use {·} to denote a set of activations, parameters, or gradients. Existing PETL methods,147

such as Adapters [21], LoRA [22], Prompt-tuning [26], and BitFit [52, 4] could reduce the memory148

footprint by making |a| smaller, as they have fewer {W} to update, but do not reduce |σ′|, where | · |149

means the size of set {·}. Since |a| = |σ′| holds for most activation functions, the memory footprint150

for backpropagation |a|+ |σ′| can be reduced by up to 50% by the PETL methods when they reduce151

the entire memory footprint for |a|. By making the updated parameter do not require backpropagation152

through the backbone network, our LST can achieve better memory efficiency beyond 50%, and we153

explain it below.154

3.2 Ladder Side Network for Transformers155

Unlike existing transfer learning methods that insert additional parameters inside a transformer net-156

work, we propose training a ladder side network, a small and separate network that takes intermediate157

activations from the backbone transformer as input and makes predictions. As illustrated in Fig. 3158

(a), since the ladder side network parameters ϕ are not used during the forward pass of the backbone159

transformer with parameters θ, the update of the ladder side network does not require expensive160

backpropagation of the large backbone transformer. Note that our LST method is not limited to a161

specific architecture. We provide a simplified overview of LST with an encoder architecture in Fig. 3162

(a) and an illustration of LST with an encoder-decoder architecture in Fig. 3 (b).163

Lightweight architecture. Our side network g is a lightweight version of the backbone transformer164

f , where all weights and hidden state dimensions of in g are 1
r times of the original weights and165

hidden states of f , where r is a reduction factor (e.g. r = 2, 4, 8, 16). For example, if the backbone f166

has a 768-dimensional hidden state, then the side network g with r = 16 has a hidden state of 48167

dimensions (= 768/16). The side network g reuses frozen word embeddings (‘Emb’ in Fig. 3 (a))168
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Figure 3: Illustration of Ladder Side-Tuning (LST) with transformer described in Section 3.2. (a)
shows a high-level overview of LST, and (b) shows LST with an encoder-decoder architecture.

and the language model head (‘LM head’ in Fig. 3 (a)) of the backbone f . Following the analysis169

in Section 3.1, we also examine the memory cost of LST. Recall that original memory footprint for170

backpropagation is |a|+ |σ′|. Because we do not have to run a backward pass through the backbone171

network, we can only consider the gradients for the side network, whose memory footprint is |a|+|σ′|
r .172

Therefore, LST has a better memory efficiency than other PETL methods (saving up to 50%) as long173

as r is greater than 2 (we find 8 works well in most experiments).174

Gated ladder connections. Although Zhang et al. [53] found that late fusion to combine the175

representations of the backbone and the side network works well with convolutional networks for176

CV tasks, in our experiments, we find that late fusion hurts the performance of the transformer177

architecture in NLP tasks (see Figure 8 in Section 5 for details). To address this, we use the shortcut178

connection (called ladder, due to the overall shape created from the multiple shortcut connections)179

from intermediate activations from the backbone f to the side network g and find it helpful. We learn180

linear projections to downsample (× 1
r ) the intermediate activations (including word embeddings) of181

f to low-dimensional attention blocks in g. Then, we learn a linear projection to upsample (×r) the182

side network output to the dimension of the original language model head. The linear projections are183

illustrated as green trapezoids in Fig. 3 (a). The ith transformer layer of the side network g combines184

the activation of the backbone hf
i and the activation of the previous layer of the side network hg

i−1185

with learned gating: µi ∗ hf
i + (1− µi) ∗ hg

i−1, where µi = sigmoid(αi

T ) is a gate parameterized186

with a learnable zero-initialized scalar αi and temperature T (= 0.1).187

3.3 Structural Weight Initialization for Ladder Side Network188

We find it helpful to initialize the weights of the side network ϕ from the weight of the backbone189

network θ based on structural pruning [28], as shown in Fig. 4 (a). Concretely, given a weight190

matrix W ∈ Rdout×din of the backbone network that maps the din-dim vectors to the dout-dim space,191

and the importance matrix of the weight I ∈ Rdout×din , we first calculate the importance score of192

each row si =
∑

j |Ii,j |, where the importance matrix I can be weight magnitude [28] (I = W ) or193

empirical Fisher Information [45] (I = FW = 1
N

∑N
i=1(∇W log p(yi|xi))

2; (xi, yi), ..., (xN , yN )194

are samples from data). Then, we choose the rows of W which have the top dout

r importance scores195

and prune the remaining rows to obtain a new weight matrix WP ∈ R
dout

r ×din . The columns of the196

weights and the importance matrix in the next layer corresponding to the pruned feature map are197

also pruned. By iterating this process, we obtain the set of weight matrices whose rows and columns198

are pruned 1
r times from the backbone network and use them to initialize the side network. In our199
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Figure 4: Illustration of (a) Structural Weight Initialization (Section 3.3) and (b) Layer Dropping
(Section 3.4). In our experiments, we find that initialization of side network parameters from
backbone network parameters improves performance, and dropping some shortcut connections
improves efficiency without hurting performance.

experiments shown in Figure 7, we find that using Fisher information as an importance score metric200

generally performs well, and therefore we use it in our structural weight initialization.201

3.4 Layer Dropping in the Ladder Side Network202

We explore to increase efficiency of LST even further by making side network more compact, by203

dropping its intermediate transformer layers, as illustrated in Fig. 4 (b). Similar to LayerDrop [11], we204

drop layers in the side network, and this can linearly reduce the memory and parameter requirements205

of LST. For instance, a side network with N layers will only have 2nd, 4th, 6th . . . layers left, after206

we drop half of the layers. Refer to Section 4 for more details on applying layer dropping on an207

encoder-decoder architecture. In Fig. 6, we show that layer dropping can greatly boost the model’s208

efficiency without sacrificing performance.209

4 Experiment Setup210

Datasets. We evaluate LST on NLP and VL tasks. For NLP tasks, we use the GLUE [49] bench-211

mark, which consists of seven classification and one regression task. The benchmark evaluate212

models on multiple diverse tasks over linguistic acceptability (CoLA [50]), sentiment analysis (SST-213

2 [43]), similarity and paraphrase (MRPC [9], QQP [24], STS-B [5]) and natural language inference214

(MNLI [51], QNLI [39], RTE [3]). For VL tasks, we experiment with visual question answering215

(VQA [15], GQA [23]), visual reasoning (NLVR2 [44]) and image captioning (MSCOCO [6]) tasks.216

Training and Evaluation Setup. For NLP tasks, we use T5 [38], a pre-trained encoder-decoder217

language model as our backbone. We use T5-base in most experiments, except that we scale up LST218

on T5-large and T5-3B to demonstrate its memory efficiency. The training and evaluation process219

follows the setup used by Mahabadi et al. [35]. Since there is no local test set, we split 1k samples220

from the training set as the new validation set and use the original validation set as the test set. For221

datasets whose samples are less than 10k (RTE, MRPC, STS-B, CoLA), we split the validation set222

into two equal-sized subsets and treat them as a new validation and test set. We train every approach223

with 10 epochs on large datasets and 20 epochs on small ones (RTE, MRPC, STS-B, CoLA) for224

complete convergence. For MNLI, we use the mismatched set as the validation set and matched set as225

the test set. We search for learning rates over {3×10−4, 1×10−3, 3×10−3} for LST and LoRA[22],226

and we use the optimal learning rates that are used by Mahabadi et al. [35] for other methods. The227

reduction factor used in LST is set to 8 if not additionally specified. T5-base has 12 layers each in228

encoder and decoder, while T5-large and T5-3B have 24 layers each. In our experiments, we do not229

drop layers in T5-base if we do not specially mention it. For T5-large and T5-3B, we drop 24 layers230

(12 layers each in encoder and decoder) and 46 layers (23 each) of the side network to make the231

memory usage close to our baselines. The experiments on T5 take around 12 hours to train with one232

A6000 GPU (48GB).233
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Table 1: Comparison between multiple parameter-efficient training methods on GLUE benchmark.
We use T5-base if we don’t additionally specify. We report accuracy for SST-2, MNLI, QNLI and
RTE. For CoLA and STS-B, we use Matthew’s Correlation and Pearson-Spearman Correlation as the
metrics, respectively. For MRPC and QQP, we report the average of F1 score and accuracy. Each
number in the table is the average result over three seeds. For the results with †, we report the best
performance out of three seeds due to the instability of the method.

Method Update
Param. per Task (%)

Memory
Usage (GB) CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B Avg.

Full fine-tuning 100 17.6 62.8 93.9 91.9 89.9 86.2 92.5 74.1 90.3 85.2
Adapters 1.63 13.0 64.4 94.2 88.9 88.9 86.4 93.1 75.1 91.1 85.3
LoRA 1.71 12.6 63.3 94.3 90.1 89.0 86.3 93.2 75.5 90.9 85.3
BitFit 0.13 10.7 61.8 94.3 91.0 88.7 85.6 93.1 67.6 90.8 84.1
Prompt-tuning 0.03 11.6 0† 90.3† 74.6 88.5 82.5 92.5 59.5 90.1 72.2

Ladder Side-Tuning 1.74 5.5 58.1 94.1 90.4 88.8 85.6 93.3 71.9 90.7 84.1
Ladder Side-Tuning (T5-large) 1.23 12.2 65.3 95.7 91.6 89.7 88.6 94.1 79.9 92.4 87.1
Ladder Side-Tuning (T5-3B) 0.08 22.4 66.4 96.5 92.9 89.7 90.7 95.1 80.1 93.0 88.1

For VL tasks, we experiment with CLIP-T5 [46], which is a VL architecture combining CLIP [37]234

and T5 [38]. We always freeze the CLIP and only train the T5 for new tasks. The CLIP visual235

representation is concatenated with the text embedding, and the combined input is fed to T5 to make236

predictions. A visual projection layer is added between CLIP and T5 to let the visual representation237

have the same dimension as the text embedding. To avoid updating the visual projection layer by238

the gradients from the backbone model, we do not feed combined inputs to the backbone model,239

but only text inputs. The combined inputs are fed to the side network, so we can achieve efficient240

training by only using the gradients from the side network. Because the backbone network only241

uses texts as the input, the information from the backbone network via shortcut connections is242

only summed to the text part of the side network’s combined inputs. We follow the multi-tasking243

setting for training and evaluation used in VL-Adapter [46]. We report the performance on Karpathy244

test/test-dev/test-P/Karpathy test split for VQA/GQA/NLVR2/MSCOCO, and train models for 20245

epochs. We search learning rates over {3 × 10−4, 1 × 10−3, 3 × 10−3} for PETL methods, and246

use 1× 10−4 used by Sung et al. [46] for full fine-tuning. We set the reduction factor for the side247

network to 4. We train CLIP-T5 for 16 hours on one A6000 GPU.248

5 Experimental Results249

In this section, we show experiments to justify our design of LST and demonstrate that LST performs250

the best among all approaches in the scenario with limited memory. As the result, LST is the most251

efficient tool to fine-tune large-scale pre-trained models for real-world applications.252

LST outperforms other methods under similar memory usage. Figure 1 and Table 1 show the253

results on GLUE of different approaches applying on T5-base. We drop 6 layers (3 layers each in side254

encoder and decoder) for LST to match the parameter usage of the Adapter and LoRA. Under the255

same parameter usage, LST can save 69% of memory cost to fully fine-tune the model, while Adapter256

and LoRA only save 26% of that, leading to LST having a 2.7x more memory saving. Compared257

to BitFit, LST achieves the same average performance but costs 5GB less GPU memory. LST also258

surpasses Prompt-tuning in terms of both performance and memory cost. To further take advantage of259

the memory efficiency of LST, we also train T5-large and T5-3B with LST. We find that with a similar260

budget of memory usage in Adapter and LoRA, LST with T5-large can surpass the performance261

of other methods by a large margin. The result on T5-3B also outperforms the result on T5-large,262

demonstrating the scalability of our memory-efficiency method on large language models.263

Table 2: LST vs. Y-tuning.

Method Update
Param. per Task (%)

Avg.
GLUE

Y-tuning 7.7 76.9
LST 2.6 82.1

In Table 2, we also compare LST with a concurrent work,264

Y-tuning [32] on GLUE tasks (except for STS-B) with BART-265

large [27] encoder as backbone. Following the experimental266

setup of Liu et al. [32], for each task, we use different learning267

rate, and report the best accuracy out of 3 seeds. Overall, LST268

outperforms Y-tuning by a large margin with fewer updated269

parameters.270
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Table 3: Comparison between multiple parameter-efficient training methods on VQA, GQA, NLVR2,
and MSCOCO. We use T5-base for all approaches. We report accuracy for VQA, GQA and NLVR
while we use CIDEr to evaluate MSCOCO.

Method Update
Param. (%)

Memory
Usage (GB) VQA GQA NLVR2 MSCOCO Avg.

Full fine-tuning 100 36.2 67.0 56.1 73.8 111.8 77.2
Adapters 7.98 28.4 67.2 56.4 73.1 111.9 77.2
LoRA 7.54 27.9 63.9 53.3 70.2 110.3 74.4

Ladder Side-Tuning 7.46 15.3 67.3 56.8 74.1 108.5 76.7
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Figure 5: The accuracy-memory trade-off for
Adapter, LoRA, and Ladder Side-Tuning over
GLUE tasks. We vary the reduction factor
in Ladder Side-Tuning, hidden dimension in
Adapter, rank in LoRA to get the architectures
with different training costs.
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Figure 6: The accuracy-memory trade-off for
Adapter, LoRA, BitFit, LST over GLUE tasks.
we drop N ∈ {0, 6, 12, 18} layers in an inter-
leaving manner for LST while we gradually
freeze the first N ∈ {0, 6, 12, 18} layers in
other methods (also remove inserted parame-
ters in those layers).

LST is competitive on VL tasks. As we have mentioned beforehand, we also extend LST on271

a multi-modal architecture, CLIP-T5, on multiple VL tasks, and we demonstrate the outcome in272

Table 3. With similar parameter usage, LST is the only method that can fit into a single 16GB GPU.273

Besides the efficiency, it is as competitive as full fine-tuning and Adapter and outperforms LoRA.274

LST performs the best in low-memory regime. To have a better understand of the memory275

advantage of LST, we adjust the hyper-parameters in our method (reduction factor ∈ {32, 16, 8, 4}),276

Adapter (hidden dimension ∈ {6, 12, 24, 48}) and LoRA (rank ∈ {4, 8, 16, 32}) to create multiple277

architectures with different memory costs. Figure 5 shows the performance and memory efficiency278

trade-off for all methods. We find the memory saving is not obvious for Adapter and LoRA, because279

the gradients of the backbone model’s intermediate outputs are still computed (see Section 3.1 for280

details). Even though Adapter and LoRA still can get better memory efficiency by reducing the281

hidden dimension and the rank, we find that the performance drops significantly. On the other hand,282

LST is quite robust across a wide range of side network sizes.283

We also consider another way to compare LoRA, Adapter and BitFit to LST in different memory284

budgets. While we drop N ∈ {0, 6, 12, 18} layers in an interleaving manner to improve memory285

efficiency, we freeze the first N layers and remove the corresponding inserted modules in other286

approaches. With this, other methods can achieve better memory efficiency because gradients do287

not propagate to those earlier frozen layers. We discuss the layer dropping and layer freezing with288

details in the following. In LST, we drop N
2 layers in both side encoder and side decoder. However,289

in other PETL approaches, we start from freezing layers in the side encoder and then turn to freeze290

layers in the side decoder (e.g. dropping 18 layers means dropping all side encoder layers and 6 side291

decoder layers). We display the comparison in Figure 6, showing that LST has a better performance292

and memory trade-off and outperforms other methods in the low-memory regime. We also find that293

layer dropping generally reduces the training cost without hurting performance.294
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Figure 8: The comparison between network
pruning, Side-Tuning, and LST on GLUE
tasks.

The ablation of weight initialization on the side network. We compare the different initialization295

strategies for the side network and demonstrate the results in Figure 7. “Random” denotes we296

randomly initialize the network while we use network pruning to select initial weights for the side297

network based on two importance measures, “Weight Magnitude” and “Fisher Information.” In298

general, the initialization from the pruned network helps no matter the size of the side network,299

showing the effectiveness of our network pruning strategy.300

Comparison LST to network pruning and side-tuning. In Section 3.2, we mention that shortcut301

connections are added to every layer of the side network. We justify this design by comparing LST to302

two approaches: (1) network pruning, which discards all shortcut connections and the entire backbone303

model. (2) side-tuning, which only adds one shortcut connection to merge representations right304

before the output layer. Note that we do not drop any layer in the side network but only remove the305

shortcuts. Figure 8 shows the comparison and LST outperforms the other two methods significantly,306

suggesting the intermediate shortcut connections are useful. This also suggests that network pruning307

might not perform as well as PETL methods when training the same number of parameters. PETL308

methods are stronger as they use the information from the backbone model.309

6 Conclusion310

We propose Ladder Side-Tuning (LST), a parameter- and memory-efficient method to adapt a large311

backbone network. LST does not require backpropagation through the backbone network, which312

allows for significantly lower memory requirement during training than recently proposed parameter-313

efficient training techniques. We demonstrate that LST allows users to adapt a larger and more314

powerful backbone network to target tasks with a limited memory requirement, which cannot be315

achieved with recent parameter-efficient techniques. We also show that LST achieves more efficient316

accuracy-memory trade-off than recent baselines and impact of weight initialization of side networks.317

Finally, we show that the LST can be also extended beyond NLP tasks, with strong results on318

vision-and-language tasks. We hope that LST helps users with limited computational resources tune319

larger models in diverse domains.320
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