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Abstract

Although no specific domain knowledge is considered in the design, plain vision1

transformers have shown excellent performance in visual recognition tasks. How-2

ever, little effort has been made to reveal the potential of such simple structures for3

pose estimation tasks. In this paper, we show the surprisingly good capabilities of4

plain vision transformers for pose estimation from various aspects, namely simplic-5

ity in model structure, scalability in model size, flexibility in training paradigm,6

and transferability of knowledge between models, through a simple baseline model7

called ViTPose. Specifically, ViTPose employs plain and non-hierarchical vision8

transformers as backbones to extract features for a given person instance and a9

lightweight decoder for pose estimation. It can be scaled up from 100M to 1B10

parameters by taking the advantages of the scalable model capacity and high11

parallelism of transformers, setting a new Pareto front between throughput and12

performance. Besides, ViTPose is very flexible regarding the attention type, input13

resolution, pre-training and finetuning strategy, as well as dealing with multiple14

pose tasks. We also empirically demonstrate that the knowledge of large ViTPose15

models can be easily transferred to small ones via a simple knowledge token. Ex-16

perimental results show that our basic ViTPose model outperforms representative17

methods on the challenging MS COCO Keypoint Detection benchmark, while the18

largest model sets a new state-of-the-art. The code and models will be released.19

1 Introduction20

Human pose estimation is one of the fundamental tasks in computer vision and has a wide range of21

real-world applications [45, 27]. It aims to localize human anatomical keypoints and is challenging22

due to the variations of occlusion, truncation, scales, and human appearances. To deal with these23

issues, there has been rapid progress in deep learning-based methods [33, 38, 32, 44], which typically24

tackle the challenging task using convolutional neural networks.25

Recently, vision transformers [12, 29, 9, 31] have shown great potential in many vision tasks. Inspired26

by their success, different vision transformer structures have been deployed for the pose estimation27

task. Most of them adopt a CNN as a backbone and then use a transformer of elaborate structures to28

refine the extracted features and model the relationship between the body keypoints. For example,29

PRTR [21] incorporates both transformer encoders and decoders to gradually refine the locations of30

the estimated keypoints in a cascade manner. TokenPose [25] and TransPose [40], instead, adopt an31

encoder-only transformer structure to process the features extracted by CNNs. On the other hand,32

HRFormer [42] employs the transformer to directly extract features and introduce high-resolution33

representations via multi-resolution parallel transformer modules. These methods have obtained34

superior performance on pose estimation tasks. However, they either need extra CNNs for feature35

extraction or require careful designs of the transformer structure to adapt to the task. This motivates us36

to think from an opposite direction, how well can the plain vision transformer do for pose estimation?37
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Figure 1: The comparison of ViTPose and
SOTA methods on MS COCO val set regard-
ing model size, throughput, and precision.
The size of each bubble represents the number
of model parameters.

To find the answer to this question, we propose a38

simple baseline model called ViTPose and demon-39

strate its potential on the MS COCO Keypoint40

dataset [26]. Specifically, ViTPose employs plain and41

non-hierarchical vision transformers [12] as back-42

bones to extract feature maps for the given per-43

son instances, where the backbones are pre-trained44

with masked image modeling pretext tasks, e.g.,45

MAE [14], to provide a good initialization. Then,46

a following lightweight decoder processes the ex-47

tracted features by upsampling the feature maps and48

regressing the heatmaps w.r.t. the keypoints, which49

is composed of two deconvolution layers and one50

prediction layer. Despite no elaborate designs in the51

model, ViTPose obtains state-of-the-art (SOTA) per-52

formance of 80.9 AP on the challenging MS COCO53

Keypoint test-dev set. It should be noted that this54

paper does not claim the algorithmic superiority but55

rather presents a simple and solid transformer base-56

line with superior performance for pose estimation.57

Besides the superior performance, we also show the58

surprisingly good capabilities of ViTPose from vari-59

ous aspects, namely simplicity, scalability, flexibility,60

and transferability. 1) For simplicity, thanks to vision61

transformers’ strong feature representation ability, the ViTPose framework can be extremely simple.62

For example, it does not require any specific domain knowledge for the design of the backbone63

encoder and enjoys a plain and non-hierarchical encoder structure by simply stacking several trans-64

former layers. The decoder can be further simplified to a single up-sampling layer followed by a65

convolutional prediction layer with a negligible performance drop. Such a structural simplicity makes66

ViTPose enjoy better parallelism so that it reaches a new Pareto front in terms of the inference speed67

and performance, as shown in Fig. 1. 2) In addition, the simplicity in structure brings the excellent68

scalability properties of ViTPose. Thus it benefits from the rapid development of scalable pre-trained69

vision transformers. Specifically, one can easily control the model size by stacking different numbers70

of transformer layers and increasing or decreasing the feature dimensions, e.g., using ViT-B, ViT-L,71

or ViT-H, to balance the inference speed and performance for various deployment requirements. 3)72

Furthermore, we demonstrate that ViTPose is very flexible in the training paradigm. ViTPose can73

adapt well to different input resolutions and feature resolutions with minor modifications and can74

invariably deliver more accurate pose estimation results for higher resolution inputs. Apart from75

training the ViTPose on a single pose dataset as the common practice, we can modify it to adapt to76

multiple pose datasets by adding extra decoders very flexibly, resulting in a joint training pipeline77

and bringing significant performance improvement. This training paradigm brings only marginal78

(extra) computational cost since the decoder in ViTPose is rather lightweight. In addition, ViTPose79

can still obtain SOTA performance when pre-trained using smaller unlabelled datasets or finetuned80

with the attention modules frozen, requiring less training cost than a fully pre-trained finetuning81

paradigm. 4) Last but not least, the performance of small ViTPose models can be easily improved by82

transferring the knowledge from large ViTPose models through an extra learnable knowledge token,83

demonstrating a good transferability of ViTPose.84

In conclusion, the contribution of this paper is threefold. 1) We propose a simple yet effective baseline85

model named ViTPose for human pose estimation. It obtains SOTA performance on the MS COCO86

Keypoint dataset even without the usage of elaborate structural designs or complex frameworks. 2)87

The simple ViTPose model demonstrates to have surprisingly good capabilities, including structural88

simplicity, model size scalability, training paradigm flexibility, and knowledge transferability. These89

capabilities build a strong baseline for vision transformer-based pose estimation tasks and would90

possibly shed light on further development in the field. 3) Comprehensive experiments on popular91

benchmarks are conducted to study and analyze the capabilities of ViTPose. With a very big vision92

transformer model as the backbone, i.e., ViTAE-G [46], a single ViTPose model obtains the best 80.993

AP on the MS COCO Keypoint test-dev set.94
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Figure 2: (a) The framework of ViTPose. (b) The transformer block. (c) The classic decoder. (d) The
simple decoder. (e) The decoders for multiple tasks.

2 Related Work95

2.1 Vision transformer for pose estimation96

Pose estimation has experienced rapid development from CNNs [38] to vision transformer networks.97

Early works tend to treat transformer as a better decoder [21, 25, 40], e.g., TransPose [40] directly98

processes the features extracted by CNNs to model the global relationship. TokenPose [25] proposes99

token-based representations by introducing extra tokens to estimate the locations of occluded key-100

points and model the relationship among different keypoints. To get rid of the CNNs for feature101

extraction, HRFormer [42] is proposed to use transformers to extract high-resolution features directly.102

A delicate parallel transformer module is proposed to fuse multi-resolution features in HRFormer103

gradually. These transformer-based pose estimation methods obtain superior performance on popular104

keypoint estimation benchmarks. However, they either need CNNs for feature extraction or require105

careful designs of the transformer structures. There have been little efforts in exploring the potential106

of plain vision transformers for the pose estimation tasks. In this paper, we fill this gap by proposing107

a simple yet effective baseline model, ViTPose, based on the plain vision transformers.108

2.2 Vision transformer pre-training109

Inspired by the success of ViT [12], many different vision transformer backbones [29, 39, 36, 48,110

35, 46, 34, 47] have been proposed, which are typically trained on the ImageNet-1K [11] dataset in111

a fully supervised setting. Recently, self-supervised learning methods [14, 4] have been proposed112

for training plain vision transformers. With masked image modeling (MIM) as pretext tasks, these113

methods provide good initializations for plain vision transformers. In this paper, we focus on the114

pose estimation tasks and adopt plain vision transformers with MIM pre-training as backbones.115

Besides, we explore whether pre-training using ImageNet-1K is necessary for pose estimation tasks.116

Surprisingly, we find that pre-training using smaller unlabelled pose datasets can also provide a good117

initialization for the pose estimation tasks.118

3 ViTPose119

3.1 The simplicity of ViTPose120

Structure simplicity. The goal of this paper is to provide a simple yet effective vision transformer121

baseline for pose estimation tasks and explore the potential of plain and non-hierarchical vision122

transformers [12]. Thus, we keep the structure as simple as possible and try to avoid fancy but123

complex modules, even though they may improve performance. To this end, we simply append124
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several decoder layers after the transformer backbone to estimate the heatmaps w.r.t. the keypoints,125

as shown in Fig. 2 (a). For simplicity, we do not adopt skip-connections or cross-attentions in the126

decoder layers but simple deconvolution layers and a prediction layer, as in [38]. Specifically, given127

a person instance image X ∈ RH×W×3 as input, ViTPose first embeds the images into tokens via128

a patch embedding layer, i.e., F ∈ RH
d ×W

d ×C , where d (e.g., 16 by default) is the downsampling129

ratio of the patch embedding layer, and C is the channel dimension. After that, the embedded tokens130

are processed by several transformer layers, each of which is consisted of a multi-head self-attention131

(MHSA) layer and a feed-forward network (FFN), i.e.,132

F
′
i+1 = Fi +MHSA(LN(Fi)), Fi+1 = F

′
i+1 + FFN(LN(F

′
i+1)), (1)

where i represents the output of the ith transformer layer and the initial feature F0 =133

PatchEmbed(X) denotes the features after the patch embedding layer. It should be noted that134

the spatial and channel dimensions are constant for each transformer layer. We denote the output135

feature of the backbone network as Fout ∈ RH
d ×W

d ×C .136

We adopt two kinds of lightweight decoders to process the features extracted from the backbone137

network and localize the keypoints. The first one is the classic decoder. It is composed of two decon-138

volution blocks, each of which contains one deconvolution layer followed by batch normalization [18]139

and ReLU [1]. Following the common setting of previous methods [38, 44], each block upsamples140

the feature maps by 2 times. Then, a convolution layer with the kernel size 1× 1 is utilized to get the141

localization heatmaps for the keypoints, i.e.,142

K = Conv1×1(Deconv(Deconv(Fout))), (2)

where K ∈ RH
4 ×W

4 ×Nk denotes the estimated heatmaps (one for each keypoint) and Nk is the143

number of keypoints to be estimated, which is set to 17 for the MS COCO dataset.144

Although the classic decoder is simple and lightweight, we also try another simpler decoder in145

ViTPose, which is proved effective thanks to the strong representation ability of the vision transformer146

backbone. Specifically, we directly upsample the feature maps by 4 times with bilinear interpolation,147

followed by a ReLU and a convolution layer with the kernel size 3× 3 to get the heatmaps, i.e.,148

K = Conv3×3(Bilinear(ReLU(Fout))). (3)

Despite the less non-linear capacity of this simpler decoder, it obtains competitive performance149

compared with the classic one and the carefully designed transformer-based decoders in previous150

representative methods, demonstrating the structure simplicity of ViTPose..151

3.2 The scalability of ViTPose152

Since ViTPose enjoys the structure simplicity, one can pick a point at the new Pareto front in Fig. 1153

according to the deployment requirements and easily control the model size accordingly by stacking154

different numbers of transformer layers and increasing or decreasing the feature dimensions. In this155

sense, ViTPose can benefit from the rapid development of scalable pre-trained vision transformers156

without much modifications to the other parts. To investigate the scalability of ViTPose, we use the157

pre-trained backbones of different model capacities and finetune them on the MS COCO dataset. For158

example, we use ViT-B, ViT-L, ViT-H [12], and ViTAE-G [46] with the classic decoder for pose159

estimation and observe consistent performance gains with the model size increasing. For ViT-H and160

ViTAE-G, which use patch embedding with size 14× 14 during pre-training, we use zero padding to161

formulate a patch embedding with size 16× 16 for the same setting with ViT-B and ViT-L.162

3.3 The flexibility of ViTPose163

Pre-training data flexibility. ImageNet [11] pre-training of the backbone networks has been a de164

facto routine for a good initialization. However, it requires extra data beyond the pose ones, which165

makes the data requirement higher for the pose estimation task. It comes to us whether we can use166

only the pose data during the whole training phase to relax the data requirement. To explore the167

data flexibility, apart from the default settings of ImageNet [11] pre-training, we use MAE [14] to168

pre-train the backbones with MS COCO [26] and a combination of MS COCO and AI Challenger [37]169

respectively by random masking 75% patches from the images and reconstructing those masked170

patches. Then, we use the pre-trained weights to initialize the backbones of ViTPose and finetune the171
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model on the MS COCO dataset. Surprisingly, although the volume of the pose data is much smaller172

than ImageNet, ViTPose trained with pose data only can obtain competitive performance, implying173

that ViTPose can learn a good initialization flexibly from data of different scales.174

Resolution flexibility. We vary the input image size and downsampling ratios d of ViTPose to175

evaluate its flexibility regarding the input and feature resolution. Specifically, to adapt ViTPose176

to input images at higher resolutions, we simply resize the input images and train the model on177

them accordingly. Besides, to adapt the model to lower downsampling ratios, i.e., higher feature178

resolutions, we simply change the stride of the patch embedding layer to partition tokens with overlap179

and retain the size of each patch. We show that the performance of ViTPose increases consistently180

regarding either higher input resolution or higher feature resolution.181

Attention type flexibility. Using full attention on higher resolution feature maps will cause a182

huge memory footprint and computational cost due to the quadratic computational complexity183

and memory consumption of attention calculation. Window-based attention with relative position184

embedding [23, 24] has been explored to alleviate the heavy memory burden of dealing with the185

higher resolution feature maps. However, simply using window-based attention for all transformer186

blocks degrades the performance due to the lack of global context modeling ability. To address the187

problem, we adopt two techniques, i.e., 1) Shift window: Instead of using fixed windows for attention188

calculation, we use shift-window mechanism [29] to help broadcast the information between adjacent189

windows; and 2) Pooling window. Apart from the shift window mechanism, we try another solution190

via pooling. Specifically, we pool the tokens for each window to get the global context feature within191

the window. These features are then fed into each window to serve as key and value tokens to enable192

cross-window feature communication. Besides, we prove that the two strategies are complementary to193

each other and can work together to improve the performance and reduce memory footprint, without194

the need of extra parameters or modules but with simple modifications to the attention calculation.195

Finetuning flexibility. As demonstrated in NLP fields [28, 2], pre-trained transformer models can196

well generalize to other tasks with partial parameters tuning. To investigate whether it still holds197

for vision transformers, we finetune ViTPose on MS COCO with all parameters unfrozen, MHSA198

modules frozen, and FFN modules frozen, respectively. We empirically demonstrate that with the199

MHSA module frozen, ViTPose obtains comparable performance to the fully finetuning setting.200

Task flexibility. As the decoder is rather simple and lightweight in ViTPose, we can adopt multiple201

decoders without much extra cost to handle multiple pose estimation tasks by sharing the backbone202

encoder. We randomly sample instances from multiple training datasets for each iteration and feed203

them into the backbone and the decoders to estimate the heatmaps corresponding to each task.204

3.4 The transferability of ViTPose205

One common method to improve the performance of smaller models is to transfer the knowledge206

from larger ones, i.e., knowledge distillation [16, 13]. Specifically, given a teacher network T and207

student network S, a simple distillation method is to add an output distillation loss Lod
t→s to force the208

student network’s output imitating the teacher network’s output, e.g.,209

Lod
t→s = MSE(Ks,Kt), (4)

where Ks and Kt are the outputs from the student and teacher network given the same input.210

Apart from the above common practice, we explore a token-based distillation method to bridge the211

large and small models, which is complementary to the above method. Specifically, we randomly212

initialize an extra learnable knowledge token t and append it to the visual tokens after the patch213

embedding layer of the teacher model. Then, we freeze the well-trained teacher model and only tune214

the knowledge token for several epochs to gain the knowledge, i.e.,215

t∗ = argmin
t

(MSE(T ({t;X}),Kgt), (5)

where Kgt is the ground truth heatmaps, X is the input images, T ({t;X}) denotes the predictions of216

the teacher, and t∗ represents the optimal token that minimizes the loss. After that, the knowledge217

token t∗ is frozen and concatenated with the visual tokens in the student network during training to218

transfer the knowledge from teacher to student networks. Thus, the loss of the student network is219

Ltd
t→s = MSE(S({t∗;X}),Kgt), or Ltod

t→s = MSE(S({t∗;X}),Kt) +MSE(S({t∗;X}),Kgt), (6)
where Ltd

t→s and Ltod
t→s represent the token distillation loss and the combination of output distillation220

loss and token distillation loss, respectively.221
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4 Experiments222

4.1 Implementation details223

ViTPose follows the common top-down setting for human pose estimation, i.e., a detector is used to224

detect person instances and ViTPose is employed to estimate the keypoints of the detected instances.225

The detection results from SimpleBaseline [38] are utilized for evaluating ViTPose’s performance226

on the MS COCO Keypoint val set. We use ViT-B, ViT-L, and ViT-H as backbones and denote the227

corresponding models as ViTPose-B, ViTPose-L, and ViTPose-H. The models are trained on 8 A100228

GPUs based on the mmpose codebase [10]. The backbones are initialized with MAE [14] pre-trained229

weights. The default training setting in mmpose is utilized for training the ViTPose models, i.e., we230

use the 256× 192 input resolution and AdamW [30] optimizer with a learning rate of 5e-4. Udp [17]231

is used for post-processing. The models are trained for 210 epochs with a learning rate decay by 10232

at the 170th and 200th epoch. We sweep the layer-wise learning rate decay and stochastic drop path233

ratio for each model, and the optimal settings are provided in the supplementary.234

4.2 Ablation study and analysis235

Table 1: Ablation study of the structure simplicity of ViTPose on MS COCO val set.

Backbone ResNet-50 ResNet-152 ViTPose-B ViTPose-L ViTPose-H
Decoder Classic Simple Classic Simple Classic Simple Classic Simple Classic Simple
AP 71.8 53.1 73.5 55.3 75.8 75.5 78.3 78.2 79.1 78.9
AP50 89.8 86.9 90.5 87.9 90.7 90.6 91.4 91.4 91.7 91.6
AR 77.3 62.0 79.0 63.8 81.1 80.9 83.5 83.4 84.1 84.0
AR50 93.7 92.1 94.3 92.9 94.6 94.6 95.3 95.3 95.4 95.4

The structure simplicity and scalability. We train ViTPose with the classic decoder and simple236

decoder as described in Sec. 3.1, respectively. We also train SimpleBaseline [38] with ResNet [15]237

as backbones using the two decoders for reference. Table 1 shows the results. It can be observed238

that using the simple decoder can lead to about 18 AP drops for both ResNet-50 and ResNet-152.239

However, ViTPose with vision transformer as backbones works well with the simple decoder with240

only marginal performance drops (i.e., less than 0.3 AP) for ViT-B, ViT-L, and ViT-H. For the241

metrics AP50 and AR50, ViTPose obtains similar performance when using either of the two decoders,242

showing that the plain vision transformer has a strong representation ability and complex decoders243

are not necessary. It can also be concluded from the table that the performance of ViTPose improves244

consistently with the model size increasing, demonstrating the good scalability of ViTPose.245

Table 2: The performance of ViTPose-B using different data for pre-training on MS COCO val set.

Pre-training Dataset Dataset Volume AP AP50 AP75 AR AR50 AR75

ImageNet-1k 1M 75.8 90.7 83.2 81.1 94.6 87.7
COCO+AI Challenger 500K 75.8 90.8 83.0 81.0 94.6 87.4

COCO 150K 74.5 90.5 81.9 80.0 94.5 86.6

The influence of pre-training data. To evaluate whether ImageNet-1K data are necessary for pose246

estimation tasks, we pre-train the backbone models using different datasets, i.e., ImageNet-1k [11],247

MS COCO, and a combination of MS COCO [26] and AI Challenger [37], respectively. Since images248

in the ImageNet-1k dataset are iconic, we crop the person instances from the MS COCO and AI249

Challenger training set to form new training data for pre-training. The models are pre-trained for250

1,600 epochs on the three datasets, respectively, and then finetuned on the MS COCO dataset with251

pose annotations for 210 epochs. The results are summarized in Table 2. It can be seen that with the252

combination of MS COCO and AI Challenger data for pre-training, ViTPose obtains comparable253

performance compared with using ImageNet-1k. It should be noted that the dataset volume is only254

half of the ImageNet-1k. It implies that pre-training on the data from downstream tasks has better data255

efficiency, validating ViTPose’s flexibility in using pre-training data. Nevertheless, the AP decreases256

by 1.3 if only MS COCO data are used for pre-training. It may be caused by the limited volume257

of the MS COCO dataset, i.e., the number of instances in MS COCO is three times less than the258

combination of MS COCO and AI Challenger.259
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Table 3: The performance of ViTPose-B with different input resolutions on MS COCO val set.

224x224 256x192 256x256 384x288 384x384 576x432
AP 74.9 75.8 75.8 76.9 77.1 77.8
AR 80.4 81.1 81.1 81.9 82.0 82.6

The influence of input resolution. To evaluate whether ViTPose can adapt well to different input260

resolutions, we train ViTPose with different input image sizes and give the results in Table 3. The261

performance of ViTPose-B improves with the increase of input resolution. It is also noted that262

the squared input does not bring much performance gains although it has larger resolutions, e.g.,263

256× 256 v.s. 256× 192. The reason may be that the average aspect ratio of human instances in MS264

COCO is 4:3, and the squared input size does not fit the statistics well.265

Table 4: The performance of ViTPose-B with 1/8 feature size on MS COCO val set. * means fp16 is
used during training due to the limit of hardware memory. For the combination of full attention (Full)
and window attention (Window), we follow ViTDet [23] and use full attention every 1/4 layers.

Full Window Shift Pool Window Size Training Memory (M) AP AP50 AR AR50

✓ N/A 36,141* 77.4 91.0 82.4 94.9
✓ (8, 8) 21,161 66.4 87.7 72.9 91.9
✓ ✓ (8, 8) 21,161 76.4 90.9 81.6 94.5
✓ ✓ (8, 8) 22,893 76.4 90.6 81.6 94.6
✓ ✓ ✓ (8, 8) 22,893 76.8 90.8 81.9 94.8

✓ ✓ (8, 8) 28,594 76.9 90.8 82.1 94.7
✓ ✓ ✓ (16, 12) 26,778 77.1 91.0 82.2 94.8

The influence of attention type. As demonstrated in HRNet [32] and HRFormer [42], high-resolution266

feature maps are beneficial for pose estimation tasks. ViTPose can easily generate high-resolution267

features by varying the downsampling ratio of the patching embedding layer, i.e., from 1/16 to 1/8.268

Besides, to alleviate the out-of-memory issue caused by the quadratic computational complexity of269

transformer layers, window attention with shift and pooling mechanism can be used as described in270

Sec. 3.3. The results are presented in Table 4. ‘Shift’ and ‘Pool’ denote the shift window and pooling271

window mechanisms, respectively. Directly using full attention with 1/8 feature size obtains the best272

77.4 AP on the MS COCO val set while suffering from a large memory footprint even under the273

mixed-precision training mode. Window attention can alleviate the memory issue while at the cost of274

performance drop due to lacking global context modeling, e.g., from 77.4 AP to 66.4 AP. The shifted275

window and pooling window mechanism both promote cross-window information exchange for276

global context modeling and thus significantly improve the performance by 10 AP with less than 10%277

memory increase. When applying the two mechanisms together, i.e., the 5th row, the performance278

further increases to 76.8 AP, which is comparable to the strategy proposed in ViTDet [23] that jointly279

uses full and window attention (the 6th row) but has much lower memory footprint, i.e., 76.8 AP v.s.280

76.9 AP and 22.9G memory v.s. 28.6G memory. Comparing the 5th and last row in Table 4, we also281

note that the performance can be further improved from 76.8 AP to 77.1 AP by enlarging the window282

size from 8× 8 to 16× 12, which also outperforms the joint full and window attention setting.283

Table 5: The performance of ViTPose-B under the partially finetuning on MS COCO val set.

FFN MHSA Memory (M) AP AP50 AR AR50

✓ ✓ 14,090 75.8 90.7 81.1 94.6
✓ 11,052 75.1 90.5 80.3 94.4

✓ 10,941 72.8 89.8 78.3 93.8

The influence of partially finetuning. To assess whether vision transformers can adapt to the pose284

estimation task via partially finetuning, we finetune the ViTPose-B model under three settings, i.e.,285

fully finetuning, freezing the MHSA module, and freezing the FFN module. As shown in Table 5,286

with the MHSA module frozen, the performance drops a little compared with fully finetuning, i.e.,287

75.1 AP v.s. 75.8 AP. The AP50 metric is almost the same for the two settings. However, there is a288

significant drop by 3.0 AP when freezing the FFN module and only finetuning the MHSA module.289

This finding implies that the FFN module of vision transformers is more responsible for task-specific290

modeling. In contrast, the MHSA module is more task-agnostic, e.g., modeling token relationships291

based on feature similarity no matter in the MIM pre-training tasks or specific pose estimation tasks.292
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Table 6: The performance of ViTPose-B under the multi-task training setting on MS COCO val set.

COCO AIC MPII CrowdPose AP AP50 AR AR50

✓ 75.8 90.7 81.1 94.6
✓ ✓ 77.0 90.8 82.2 94.9
✓ ✓ ✓ 77.1 90.8 82.2 94.7
✓ ✓ ✓ ✓ 77.5 91.2 82.6 95.0

The influence of multi-task learning. Since the decoder in ViTPose is rather simple and lightweight,293

we can easily extend ViTPose to a multi-task joint training paradigm by using a shared backbone and294

individual decoder for each task. Specifically, we use MS COCO [26], AI Challenger [37], MPII [3],295

and CrowdPose [20] datasets for multi-task training. The results on the MS COCO val set are listed296

in Table 6. The results on other datasets are available in the supplementary. Note that we directly use297

the models after multi-task training for evaluation without finetuning them on MS COCO further. It298

can be observed that the performance of ViTPose increases consistently from 75.8 AP to 77.5 AP by299

using all four datasets for training. Although the volume of MPII is much smaller compared to the300

combination of MS COCO and AI Challenger (40K v.s. 500K), using MPII for training still brings a301

0.1 AP increase, indicating that ViTPose can well harness the diverse data in different datasets.302

Table 7: The performance of transferability from ViTPose-L to ViTPose-B on MS COCO val set.

Heatmap Token Teacher Memory (M) AP AP50 AR AR50

- - - 14,090 75.8 90.7 81.1 94.6
✓ ViTPose-L 14,203 76.0 90.7 81.3 94.8

✓ ViTPose-L 15,458 76.3 90.8 81.5 94.8
✓ ✓ ViTPose-L 15,565 76.6 90.9 81.8 94.9

The analysis of transferability. To evaluate the transferability of ViTPose, we use both the classic303

output distillation and the proposed knowledge token distillation to transfer the knowledge from304

ViTPose-L to ViTPose-B. The results are available in Table 7. As can be seen, the token-based305

distillation brings 0.2 AP gain for ViTPose-B with marginal extra memory footprint, while the output306

distillation brings a 0.5 AP increase. The two distillation methods are complementary to each other,307

and using them together obtains 76.6 AP, validating the excellent transferability of ViTPose models.308

4.3 Comparison with SOTA methods309

Table 8: Comparison of ViTPose and SOTA methods on MS COCO val and test-dev set. * denotes
the models are trained under the multi-task setting.

Model Backbone
Params Speed Input Feature COCO val COCO test-dev

(M) (fps) Resolution Resolution AP AR AP AR
SimpleBaseline [38] ResNet-152 60 829 256x192 1/32 73.5 79.0 - -

HRNet [32] HRNet-W32 29 916 256x192 1/4 74.4 78.9 - -
HRNet [32] HRNet-W32 29 428 384x288 1/4 75.8 81.0 74.9 80.1
HRNet [32] HRNet-W48 64 649 256x192 1/4 75.1 80.4 - -
HRNet [32] HRNet-W48 64 309 384x288 1/4 76.3 81.2 75.5 80.5
UDP [17] HRNet-W48 64 309 384x288 1/4 77.2 82.0 - -

TokenPose-L/D24 [25] HRNet-W48 28 602 256x192 1/4 75.8 80.9 75.1 80.2
TransPose-H/A6 [40] HRNet-W48 18 309 256x192 1/4 75.8 80.8 75.0 -

HRFormer-B [42] HRFormer-B 43 158 256x192 1/4 75.6 80.8 - -
HRFormer-B [42] HRFormer-B 43 78 384x288 1/4 77.2 82.0 76.2 81.2

ViTPose-B ViT-B 86 944 256x192 1/16 75.8 81.1 75.1 80.3
ViTPose-B* ViT-B 86 944 256x192 1/16 77.5 82.6 76.4 81.5
ViTPose-L ViT-L 307 411 256x192 1/16 78.3 83.5 77.3 82.4
ViTPose-L* ViT-L 307 411 256x192 1/16 79.1 84.1 77.8 82.8
ViTPose-H ViT-H 632 241 256x192 1/16 79.1 84.1 78.1 83.1

ViTPose-H* ViT-H 632 241 256x192 1/16 79.8 84.8 78.4 83.4

Based on the previous analysis, we use 256× 192 input resolution with multi-task training for the310

pose estimation tasks and report the results on the MS COCO val and test-dev set as shown in Table 8.311

The speed of all methods is recorded on a single A100 GPU with a batch size of 64. It can be observed312

that although the model size of ViTPose is large, it obtains a better trade-off between throughput and313
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accuracy, showing that the plain vision transformer has strong representation ability and is friendly314

to modern hardware. Besides, ViTPose performs well with much larger backbones. For example,315

ViTPose-L obtains much better performance than ViTPose-B, i.e., 78.3 AP and 77.3 AP on the val316

and test-dev set, respectively. ViTPose-L has outperformed previous SOTA CNN and transformer317

models, including UPD and TokenPose, with a similar inference speed. Similar conclusions can be318

drawn by comparing the performance of ViTPose-H (15th row) and HRFormer-B (9th row), where319

ViTPose-H obtains better performance and faster inference speed, i.e., 79.1 AP v.s. 75.6 AP and 241320

fps v.s. 158 fps, with only MS COCO data for training. With multi-task training, the performance of321

ViTPose models further increases, implying the good scalability and flexibility of ViTPose.322

Table 9: Comparison with SOTA methods on MS COCO test-dev set. “+” means model ensemble.
“†”, “‡”, and “*” denote the champions of the 2018, 2019, and 2020 COCO Keypoint Challenge.

Method Backbone AP AP50 AP75 APM APL AR
Baseline+ [38] ResNet-152 76.5 92.4 84.0 73.0 82.7 81.5
HRNet [32] HRNet-w48 77.0 92.7 84.5 73.4 83.1 82.0
MSPN+† [22] 4xResNet-50 78.1 94.1 85.9 74.5 83.3 83.1
DARK [43] HRNet-w48 77.4 92.6 84.6 73.6 83.7 82.3
RSN+‡ [7] 4xRSN-50 79.2 94.4 87.1 76.1 83.8 84.1
CCM+ [44] HRNet-w48 78.9 93.8 86.0 75.0 84.5 83.6
UDP+++∗ [17] HRNet-w48plus 80.8 94.9 88.1 77.4 85.7 85.3
ViTPose ViTAE-G 80.9 94.8 88.1 77.5 85.9 85.4
ViTPose+ ViTAE-G 81.1 95.0 88.2 77.8 86.0 85.6

We then build a much stronger model ViTPose-G, i.e., using the ViTAE-G [46] backbone, which323

has 1B parameters, larger input resolution (576 × 432), and MS COCO and AI Challenger data324

for training, to further explore the ViTPose’s performance limit. A more powerful detector from325

Bigdet [6] is also used to provide person detection results (68.5 AP on person class of COCO dataset).326

As shown in Table 9, a single ViTPose model with the ViTAE-G backbone outperforms all previous327

SOTA methods on the MS COCO test-dev set at 80.9 AP, where the previous best method UDP++328

ensembles 17 models and reaches 80.8 AP with a slightly better detector (68.6 AP on the person class329

of COCO dataset). After ensembling three models, ViTPose further achieves the best 81.1 AP.330

5 Limitation and Discussion331

In this paper, we propose a simple yet effective vision transformer baseline for pose estimation,332

i.e., ViTPose. Despite no elaborate designs in structure, ViTPose obtains SOTA performance333

on the MS COCO dataset. However, the potential of ViTPose is not fully explored with more334

advanced technologies, such as complex decoders or FPN structures, which may further improve the335

performance. Besides, although the ViTPose demonstrates exciting properties such as simplicity,336

scalability, flexibility, and transferability, more research efforts could be made, e.g., exploring the337

prompt-based tuning to demonstrate the flexibility of ViTPose further. In addition, we believe338

ViTPose can also be applied to other pose estimation tasks, e.g., animal pose estimation [41, 8] and339

face keypoint detection [19, 5]. We leave them as the future work.340

6 Conclusion341

This paper presents ViTPose as the simple baseline for vision transformer-based human pose esti-342

mation. It demonstrates simplicity, scalability, flexibility, and transferability for the pose estimation343

tasks, which have been well justified through extensive experiments on the MS COCO dataset. A344

single ViTPose model with a big backbone ViTAE-G obtains the best 80.9 AP on the MS COCO345

test-dev set. We hope this work could provide useful insights to the community and inspire further346

study on exploring the potential of plain vision transformers in more computer vision tasks.347

Social impact. As the model uses publicly available datasets for supervised learning, it may learn348

inappropriate capabilities from biased training data, for example, discriminatory outputs for specific349

demographic groups (e.g., discrimination against gender, race, age) and compromise personal privacy.350

How to prevent models from exhibiting algorithmic discrimination and compromising personal351

privacy remains open and challenging. Moreover, attention should also be drawn to carbon emissions352

of data centers for the large-scale model training.353
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