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Abstract

The scarcity of labeled data is a critical obstacle to deep learning. Semi-supervised1

learning (SSL) provides a promising way to leverage unlabeled data by pseudo2

labels. However, when the size of labeled data is very small (say a few labeled3

samples per class), SSL performs poorly and unstably, possibly due to the low4

quality of learned pseudo labels. In this paper, we propose a new SSL method called5

DP-SSL that adopts an innovative data programming (DP) scheme to generate6

probabilistic labels for unlabeled data. Different from existing DP methods that7

rely on human experts to provide initial labeling functions (LFs), we develop a8

multiple-choice learning (MCL) based approach to automatically generate LFs9

from scratch in SSL style. With the noisy labels produced by the LFs, we design10

a label model to resolve the conflict and overlap among the noisy labels, and11

finally infer probabilistic labels for unlabeled samples. Extensive experiments12

on four standard SSL benchmarks show that DP-SSL can provide reliable labels13

for unlabeled data and achieve better classification performance on test sets than14

existing SSL methods, especially when only a small number of labeled samples15

are available. Concretely, for CIFAR-10 with only 40 labeled samples, DP-SSL16

achieves 93.82% annotation accuracy on unlabeled data and 93.46% classification17

accuracy on test data, which are higher than the SOTA results.18

1 Introduction19

The de-facto approaches to deep learning achieve phenomenal success with the release of huge labeled20

datasets. However, large manually-labeled datasets are time-consuming and expensive to acquire,21

especially when expert labelers are required. Nowadays, many techniques are proposed to alleviate22

the burden of manual labeling and help to train models from scratch, such as active learning [1],23

crowd-labeling [2], distant supervision [3], semi [4]/weak [5]/self-supervision [6]. Among them,24

semi-supervised learning (SSL) is one of the most popular techniques to cope with the scarcity of25

labeled data. Two major strategies of SSL are pseudo labels [7] and consistency regularization [8].26

Pseudo labels (also called self-training [9]) utilize a model’s predictions as the labels to train the27

model again, while consistency of regularization forces a model to make the same prediction under28

different transformations. However, when the size of labeled data is small, SSL performance degrades29

drastically in both accuracy and robustness. Fig. 1 shows the change of prediction error rate with30

the number of labeled samples of CIFAR-10. When the number of labeled samples reduces from31

250 to 40, error rates of major existing SSL methods increase from 4.74% (USADTM) to 36.49%32

(MixMatch). One possible reason of performance deterioration is due to quality degradation of learnt33

pseudo labels when labeled data size is small. Therefore, in this paper we address this problem by34

developing sophisticated labeling techniques for unlabeled data to boost SSL even when the number35

of labeled samples is very small (e.g. a few labeled samples per class).36
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Figure 1: Error rate vs. #labeled samples
(CIFAR-10). Results of existing meth-
ods are from the original papers. When
only 40 labeled samples are given, all
existing SSL methods are substantially
degraded and more unstably, while our
method is still effective and robust.

Recently, data programming (DP) was proposed as a new37

paradigm of weak supervision [10]. In DP, human experts38

are required to transform the decision-making process into39

a series of small functions (called labeling functions, abbre-40

viated as LFs), thus data can be labeled programmatically.41

Besides, a label model is applied to determining the correct42

labels based on consensus from the noisy and conflicting43

labels assigned by the LFs. Such a paradigm achieves44

considerable success in NLP tasks [11–14]. In addition,45

DP has also been applied to computer vision tasks [15, 16].46

However, current DP methods require human experts to47

provide initial LFs, which is time-consuming and expen-48

sive, and it is not easy to guarantee the quality of LFs.49

Furthermore, LFs specifically defined for one task usually50

cannot be re-used for other tasks.51

In this paper, we propose a new SSL method called DP-52

SSL that is effective and robust even when the number of53

labeled samples is very small. In DP-SSL, an innovative54

data programming (DP) scheme is developed to generate55

probabilistic labels for unlabeled data. Different from56

existing DP methods, we develop a multiple-choice learn-57

ing (MCL) based approach to automatically generate LFs from scratch in SSL style. To remedy the58

over-confidence problem with existing MCL methods, we assign an additional option as abstention for59

each LF. After that, we design a label model to resolve the conflict and overlap among the noisy labels60

generated by LFs, and infer a probabilistic label for each unlabeled sample. Finally, the probabilistic61

labels are used to train the end model for classifying unlabeled data. Our experiments validate the62

effectiveness and advantage of DP-SSL. As shown in Fig. 1, DP-SSL performs best, and only 1.76%63

increase of error rate when the size of labeled samples decreases from 250 to 40 in CIFAR-10.64

Note that the pseudo labels used in existing SSL methods is quite different from the probabilistic65

labels in DP-SSL, which may explain the advantage of DP-SSL over existing SSL methods. On the66

one hand, pseudo labels are “hard” labels that indicate an unlabeled sample belonging to a certain67

class or not, while probabilistic labels are “soft” labels that indicate the class distributions of unlabeled68

samples. Obviously, the latter should be more flexible and robust. On the other hand, pseudo labels69

are actually generated by a single model for all unlabeled samples, while probabilistic labels are70

generated from a number of diverse and specialized LFs (due to the MCL mechanism), which makes71

the latter more powerful in generalization as a whole.72

In summary, the contributions of this paper are as follows: 1) We propose a new SSL method DP-SSL73

that employs an innovative data programming method to generate probabilistic labels for unlabeled74

data, which makes DP-SSL effective and robust even when there are only a few labeled samples per75

class. 2) We develop a multiple choice learning based approach to automatically generate diverse and76

specialized LFs from scratch for unlabeled data in SSL manner. 3) We design a label model with a77

novel potential and an unsupervised quality guidance regularizer to infer probabilistic labels from the78

noisy labels generated by LFs. 4) We conduct extensive experiments on four standard benchmarks,79

which show that DP-SSL outperforms the state-of-the-art methods, especially when only a small80

number of labeled samples are available, DP-SSL is still effective and robust.81

2 Related Work82

Here we briefly review the latest advances in multiple choice learning, semi-supervised learning, and83

data programming, which are related to our work. Detailed information is available in [17–20].84

2.1 Multiple Choice Learning85

Multiple choice learning (MCL) [21] was proposed to overcome the low diversity problem of models86

trained independently in ensemble learning. For example, stochastic multiple choice learning [22] is87

for training diverse deep ensemble models. However, a crucial problem with MCL is that each model88

tends to be overconfident. which results in poor final prediction. To solve this problem, [23] forces89
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the predictions of non-specialized models to meet a uniform distribution, so that the final decision is90

summed over diverse outputs. [24] proposes an additional network to estimate the weight of each91

specialist’s output. In this paper, we develop an improved MCL based scheme to automatically92

generate diverse and specialized labeling functions (LFs) from scratch in an SSL manner. These LFs93

are used to generate preliminary (usually noisy) labels for unlabeled data.94

2.2 Semi-supervised Learning95

Semi-supervised learning (SSL) has been extensively studied in image classification [25], object96

detection [26], and semantic segmentation [27]. Two popular SSL strategies for image classification97

are pseudo labels [7] and consistency regularization [8]. Pseudo-label methods generate artificial98

labels for some unlabeled images and then train the model with these artificial labels, while consistency99

regularization tries to obtain an artificial distribution/label and applied it as a supervision signal with100

other augmentations/views. These two strategies have been adopted by a number of recent SSL101

works [4, 8, 28–37]. For example, FixMatch [4] proposes a simple combination of pseudo labels102

and consistency regularization. [35] employs unsupervised learning and clustering to determine the103

pseudo labels. In this paper, we propose a new SSL method that is effective and robust even when104

the size of labeled data is very small. Our method employs an innovative data programming alike105

method to automatically generate probabilistic labels for unlabeled data.106

2.3 Data Programming107

Data programming [10] is a weak supervision paradigm proposed to infer correct labels based on108

the consensus among noisy labels from labeling functions (LFs), which are modules embedded with109

decision-making processes for generating labels programmatically. Following the DP paradigm,110

Snorkel [12] and Snuba [38] were proposed as a rapid training data creation system. Their LFs are111

built with various weak supervision sources, like pattern regexes, heuristics, and external knowledge112

base etc. Recently, more works are reported in the literature [11, 13–16, 20, 39–45]. Among113

them, [11, 13, 14, 43–45] focus on the adaption of label model in DP. For example, [20] aims to114

reduce the computational cost and proposes a closed-formed solution for training the label model.115

[15, 16, 39–41] apply DP to computer vision. Concretely, [16, 40, 41] heavily rely on the pretrained116

models. [39] combines crowdsourcing, data augmentation, and DP to create weak labels for image117

classification. [15] presents a novel view for resolving infrequent data in scene graph prediction118

training datasets via image-agnostic features in LFs. However, all these methods cannot directly119

applied to training models from scratch with a small number of labeled samples. Thus, in this paper120

we extend DP by exploring both MCL and SSL to generate arbitrary labeling functions.121

3 Method122

For a C-class SSL classification problem, assume that all training data X are divided into labeled data123

Xl and unlabeled Xu, and test data are denoted as Xt. Following the notation in [4, 35], {xl, xwl } ∈124

Xl are the paired labeled samples with labels yl ∈ {1, . . . , C}, and {xu, xwu , xsu} ∈ Xu are the triple125

unlabeled samples. Here, xl and xu represent the raw images without any transformations. xwl , x
w
u ,126

and xsu are the images based on the weak and strong augmentation strategies, respectively. In this127

paper, weak augmentation uses a standard flip-and-shift strategy, and strong augmentation is the128

RandAugment[46] strategy with Cutout [47] augmentation operation.129

3.1 Framework130

Fig. 2 shows the framework of our DP-SSL method, which works in three major steps as follows:131

• Step 1. We employ an MCL based approach to automatically generate LFs from scratch132

in an SSL style. Here, each LF is trained on a subset of C classes in training set based on133

MCL. As shown in Fig 2, the 2nd LF is trained with samples of classes “horse” and “dog”,134

and abstains from prediction when facing monkey images.135

• Step 2. A graphical model is developed as the label model to aggregate the noisy labels and136

produce probabilistic labels for unlabeled training data. The label model is learned in an137

SSL manner with an additional regularizer.138
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Figure 2: Framework of the DP-SSL method with four LFs.

• Step 3. The end model is trained with both provided labels and probabilistic labels generated139

from Step 2. Finally, we verify the performance of the end model on test data.140

3.2 Labeling Function141

In Step 1 of our method, LFs are exploited to generate noisy labels for each unlabeled image. In142

previous DP works for computer vision, LFs are built via external image-agnostic knowledge [15]143

or pretrained models [16, 40, 41]. However, it is difficult to explicitly describe the rules of image144

classification. Instead, here we innovatively explore MCL and SSL for automatic LF generation.145

As shown in Fig. 2, we share the same backbone (Wide ResNet [48] in this paper) to extract features146

of images for multiple prediction heads (called LFs in this paper). To promote the diversity of LFs,147

we transform the features and feed each LF with different transformed features as follows:148

f̃k =

HW∑
j=1

e−βkΛ(fj ,ck)∑K
k′=1 e

−βk′Λ(fj ,ck′ )
(fj − ck). (1)

In this paper, f ∈ RH×W×C denotes the feature before global average pooling in the backbone,149

fj ∈ RC is the feature vector at position j of f . ck ∈ RC is the learnable clustering center in the150

k-th LF, βk is the learnable variable of the k-th cluster, Λ(A,B) is the distance metric for A and B.151

Thus, f̃k corresponds to the feature fed to the k-th LF, and describes the k-th aggregated pattern of f152

among K centers ck, it can also be considered as a learnable weighted average pooling for feature f .153

In our experiments, e−βkΛ(fj ,ck) is approximately implemented in the form as in [49].154

As depicted in [22], the classifiers lack diversity of prediction even trained with different protocols.155

Therefore, we adopt MCL to assign a subset of labeled data for each classifier automatically to156

improve diversity, which is formulated as157

L1(xwl , yl) =

K∑
k=1

uk ∗H(yl, p̃
w,k
l )

s.t.

K∑
k=1

uk = ρ ∗K,uk ∈ {0, 1},

(2)

with H(yl, p̃
w,i
l ) ≤ H(yl, p̃

w,j
l ) for ∀i, j when ui = 1, uj = 0. Above, H(yl, p̃

w,k
l ) denotes the158

cross entropy between the ground truth label yl and the predicted distribution p̃w,kl of the k-th LF, uk159

is the indicator variable in MCL to indicate whether the k-th LF is specialized in labeling xwl . K is160

the number of LFs in DP and ρ is the ratio of specialist LFs. When ρ is equal to 1, MCL deteriorates161

to the basic ensemble learning, where all K classifiers are trained with the same data.162

Based on MCL, each LF is a specialist for some classes, so it can get high accuracy for samples in163

these classes. While for samples from other classes not specialized by the LF, it fails to predict due to164

over-confidence. Thus, we allow each LF to abstain from some samples in the dataset. Formally, we165

denote 0 as the abstention label, and the specialized classes of the k-th LF as τk ∈ {τ1
k , . . . , τ

|τk|
k }.166

Then, the output of the k-th LF ỹk satisfies ỹk ∈ {0} ∪ τk. For example, the output of the 1st LF in167
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Fig. 2 is among “monkey”, “deer” and “abstention” for its specialized category set is τ1 = {monkey,168

deer}. The objective function over labeled samples with abstention option is169

L2(xwl , yl) =

K∑
k=1

(1(yl ∈ τk)H(yl, q̃
w,k
l ) + 1(yl /∈ τk)H(0, q̃w,kl )), (3)

where q̃w,kl is the normalized probability distribution of CONCAT(p̃w,kl , p̃w,kl,a ) and p̃w,kl,a is the170

probability of abstention. Then, for the unlabeled training data, we follow the settings in FixMatch [4],171

where unlabeled data are supervised by the pseudo labels ỹw,ku of weak augmentation data xwu . Thus,172

L(xwu , x
s
u) =

K∑
k=1

1(max(q̃w,ku ) ≥ ε)
(
1(ỹw,ku ∈ τk)H(ỹw,ku , q̃s,ku )+1(ỹw,ku /∈ τk)H(0, q̃s,ku )

)
, (4)

where ỹw,ku = argmax(q̃w,ku ). Specifically, we keep only samples whose largest probability (includ-173

ing the abstention option) is above the predefined threshold ε (0.95 in our paper), and train the model174

on the kept data with pseudo label ỹw,ku . Accordingly, the training in this step is to minimize the175

objective function as follows:176

L(xwl , yl, x
w
u , x

s
u) = µ1L1(xwl , yl) + µ2L2(xwl , yl) + µuL(xwu , x

s
u), (5)

where µ1, µ2 and µu are hyper-parameters. In our implementation, we first set µ1 = 1 and177

µ2 = µu = 0, then adjust µ1 to 0 and µ2 = µu = 1 after the convergence of L1.178

Generally, in Step 1, MCL is expected to generate specialized class sets τ for LFs, with which samples179

are more easily discriminated by SSL classifiers even there are a few labeled samples. Besides, the180

abstention option is for addressing the over-confidence problem of samples from non-specialized sets.181

3.3 Label Model182

In Step 2 of our method, we utilize a graphical model to specify a single prediction by integrating183

noisy labels provided by K LFs. For simplification, we assume that the K LFs are independent (as184

shown in Fig. 2). Then, suppose that ỹ ∈ RK is the vectorized form of the predictions from K LFs,185

the joint distribution of the label model can be described as:186

P (y, ỹ) =
1

Z

K∏
k=1

φ(y, ỹk) (6)

where Z is the normalizer of the joint distribution, φ is the potential that couples the target y and noisy187

label ỹk. In this paper, we extend the dimension of parameters θ in label model to K × C to support188

multi-class classification. Set eky := exp(θky), which is the exponent of parameters θky. Now we189

are to construct the potential function φ. Due to the specialized LFs, the potential φ should benefit190

the final prediction when a noisy label agrees with the target. That is, we should have φ(y, ỹk) > 1.191

Thus, we set φ as 1 + eky for this case. On the contrary, the potential φ should negatively impact the192

final prediction when a noisy label conflicts with the target label in the specialized category set, i.e.,193

we should have φ(y, ỹk) < 1. Therefore, for this case we set φ to 1/(1 + eky). For the other cases,194

we follow the design in [14]. In summary, the potential φ is defined as follows:195

φ(y, ỹk) =


1 + eky, if y ∈ τk, ỹk ∈ τk, ỹk = y

1/(1 + eky), if y ∈ τk, ỹk ∈ τk, ỹk 6= y

eky, if y /∈ τk, ỹk ∈ τk, ỹk 6= y

1. otherwise

(7)

With the potential above, the normalizer Z of the joint distribution in Eq. (6) can be obtained by196

summarizing over y and ỹk:197

Z =
∑
y∈Y

K∏
k=1

∑
ỹk∈{0}∪τk

φ(y, ỹk)

=
∑
y∈Y

K∏
k=1

(
1(y ∈ τk)(2 + eky +

|τk| − 1

1 + eky
) + 1(y /∈ τk)(1 + |τk|eky)

)
.

(8)
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Then, the objective function of the label model can be expressed in an SSL manner as follows:198

L(ỹl, yl, ỹu) =
∑
xl

H(yl, P (y, ỹl))︸ ︷︷ ︸
labeled samples

+ (−
∑
xu

log
∑
y∈Y

P (y, ỹu))︸ ︷︷ ︸
unlabeled samples

+R(θ, ỹu), (9)

where the first part is the cross-entropy loss, the second is the negative log marginal likelihood on the199

observed noisy labels ỹu, and the third is a regularizer. In our method, the regularizer is utilized to200

guide the label model with statistical information (the accuracy of each LF). However, the accuracy201

of each LF on noisy labels is unavailable, while the accuracy on labeled training is almost 100% due202

to over-fitting. Thus, we have to estimate the accuracy of each LF with the observable noisy labels ỹ,203

which will be presented in Sec. 3.4. After training, the label model produces probabilistic labels π by204

computing the joint distribution in Eq. (6) with the noisy labels ỹ.205

3.4 Accuracy Estimation206

Now, we formally describe our method for estimating the accuracy of LFs. We transform the multi-207

class problem into C one-versus-all tasks. For the i-th one-versus-all task, we denote the unobserved208

true labels as Yi ∈ {±1} (+1 is the positive label, −1 represents that of the other categories), noisy209

labels of the k-th LF as λki ∈ {±1, 0} (0 for abstention). Then, we can write E[λki Yi] as210

E[λki Yi] = P(λki Yi = 1)− P(λki Yi = −1)

= P(λki Yi = 1)− (1− P(λki Yi = 1)− P(λki Yi = 0))

= 2P(λki = Yi) + P(λki = 0)− 1.

(10)

Assume that λji ⊥⊥ λki |Yi for distinct j and k, then211

E[λjiλ
k
i ] = E[λjiY

2
i λ

k
i ] = E[λjiYi]E[λki Yi] (11)

with the fact that Y 2
i = 1. In Eq. (11), Ê[λjiλ

k
i ] = 1

|xu|
∑
xu
λjiλ

k
i is observable, which can be derived212

from the noisy labels of the j-th and k-th LFs, while E[λjiYi] and E[λki Yi] remains to be solved due213

to true label Yi is unavailable. Next, we introduce a third labeling result from the l-th LF as λli, such214

that Ê[λjiλ
l
i] and Ê[λki λ

l
i] are observable. Now, |Ê[λjiYi]|, |Ê[λki Yi]|, |Ê[λliYi]| can be solved by a215

triplet method as follows:216

|Ê[λjiYi]| =
√
|Ê[λjiλ

k
i ] · Ê[λjiλ

l
i]/Ê[λki λ

l
i]|,

|Ê[λki Yi]| =
√
|Ê[λjiλ

k
i ] · Ê[λki λ

l
i]/Ê[λjiλ

l
i]|,

|Ê[λliYi]| =
√
|Ê[λjiλ

l
i] · Ê[λki λ

l
i]/Ê[λjiλ

k
i ]|.

(12)

We can obtain the estimated accuracy of each LF by resolving the sign of E[λki Yi]. Let âki := P̂(λki =217

Yi|λki 6= 0) be the estimated accuracy of the k-th LF on the i-th category. Therefore, the regularizer218

of R(θ, ỹu) can be formulated as219

R(θ, ỹu) =

C∑
i=1

K∑
k

âki logPθ(λ
k
i = Yi|ỹku 6= 0) + (1− âki ) log(1− Pθ(λ

k
i = Yi|ỹku 6= 0)) (13)

where Pθ(λ
k
i = Yi|ỹku 6= 0) can be computed in closed form by marginalizing over all the other220

variables in the model in Eq. (6) without noisy labels ỹ. Details of Pθ can be referred to Appendix.221

3.5 End Model222

In Step 3, probabilistic labels are used to train an end model under any network architecture. We223

utilize noise-aware empirical risk expectation as the objective function to take annotation errors into224

account. Accordingly, the final objective function is as follows:225

L(xl, yl, xu, π) =
∑
xl

H(yl, pl)︸ ︷︷ ︸
labeled samples

+
∑
xu

Ey∼πH(y, pu)︸ ︷︷ ︸
unlabeled samples with probabilistic label

(14)
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where pl and pu are the predicted distributions of xl and xu, π is the distribution produced by the226

label model in Sec. 3.3. Actually, H(yl, pl) can also be rewritten as Ey∼P(yl)H(y, pl) where P(yl)227

is the one-hot distribution of yl.228

4 Experiments229

4.1 Implementation Details230

In the training phase, we follow the settings of previous works [4, 34, 35], augment data in weak (a231

standard flip-and-shift strategy) and strong forms (RandAugment [46] followed by Cutout [47]232

operation), and utilize a Wide ResNet as the end model for a fair comparison. In our framework,233

the batch size for labeled data and unlabeled data is set to 64 and 448, respectively. Besides, we use234

the same hyperparameters (K = 50, ρ = 0.2, ε = 0.95) for all datasets. We compare DP-SSL with235

major existing methods on CIFAR-10 [50], CIFAR-100 [50], SVHN [51] and STL-10 [52]. We also236

analyze the effect of annotation and conduct ablation study in Sec. 4.4 and Sec. 4.5 respectively. All237

experiments are implemented in Pytorch v1.7 and conducted on 16 NVIDIA RTX3090s.238

4.2 Datasets239

CIFAR-10 and CIFAR-100 [50] contain 50,000 training examples and 10,000 validation examples.240

All images are of 32x32 pixel size and fall in 10 or 100 classes, respectively.241

SVHN [51] is a digital image dataset that consists of 73,257, 26,032 and 531,131 samples in the242

train, test, and extra folders. It has the same image resolution and category number as CIFAR-10.243

STL-10 [52] is a dataset for evaluating unsupervised and semi-supervised learning. It consists of244

5000 labeled images and 8000 validation samples of 96x96 size from 10 classes. Besides, there are245

100,000 unlabeled images available, including odd samples.246

4.3 Comparison with Existing SSL Methods247

For a fair comparison, we conduct experiments with the codebase of FixMatch and cite the results on248

CIFAR-10, CIFAR-100, SVHN and STL-10 from [4, 35]. We utilize the same network architecture249

(a Wide ResNet-28-2 for CIFAR-10 and SVHN, WRN-28-8 for CIFAR-100, and WRN-37-2 for250

STL-10) and training protocol of FixMatch, such as optimizer and learning rate schedule. Unlabeled251

data are generated by the scripts in FixMatch. Results of DP-SSL and existing methods in Tab. 1 and252

Tab. 2 are presented with the mean and standard deviation (STD) of accuracy on 5 pre-defined folds.253

As shown in Tab. 1, our method achieves the best performance in most cases, especially when254

there are only 4 labeled samples per class. Specifically, our method achieves a 93.46% accuracy on255

CIFAR-10 with 4 labeled samples per category, which is 3.3% higher than that of USADTM — the256

state-of-the-art method. Again on STL-10, our method surpasses USADTM and achieves the best257

performance when there are 4 and 25 labeled samples per class.258

On CIFAR-100, our method performs the best for 40 labels case and the 2nd for 2500 and 10,000 labels259

cases. We also notice that DP-SSL has relatively large STDs for 2500 and 10,000 labels cases, which is260

due to the coarse accuracy estimation. In fact, even if triplet mean is adopted in estimation, the triplet261

selection in Eq. (12) still impacts accuracy estimation and regularizer a lot, especially when E[λki Yi]262

is close to 0 or sign recovery of E[λki Yi] is wrong. Actually, there are some advanced approaches to263

unsupervised accuracy estimation [53–55] that can replace the naive triplet mean estimation. Ideally,264

if we can obtain the exact accuracy of each class b̂ki := P̂(λki = Yi|λki = 1) and regularize it as265

R(θ, ỹu) =
∑C
i=1

∑K
k b̂

k
i logPθ(λ

k
i = Yi|ỹku = i) + (1 − b̂ki ) log(1 − Pθ(λ

k
i = Yi|ỹku = i)), we266

will get an end model with (27.92± 0.23)% error rate for 2500 labeled samples.267

Comparing with USADTM, our method does not perform well enough when more labeled data268

available. For USADTM, apart from the proxy label generator, unsupervised representation learning269

contributes a lot for its performance. As shown in the ablation study of [35], USADTM without270

unsupervised representation learning achieves around 5.73% and 4.99% error rate for 250 and 4000271

labeled samples in CIFAR-10, while our method DP-SSL obtains 4.78% and 4.23% error rate.272
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Table 1: Results of error rate on CIFAR-10, CIFAR-100 and SVHN for different existing SSL methods
(Π-Model [28], Pseudo-Labeling [7], Mean Teacher [31], MixMatch [30], UDA [33], ReMixMatch
[34], FixMatch [4] and USADTM [35]) and our DP-SSL method.

CIFAR-10 CIFAR-100 SVHN

Method 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels 40 labels 250 labels 1000 labels

Π -Model - 54.26±3.97 14.01±0.38 - 57.25±0.48 37.88±0.11 - 18.96±1.92 7.54±0.36
Pseudo-Labeling - 49.78±0.43 16.09±0.28 - 57.38±0.46 36.21±0.19 - 20.21±1.09 9.94±0.61
Mean Teacher - 32.32±2.30 9.19±0.19 - 53.91±0.57 35.83±0.24 - 3.57±0.11 3.42±0.07
MixMatch 47.54±11.50 11.05±0.86 6.42±0.10 67.61±1.32 39.94±0.37 28.31±0.33 42.55±14.53 3.98±0.23 3.50±0.28
UDA 29.05±5.93 8.82±1.08 4.88±0.18 59.28±0.88 33.13±0.22 24.50±0.25 52.63±20.51 5.69±2.76 2.46±0.24
ReMixMatch 19.10±9.64 5.44±0.05 4.72±0.13 44.28±2.06 27.43±0.31 23.03±0.56 3.34±0.20 2.92±0.48 2.65±0.08
FixMatch (RA) 13.81±3.37 5.07±0.65 4.26±0.05 48.85±1.75 28.29±0.11 22.60±0.12 3.96±2.17 2.48±0.38 2.28±0.11
FixMatch (CTA) 11.39±3.35 5.07±0.33 4.31±0.15 49.95±3.01 28.64±0.24 23.18±0.11 7.65±7.65 2.64±0.64 2.36±0.19
USADTM 9.54±1.04 4.80±0.32 4.40±0.15 43.36±1.89 28.11±0.21 21.35±0.17 3.01±1.97 2.11±0.65 1.96±0.05

DP-SSL (ours) 6.54±0.98 4.78±0.26 4.23±0.20 43.17±1.29 28.00±0.79 22.24±0.31 2.98±0.86 2.16±0.36 1.99±0.18

Fully Supervised 2.74 16.84 1.48

Table 2: Results of error rate on STL-10.

STL-10

Method 1000 labels Method 1000 labels Method 40 labels 250 labels 1000 labels

Π -Model 26.23±0.82 UDA 7.66±0.56 USADTM 9.63±1.35 6.85±1.09 4.01±0.59
Pseudo-Labeling 27.99±0.80 ReMixMatch 5.23±0.45 DP-SSL (ours) 9.32±0.91 6.83±0.71 4.97±0.42
Mean Teacher 21.43±2.39 FixMatch (RA) 7.98±1.50 Fully Supervised 1.48
MixMatch 10.41±0.61 FixMatch (CTA) 5.17±0.63

4.4 Analysis273

Annotation performance. Intuitively, the holistic performance of the end model in our method274

highly depends on the quality of annotation results. Thus, we present the macro precision/recall/F1275

score and coverage of the annotated labels of our method on CIFAR-10, CIFAR-100, and SVHN276

in Tab. 3. We can see that our method achieves over 99% coverage, which means that it produces277

probabilistic labels for almost all unlabeled data. Comparing to the results in [35], the label model278

with 40 labeled samples outperforms the proxy label generator, FixMatch and USADTM get 88.51%279

and 89.48% accuracy, respectively. Furthermore, our method achieves 97.36% accuracy for unlabeled280

data with the top-500 highest probabilities in each category. Meanwhile, we also present results of281

Majority Voting and FlyingSquid [20] in Tab. 3 based on the noisy labels from Step 1 of our method282

for comparison. Majority Voting gets bad performance because the number of LFs triggered for283

different categories is not equal. For FlyingSquid, we implement it with C one-versus-all models to284

support multi-class tasks, and the large C in CIFAR-100 results in the worst performance.285

Barely supervised learning. We conduct experiments to test the performance (accuracy and STD)286

of our method on CIFAR-10 for some extreme cases (10, 20 and 30 labeled samples) to verify287

the effectiveness of our method. Here, we select the labeled data through the scripts of FixMatch288

with 5 different random seeds. As claimed in FixMatch, it reaches between 48.58% and 85.32%289

test accuracy with a median of 64.28% for 10 labeled samples, while our method obtains accuracy290

from 61.32% to 83.7%. As for 20 and 30 labeled samples, our method gets (85.29 ± 3.14)% and291

(89.81± 1.59)% accuracy respectively, which have much smaller STDs than that reported in [36].292

Table 3: The macro Precision/Recall/F1 Score/Coverage of the annotated labels on CIFAR-10,
CIFAR-100, and SVHN for our method and two typical existing label models.

CIFAR-10 CIFAR-100 SVHN

Method Metrics 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels 40 labels 250 labels 1000 labels

Majority Vote F1 Score 85.96 94.23 95.77 49.97 69.81 76.03 90.86 95.38 96.14
FlyingSquid[20] F1 Score 90.25 94.99 95.85 48.90 69.73 74.12 93.92 97.24 97.70

DP-SSL (ours)

Precision 93.47 95.30 95.89 55.62 71.91 75.12 95.20 97.65 97.79
Recall 93.82 95.33 95.91 56.86 72.01 78.35 96.78 97.64 97.94
F1 Score 93.61 95.19 95.90 54.42 71.89 76.36 95.95 97.59 97.81
Coverage 99.35 99.79 99.91 99.33 99.87 99.94 99.15 99.67 99.93

8



4.5 Ablation Study293

Table 4: Annotation performance for
different configurations on CIFAR-10
with 40 and 250 labels. K and ρ are set
to 50 and 0.2 by default.

Experiments 40 labels 250 labels

Exp1: w.o. MCL 92.46 95.02
Exp2: MCL w.o. FT 91.61 94.98
Exp3: MCL w. FT 93.82 95.33

Exp4: K=20, ρ=0.2 91.27 94.75
Exp5: K=40, ρ=0.2 93.46 95.03
Exp6: K=50, ρ=0.2 93.82 95.33
Exp7: K=60, ρ=0.2 93.54 95.28
Exp8: K=100, ρ=0.2 93.68 95.35

Exp9: K=50, ρ=0.1 92.95 94.90
Exp10: K=50, ρ=0.2 93.82 95.33
Exp11: K=50, ρ=0.3 93.55 95.23
Exp12: K=50, ρ=0.5 93.07 94.86
Exp13: K=50, ρ=1.0 92.46 95.02

Exp14: w.o. Regularizer 93.19 94.94
Exp15: Regularizer 93.82 95.33

In DP-SSL, LFs and the label model are the core com-294

ponents to assign probabilistic labels for training the end295

model. Here, we check the effects of the following factors296

in the process of producing probabilistic labels by taking297

CIFAR-10 as the example. For ease of exposition, only the298

accuracy of predicted labels is presented in Tab. 4.299

MCL. Feature transformation (FT) described in Eq. (1)300

can be regarded as a weighted spatial pooling for extracted301

features. It is proposed to boost the diversity of generated302

LFs. We conduct comparative experiments for three con-303

figurations: 1) Exp1: w.o. MCL, 2) Exp2: MCL w.o. FT,304

3) Exp3: MCL w. FT. The results are presented in Tab. 4. It305

is interesting to see that Exp1 is better than Exp2 but worse306

than Exp3. In fact, Exp1 is a simple ensemble model with307

a shared backbone, where each LF is trained independently308

and predicts the labels within C categories. In Exp2, we309

observe that some classifiers have never been optimized in310

the training phase and thus have an empty specialized set311

when only a few labeled samples per class are available.312

Moreover, the specialized sets of many LFs are duplicate,313

which incurs a negative impact on the performance. How-314

ever, MCL with FT addresses the drawbacks and helpes our method obtain versatile LFs. Some315

detailed examples are presented in Appendix316

Hyperparameters. K and ρ are the number of LFs and the ratio of specialists in Eq. (2). Exp4-13317

in Tab. 4 present the variance of performance for different K and ρ. In Exp4-8, Exp6 with K=50318

performs the best when 40 labeled samples are available, while Exp8 with K=100 wins the others319

when 250 labeled samples are provided. To trade off the cost of computation and performance, we320

set K=50 as the default setting in our paper. On the other hand, performance reaches the best from321

Exp9 to Exp13 when ρ=0.2. Actually, when ρ is 1.0, MCL becomes a naive ensemble model.322

Regularizer. The regularizer is proposed to impose a global guidance and improve the robustness of323

the label model. As shown in Tab. 4, the regularizer does boost the accuracy, especially when facing324

less labeled samples. Besides, as mentioned in Sec. 4.3, the high-quality guidance of the regularizer325

also reduces the label model’s performance variance, thus improves its robustness.326

5 Conclusion327

In this paper, we explore the data programming idea to boost SSL when only a small number of labeled328

samples available by providing more accurate labels for unlabeled data. To this end, we propose329

a new SSL method DP-SSL that employs an innovative DP mechanism to automatically generate330

labeling functions. To make the labeling functions diverse and specialized, a multiple choice learning331

based approach is developed. Furthermore, we design an effective label model by incorporating a332

novel potential and a regularizer with estimated accuracy. With this model, probabilistic labels are333

inferred by resolving the conflict and overlap among noisy labels from the labeling functions. Finally,334

an end model is trained under the supervision of the probabilistic labels. Extensive experiments show335

that DP-SSL can produce high-quality probabilistic labels, and outperforms the existing methods to336

achieve a new SOTA, especially when only a small number of labeled samples are available.337

6 Limitations of This Work338

In this work, we use coarse accuracy estimation as the statistic information to guide the label model339

for simplicity. As described in Sec. 3.4, we estimate the accuracy Pθ(λ
k
i = Yi|λki 6= 0), rather than340

class-wise accuracy Pθ(λ
k
i = Yi|λki = 1). Besides, we do not consider the dependency between C341

one-vs-all tasks.342
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