
Decoupled Context Processing for
Context Augmented Language Modeling

Anonymous Author(s)
Affiliation
Address
email

Abstract

Language models can be augmented with context retriever to incorporate knowl-1

edge from large external databases. By leveraging retrieved context, the neural net-2

work does not have to memorize the massive amount of world knowledge within its3

internal parameters, leading to better parameter efficiency, interpretability and mod-4

ularity. In this paper we examined a simple yet effective architecture for incorporat-5

ing external context into language models based on decoupled Encoder-Decoder6

architecture. We showed that such a simple architecture achieves competitive7

results on auto-regressive language modeling and open domain question answer-8

ing tasks. We also analyzed the behavior of the proposed model which performs9

grounded context transfer. Finally we discussed the computational implications of10

such retrieval augmented models.11

1 Introduction12

Transformers have proven to be powerful language models that capture an impressive amount of13

world knowledge in its internal parameters and generalize to a variety of downstream tasks [35, 28].14

Recently, there has been a lot of success in improving language model quality by increasing the15

number of parameters in transformers, often on the order of hundreds of billion [10, 27, 34, 6].16

However, the scaling of model size also contributes to the exponential rise of the computation costs,17

both in terms of the number of accelerators needed and energy consumption [26].18

To overcome the exponential increase in the number of parameters, one natural idea is to utilize19

information retrieved from an external source such as a massive external database, therefore freeing20

the neural network from having to memorize world knowledge. To this end, researchers proposed21

multiple context augmented language model architectures [20, 14, 4, 39, 23]. Such architecture22

typically has two components: a retriever that embeds the input sequence and retrieves relevant23

context from external source through vector similarity search; a neural network that integrates both24

the input and retrieved external context into the prediction of target sequence, formally:25

P (y|x,C = Retrieve(x,D); θ) ≥ P (y|x, θ′) (1)

Here, C = {c} is a set of context retrieved from the external database D. θ′ is a self-contained26

language model which predicts target sequence y based solely on the input x whereas θ corresponds27

to the context augmented language model which incorporates both the input x and the retrieved28

context C.29

One of the challenges for such context augmented language model is the computational cost of30

context retrieval and incorporation, especially when multiple pieces of context is present or the31

context sequence is long. In this paper, we propose a computationally efficient architecture for32

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

incorporating context based on vanilla Encoder-Decoder, which decouples the encoding of context33

and the prediction of target sequence. We show that the model with such a simple architecture is34

competitive when compared with customized mechanisms such as Chunked-Cross-Attention [4] on35

language modeling score (as measured by bits-per-byte, BPB), while being more efficient in terms36

of parameter count and computation cost. Then, we define a metrics to measure the utility of the37

retrieved context and use it to guide the training of the retriever. We further show competitive results38

on downstream tasks of question answering, and demonstrate that the model takes advantage of39

the retrieved context without memorizing facts within its internal parameters. Finally, we study the40

implication of context retrieval in terms of retrieval latency, accuracy and computation cost.41

To summarize the main contributions of this article:42

• Proposed a novel Encoder-Decoder based architecture for incorporating retrieved external43

context, which decouples context encoding from language model inference.44

• Demonstrated the competitive results of the proposed model on both the auto-regressive45

language modeling task and the open domain question answering task.46

• Analyzed model behavior by understanding how context improves language modeling pre-47

diction on tokens with different linguistic properties and how the model performs grounded48

context transfer.49

• Discussed computational cost and retrieval efficiency in context augmentation.50

2 Related Works51

Large language models, typically in the form of big neural networks, are trained with a huge amount52

of training data rich in unstructured knowledge. Researchers have found that after model training, the53

neural networks often end up storing a surprisingly large amount of memorized information within54

its weights [2, 7] which are then leveraged as a knowledge base. Multiple hypotheses have been55

developed on how components such as fully-connected layers [12] and attention layers [5] may be56

responsible for such memorization behavior. While the capability of storing world knowledge is57

desirable, memorization also contributes to huge model sizes and the lack of explicit control over58

knowledge base, such as performing selection or updates.59

An alternative strategy is to enable language models to incorporate world knowledge in the form of60

retrieved context from external sources, instead of having to memorize them. Multiple works have61

proposed architectures that support external retrieval, usually composed of a context retriever that62

searches external databases and a language model capable of integrating retrieved information.63

In the retrieval part, the input sequence is first represented as retriever embedding, which can64

be a sparse vector for token matching [31], last layer token embedding [20], pretrained sentence65

embedding [11, 25], or an embedding from an encoder trained for specific downstream tasks [14,66

19, 36]. The input (query) embedding is then searched over a large database using vector similarity67

search techniques, typically with some off-the-shelf nearest neighbor search implementations such as68

FAISS [18], ScaNN [13], HNSW [24] or SPTAG [9].69

In the language modeling part, some works incorporate retrieval results through interpolation. kNN-70

LM [20] combines the output probability of a language model and the probability from kNN retrieval71

of the last layer token embedding. Spalm [39] improves over kNN-LM by introducing learned72

gating on the last layer embedding before the final output. Realm [14] and RAG [23] on the other73

hand inject retrieval results early on by concatenating the input sequence and the retrieved context74

sequences. Compared to interpolation, concatenation allows deeper interaction between the input75

and the retrieved context. However, concatenation requires full language model inference, often76

per retrieved context, and thus is computationally more expensive. Finally, Retro [4] and FID [17]77

allow context incorporation through customized mechanisms. Notably, Retro [4] performs retrieval78

at “chunk”-level instead of “token”-level or “input sequence”-level, and proposes a novel Chunked-79

Cross-Attention mechanism which allows context and input to interact at some pre-selected layers.80

We compare representative previous works and contrast with our proposal in Table 1.81

2

Method Retrieval
Granularity

Retrieval
Encoding

Context
Integration

Decoupled
Context Encoding

Applications

kNN-LM [20] Token Last layer Interpolation Yes LM
Spalm [39] Token Last layer Gating Yes LM

Realm [14], RAG [23],
FID [17]

Input Trained Concat No OpenQA

Retro [4] Chunk Frozen Chunked-
Cross-Attention No

LM,
OpenQA

Proposed Chunk Frozen /
trained

Encoder-
Decoder Yes

LM,
OpenQA

Table 1: Architectural differences between previous retrieval augmented model and ours in (i) context
retrieval, (ii) context integration and (iii) targeted applications.

Precompute

Encoder
Input

Encoder
Output

“Input” “Targets”

Decoder
Input

x1 x2 x3 y1 y2

x2 x3 y1 y2 y3

RetrieverExternal
Database

“Context”

h1 h2 h3 h4

c1 c2 c3 c4
 y3

Decoder
Output

Request

Respond

QD

Figure 1: Architecture of context augmented language model. We opt to use the standard
Encoder-Decoder mechanism for context incorporation which allows us to decouple context encod-
ing from LM inference. c, x, y serve as encoder input, decoder input and decoder target respectively.
In other words, the client sends over input x, and the server conducts retrieval to find relevant
context c and returns the encoded representation HEnc(c; θEnc). The encoded representation HEnc is
pre-computed offline and returned as “metadata” of the retrieval. Note that training of the Encoder
and Decoder is joint, while they are decoupled at inference time: the client does not need to store
parameters or the run inference on the Encoder component.

3 Architecture82

We use Encoder-Decoder Transformer architecture [35] to integrate language model input and83

retrieved context. We denote the context encoder and LM decoder as Enc and Dec respectively. Given84

an input token sequence x = (x1, x2, ..., xn), the task is to predict the next tokens y = (y1, y2, ..., ys).85

Without external context, we concatenate x before y and the task becomes a traditional auto-regressive86

language modeling to predicts targets y following input (or “promopt”) x. In this setting, only the87

decoder is involved (denoted as “No-retrieval”). To incorporate external context, we use c, x, y to88

serve as encoder input, decoder input and decoder target respectively. We first use a retriever to89

identify the context c = (c1, c2, . . . , cm) given input x, then fetch the the pre-computed encoder90

output of the corresponding context tokens HEnc(c; θEnc) as output. In this setting, encoder output91

HEnc is directly used by the decoder through Encoder-Decoder cross-attention to influence the final92

prediction. The decoder does not have to know the exact tokens of c that are retrieved.93

No-retrieval:P (yi|y<i, x1, x2, . . . xn; θ′Dec)

Retrieval:P (yi|y<i, x1, x2, . . . xn, {HEnc(c)}; θDec)

3

Under this formulation, only decoder parameters θDec are required at inference time. The retriever94

retrieves indices of the relevant context and looks up their encodings. The context encodings are95

processed ahead of the time, and are completely decoupled from online operations. This is in contrast96

to previous works of Realm [14], Rag [23] or Retro [4] where the interaction between input x and97

context c is bi-directional, which necessitates context encoding at inference time. In our model,98

information flows uni-directionally from c to x and y, and that the encoding of each context c is99

processed independently. On one hand, this is more restrictive than bi-directional interaction; on the100

other hand, such a design ensures complete decoupling of context processing and the online language101

model inference. The exact mechanism is detailed in Figure. 1.102

Conceptually the retriever can be an arbitrary blackbox. In practice, we use a dual encoder formula-103

tion [8, 15], which first represents x as a query embedding EmbQ(x) and performs vector similarity104

search over a database of D to find the indices of documents whose document embedding has the105

highest inner products with the query embedding. We then look up the context encoder outputs that106

correspond to retrieved indices and return them as the retriever output.107

l∗ = arg max
v∈D

〈EmbQ(x),v)〉;D = {EmbD(c); c ∈ C}

HEnc[l
∗] = Enc(cl∗ ; θEnc)

In the case of multiple supporting context, k -arg max is used instead of arg max. The encoder108

outputs of each supporting context are then concatenated:109

P (yi|y<i, x1, x2, . . . xn, Concat(HEnc[l1],HEnc[l2], · · ·HEnc[lk]); θDec);

Where Concat is simply vector concatenation:110

Concat((h1,h2, · · · ,hn], [g1,g2, ...,gm], ...) = [h1,h2, ...,hn,g1,g2, ..., gm, ...]

At training time, the encoder and decoder are jointly trained. We first perform offline retrieval to111

form triplets of (x,y, c), where c is retrieved by some predefined retriever. The loss is masked and112

only defined on the targets y. Because the encoding of each context is independent and there is no113

interaction between context, the attention matrix of encoder is block diagonal and we process them in114

a linear loop over each diagonal block. Thus, the computation cost of both encoder and decoder at115

each step is linear in the number of context.116

For online language model inference, only the retriever and the decoder are involved. The retrieval117

embedding EmbD(c) and the encoder output HEnc((c) of the context are both offline pre-processed118

and prepared into the retrieval database of such associated key-value pairs. When a new input119

sequence arrives, the retriever is only responsible for the approximate nearest neighbor search and120

lookup of the associated value that is the pre-computed encoder output. The decoder then takes in the121

input sequence and cross attends on the concatenation of pre-computed encoder output to generate the122

targeted tokens. Thanks to the decoupling, neither the retriever nor the decoder needs to store encoder123

parameters. Hence, such an approach is more parameter efficient compared to similar works such as124

Retro [4] by saving the storage and computation budget on encoder, which is helpful in “client-server”125

scenario where the capacity of the “client” can be limited. When accounting the parameter count in126

comparison with other models, we only need to count the decoder and cross attention parameters. We127

also followed Retro’s [4] approach of excluding the embedding matrices from the parameter count.128

4 Auto-regression Language Modeling129

We experimented with the same “encoder-decoder” context incorporation mechanism for both auto-130

regressive language modeling and open domain question answering. The only difference is that131

auto-regressive language modeling processes input sequences in a sliding window fashion, while132

question answering task receives the full input sequence (the question) at once.133

4.1 Experimental Setup134

For auto-regressive language modeling, we use English C4 [29] version 2.2.1, the same as Retro.135

We train the language model and prepare the retrieval database using the train split and evaluate the136

results using validation split. The language model target sequence is a sliding window (chunk)137

4

D

Q
No-retrieval

Retrieval

c x
y

Retrieval Database LM Inference

(a)

Database Split # Articles # Entries
C4 Train 364.6M 3382M

C4 Val, unfiltered 0.3645M 3.369M
C4 Val, filtered - 2.868M
NQ-open Train 79k -
NQ-open Dev 8.8k -
NQ-open Test 3.6k -
Wiki Database - 21M

(b)

Figure 2: (a) Chunking scheme for language modeling training with C4. For each article in C4, we
divide the tokenized text into non-overlapping blocks of at most 64 tokens and use them as targets y.
We use the preceding tokens of at most 448 in length as x. (b) The number of entries in the retrieval
database of C4 auto-regressive LM and Natural Question QA task.

of s = 64 tokens, with at most n = 448 preceding tokens are used as input sequence. This setup is138

similar to XLNet [38] and Retro [4]. The target and input sequences that are smaller than the given139

window size (64 and 448, respectively) are padded with zeros.140

To construct the retrieval database, the same sliding window processing is also used for the context141

sequences. The database is formed as associated pairs of retrieval embedding and encoder output:142

{EmbD(c) : HEnc(c)}, where context c are the sliding window of 512 tokens with a stride of 64143

tokens. We choose our hyper-parameters to be comparable to Retro: chunk size s = 64 and input144

window size n = 448 (smaller than 2048 that of Retro). This also implies that the number of entries145

in the database is larger than the number of articles, but smaller than the number of tokens.146

Our training corpus is in the form of triplets (x,y, c). x and y are acquired directly by applying147

sliding window on the train split of C4. Then BM25 [31] is used as a bootstrapping retriever to mine148

relevant context c to from the database. The first retrieval results with no more than 8 consecutive149

token overlap with the target is used as context. Figure 2a illustrate the sliding window construction150

of database as well as sequence served as input and targets. Table 2b gives the exact number of entries151

in the resulting database used as external context.152

We use mT5 [37] as the backbone architecture for our context augmented Encoder-Decoder, and153

train our models from scratch. Train split is used both for training and retrieval, while validation154

split is used for bits-per-byte (Bpb) evaluation. In auto-regressive language model evaluation, due to155

the fact that text are crawled from web sources, there can be a non-trivial overlap of tokens between156

the training and validation splits. In such cases, tokens are often “copy-pasted” from retrieved context157

into targets without changing. Such copying leads to near-zero perplexity on targets and has a big158

effect on final bits-per-byte measurement. Following the discussion on dataset leakage of Retro [4],159

we filtered any example whose targets and context sequences have more than 8 common consecutive160

tokens (correspond to 12.5% filtering of Retro). We found 14.87% of the validation chunks are161

removed by the filtering of longest common substring.162

Figure 3a reports our auto-regressive language model results with different model sizes under the163

Bit-per-byte (bpb) values. Bpb is tokenizer agnostic and is often used to compare models with164

different vocabulary. We use mT5 base, large and XL respectively without modification, and the165

results compare favorably to Retro models with similar sizes that uses customized chunked-cross-166

attention which couples context encoding and LM decoding. Our experiments demonstrate that167

context incorporation can be achieved with simple Encoder-Decoder cross attention, with the168

additional benefit of decoupled encoder processing.169

4.2 Retriever Training170

The goal of context retrieval is to identify the context sequences c∗ that maximize the improvement171

of some utility function, such as the log-likelihood improvement on target prediction. i.e.172

5

100 200 400 800 1600 3200 6400
#Parameters [M]

0.80

0.85

0.90

0.95

1.00

Bi
ts

-p
er

-b
yt

e

172M,
bpb: 0.98

425M,
bpb: 0.92

1500M,
bpb: 0.85

7500M,
bpb: 0.79

113M,
bpb: 0.947

409M,
bpb: 0.884

1560M,
bpb: 0.838

C4 LM BPB at 12.5% filtering
Retro: With Retrieval
Proposed: With Retrieval

(a)

Model
Exact Match

Accuracy
Realm [14] 40.4
DPR [19] 41.5
Ours (Large,409M) 44.35
RAG [23] 44.5
Retro 7.5B [4] 45.5
Ours (XL,1.56B) 47.95
FiD [17] 51.4
EMDR [33] 52.5
FiD + Distill [16] 54.7

(b)

Figure 3: Performance of decoupled encoder-decoder on auto-regressive language modeling (C4)
and question answering tasks (Natural Question). (a) Comparing the proposed method and Retro on
c4-en-2.2.1 validation split with 12.5% token overlap filtering. The y-axis measures bits-per-byte
(bpb, lower is better), which is the perplexity normalized by token length. The x-axis shows the
number of non-embedding parameters in log scale. (b) End-to-end result on Natural Question test
split. Following previous works, we measure exact match (EM) accuracy on “short answer type” with
at most five tokens.

c∗ = arg max
c

U(x,y, c);

U(x,y, c) =
∑
yi

logP (yi|y<i,x, c, θ)− logP (yi|y<i,x, θ
′)

However, it is infeasible to evaluate the utility function U(x,y, c) for all triplets (x,y, c). Therefore,173

we introduce a proxy to approximate U by computing the expectation of U conditioned on the token174

yi and whether it appeared in the input x and context sequence c:175

Û(x,y, c) =
∑

yi∈y,c
1yi∈xŪ(yi|yi ∈ x, yi ∈ c) + 1yi /∈xŪ(yi|yi /∈ x, yi ∈ c)

Intuitively, the “context utility” Û is a weighted token overlap between context c and target y. The176

weight is higher if the token yi did not appear in input but is contained in context, and when the token177

is “sensitive” to context by showing larger loglikelihood change when the context is present. To train178

a retriever, we adopted the typical dual encoder formulation with in-batch softmax training similar to179

that of DPR [19, 15]. We use training data bootstrapped from BM25 retrieval, where (1) the valid180

retrieval with highest context utility Û is the positive; (2) the other top retrieval from BM25 that181

has less than 80% of context utility of the highest one is used as hard negative; (3) The rest of the182

in-batch samples are regarded as random negatives. All retrievals are subject to the filtering criteria183

of no more than 8 consecutive tokens.184

We trained our retriever using T5X retrieval framework [25] based on mT5-small with an embedding185

dimensionality of 128. The model is trained for 100,000 iterations on a batch size of 8,192 on 64186

TPUv3 chips. Unfortunately, using the dense trained retriever does not lead to a visible improvement187

on the final C4 Bpb evaluation, possibly because both the dense and BM25 retriever end up retrieving188

similar context. We report results using trained dense retriever because of the better retrieval efficiency.189

4.3 Ablation and Analysis190

To analyze the effect of the context augmentation, we show first in Figure 4a that the context191

augmentation in language model consistently helps across different model sizes in the proposed192

6

Base Large XL
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Bi
ts

-p
er

-b
yt

e

Bpb under different model sizes
without retrieval
with retrieval

(a)

50000 100000 150000 200000 250000 300000 350000 400000
Steps

0.42

0.43

0.44

0.45

0.46

0.47

Ac
cu

ra
cy Accuracy jump

Token accuracy on validation set vs steps. mT5 large

Without context, from scratch
With context, from scratch
With context, warm started 100k steps

(b)

Figure 4: (a) Bpb evaluation (lower is better) comparing models of the same sizes trained from
scratch, with and without context retrieval, respectively. (b) Comparing the accuracy history of Large
model training with and without retrieval. Notice that the curve “jumps” when training with retrieval
but without warm-starting.

NN NNP IN JJ DT NNS RB VB PRP CC VBZ VBG VBN VBD VBP TO CD PRP$ MD WDT

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge

Not in context, not in input
Not in context, in input
In context, not in input
In context, in input

Figure 5: Percentage of improvement on target log-likelihood when there’s context. We show the
most frequent 20 POS tags, excluding punctuation. For the data on all the POS tags, see Appendix A.

method. While the absolute improvement on Bpb over “No-retrieval” may seem small when it is193

filtered to 12.5% in longest common sequence, we note that the improvements were made on a limited194

set of important tokens. Intuitively, tokens of functional words such as “the”, “a”, “to” should not195

benefit much from external information and can be predicted with its local context. Yet functional196

words make up a significant portion in perplexity because of their high frequencies in text.197

To this end, we consider the difference in log-likelihood of two language models of same size, trained198

with and without retrieved context. We evaluate the models on validation split of C4 and obtain a199

breakdown using part-of-speech (POS) tagging. We used NLTK [3] to assign each target token to a200

POS tag. Note that the tokenization boundaries of NLTK and sentencepiece [21] could be different,201

and the assignment is done by majority voting in that case.202

From Figure 5, it is immediately clear that the impact of context retrieval on different types of tokens203

is not uniform. Noun (NN, NNP, NNS, NNPS), and number (CD) benefited the most from the context,204

followed by adjective (JJ) and verb (VB, VBZ, VBG, VBN, VBD, VBP). Tokens such as preposition205

(IN), coordinating conjunction (CC), etc. are less helped by context. We believe it is because their206

prediction usually only depends on immediate local context. We also found that whether the target207

token appeared in the context sequence or input sequence has a large impact on the improvements,208

and included this in the breakdown. Intuitively, tokens that are grounded in the retrieved context c209

but did not appear in the input x benefit the most from context retrieval.210

4.3.1 Training Details211

We trained the Encoder-Decoder LM model for a total of 1, 100, 000 steps with a batch size of 512212

and a default learning rate schedule of square-root decay. This corresponds to 10, 000 warmup steps213

with a fixed learning rate of 0.01, followed by square-root decay for 990, 000 steps. We found training214

from scratch instead of fine-tuning on pre-trained models is important to achieve competitive results215

7

on C4. We also found it beneficial to include additional 100, 000 steps with a lower learning rate of216

2× 10−4 after standard training schedule, which slightly improves the results. For base and large217

we used 64 TPUv3 chips whereas 128 TPUv3 chips for training XL. XL runs 1.5 training steps per218

second. XXL is left out due to the insufficient computation resources.219

Comparing the training curve of model with and without retrieval, as depicted in Figure 4b, we220

noticed a phenomenon where both models have roughly the same performance initially but the221

one with retrieval suddenly increases at some point and continues to improve afterwards. This is222

especially true in large and XL. We suspect that decoders of larger models have higher memorization223

capacity, and in the initial phase they can improve training objective without delegating memorization224

to context retrieval. This is a challenge to training stability and one way to address this is by first225

“warm start” the model with 100, 000 steps of training on a subset of training data with highest 10%226

of the context utility before proceed on the full dataset.227

5 Open Domain Question Answering228

5.1 Natural Question229

Large language models are useful because they generalize to downstream tasks, in addition to per-230

forming auto-regressive language generation. To demonstrate that the proposed context augmentation231

scheme is effective on downstream applications we evaluated our proposed model of decoupled232

Encoder-Decoder on the OpenQA task of Natural Question [22].233

We use the same question and context processed by [17], where the context is re-234

trieved with DPR retriever [19]. We construct each context sequence in the format of235

"title: {title} source: {source}" and pad or trim it to 256 sentencepiece tokens. The236

context sequences are then encoded by the encoder independently and simply concatenated, to ensure237

there is no interaction between them.238

The decoder is trained to receive and respond on the sequence containing both the question239

and answer in format "question: {question} \n answer: {answer}" similar to [4], where240

"question: {question} \n answer: " is the input prompt (and there is no loss defined on241

these tokens) and {answer} is the target sequence the decoder is expected to predict. Again, the242

decoder cross-attends to the concatenated encoder output HEnc(c) from all the retrieved context and243

the decoder is completely decoupled from encoder. It does not even have to know the exact tokens of244

context sequence being returned by the retriever.245

The model weights are initialized from T5.1.1 checkpoints [29] We jointly fine-tuned the encoder and246

decoder for 40, 000 steps with 20 context passages for each input of the train split, and validated247

on the dev split every 1,000 steps. We used a batch size of 64, a fixed learning rate of 10−4 and248

Adafactor optimizer [32]. Finally, we selected the checkpoint with the best validation accuracy on249

the dev split and evaluated on the test split. Each model is trained on 64 TPUv3 chips, and the250

evaluation metrics is string exact match with SQuAD [30] normalization. We report our final results251

in Table 3b. Overall, the decoupled Encoder-Decoder produced competitive results on Natural252

Question task, albeit being a much simpler architecture and not specifically designed for QA tasks.253

We note that FiD [17] uses similar architecture. However, FiD concatenates the question with the254

retrieved context passages. Therefore the context encoding is dependent on the input sequence and255

needs to be computed at inference time.256

5.2 Grounded Answer Generation257

Context augmented models tend to generate answers by transferring tokens from context to the output.258

It is interesting to quantify how often the model output comes from grounded transfer of context259

tokens and how often this leads to the correct answer. We use the same model trained in 5.1 to (a)260

run language model decoding with the original set of retrieved context to obtain “original output”:261

y∗ = Decode(x,C; θ); and (b) rerun model prediction but remove all context passages that contain262

the “original output”: y′ = Decode(x,C′ = C \ {c;y∗ ⊆ c}; θ). In the case of grounded context263

transfer, we expect the “secondshot output” to change, but still grounded in the remaining context.264

We show grounded-ness analysis in Table 2. Overall, we found 76% (2,765 out of 3,354) of the265

cases are likely due to grounded context transfer, because the “secondshot output” has changed to266

8

Original output
y∗ = Decode(x,C; θ)

Original output in context Original output out of context

3354 256

Secondshot output
y′ = Decode(x,C′; θ)
C′ = C \ {c;y∗ ⊆ c}

Output changed
still in context

y′ 6= y∗,y′ ⊆ C′

Output changed
out of context

y′ 6= y∗,y′ * C′
Output unchanged Excluded

-

2765 261 291 37 -

Table 2: Analysis of grounded context transfer on Natural Question. First row shows the number of
questions broken down by whether the original model output appeared in the retrieved passages. To
demonstrate the model follows grounded context transfer, we removed context passages containing
original output and reran inference on the remaining context passages. 76% of output changed due to
the removal of “original output” but the new prediction is still contained in remaining context.

something different from “original output”, but is still grounded in the remaining context passages. In267

addition, we found that the accuracy is 51.5% when model output is from grounded transfer, higher268

than 35.4% for the rest. This implies that the model has higher accuracy when the output is grounded.269

We exclude 37 examples from the analysis because they have less than 20 neighbors after removing270

original output.271

6 Computational Discussion272

We evaluate the computation implications of our method around inference latency and space-time trade273

off. We estimate the latency based on benchmarks and publicly available packages and performance274

data. In the Natural Question experiment, we use the 1.56B XL model in Table 3b, whose encoder275

output have dimension of 2048 and the activation data type is bfloat16 [1]. When profiled on a276

single TPUv3 core, it takes 200ms to encode all 20 retrieved context passages each containing 256277

tokens (with paddings). This is equivalent to 10ms per context. Thanks to the decoupling of the278

context encoding, the context passages encoding is done offline, and simply looked up at inference279

time. Inferencing the DPR query embedder model takes around 8ms unbatched on one TPUv2280

chip. We use ScaNN [13] to perform approximate similarity search on the DPR embeddings with a281

dimensionality of 768, which takes roughly 12ms to retrieve 20 neighbors with recall@20=0.97 on a282

single CPU core. For each passage, the uncompressed encoded embeddings have a total size of 1283

MiB (sizeof(bfloat16) * 2048 * 256). When reading the encoding from an NVMe SSD with284

a read throughput of 660 MB/s, the lookup takes around 1.5ms and we use another 0.8ms to transmit285

of one encoding over network. End to end, it takes around 66ms ((1.5 + 0.8) * 20 + 12 + 8)286

to retrieve 20 encoded passages. This is about a third of time for running inference of the encoder, and287

everything except query embedder is conducted with generic hardware without accelerators which is288

cheaper and consumes less energy.289

However, one limitation of this approach is the amount of disk space and network bandwidth needed290

to store and transmit all the pre-computed encodings, which scales with the dimensionality of encoder291

output. We leave it for future research to reduce the encoder output size while maintaining similar292

quality, which may be possible through compression, dimensionality reduction, or adding projection293

layer to the encoder.294

7 Conclusion295

In this paper, we advocate the design of context augmented language model based on296

Encoder-Decoder architecture. Encoder-Decoder models are simple, proven and enjoy the unique297

computational advantage that the context encoding and language generation are decoupled. That is,298

the context encoding can be produced with offline pre-computation and caching, while the decoder299

is parameter efficient because it is agnostic to the encoder computation. We further demonstrated300

the effectiveness of this simple architecture by comparing with competitive baselines on common301

NLP tasks such as language modeling on C4 and question answering on Natural Questions. We also302

analyzed the model behavior and showed the context augmentation resulted in big improvements on303

content words and the model generates output grounded in retrieved context most of the time. Finally,304

we estimated the latency improvement from caching enabled by the decoupled computation.305

9

References306

[1] Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008),307

pages 1–84, 2019.308

[2] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio,309

Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A310

closer look at memorization in deep networks. In International conference on machine learning,311

pages 233–242. PMLR, 2017.312

[3] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python:313

analyzing text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.314

[4] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie315

Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,316

et al. Improving language models by retrieving from trillions of tokens. arXiv preprint317

arXiv:2112.04426, 2021.318

[5] Trenton Bricken and Cengiz Pehlevan. Attention approximates sparse distributed memory.319

Advances in Neural Information Processing Systems, 34, 2021.320

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,321

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are322

few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.323

[7] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-324

ine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training325

data from large language models. In 30th USENIX Security Symposium (USENIX Security 21),326

pages 2633–2650, 2021.327

[8] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah328

Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal sentence encoder.329

arXiv preprint arXiv:1803.11175, 2018.330

[9] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery Zhu, Jason Li, Chuanjie331

Liu, Lintao Zhang, and Jingdong Wang. SPTAG: A library for fast approximate nearest neighbor332

search, 2018.333

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam334

Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:335

Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.336

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of337

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,338

2018.339

[12] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers340

are key-value memories. arXiv preprint arXiv:2012.14913, 2020.341

[13] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv342

Kumar. Accelerating large-scale inference with anisotropic vector quantization. In International343

Conference on Machine Learning, pages 3887–3896. PMLR, 2020.344

[14] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm:345

Retrieval-augmented language model pre-training. arXiv preprint arXiv:2002.08909, 2020.346

[15] Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi Guo,347

Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. Efficient natural language response suggestion348

for smart reply. arXiv preprint arXiv:1705.00652, 2017.349

[16] Gautier Izacard and Edouard Grave. Distilling knowledge from reader to retriever for question350

answering. arXiv preprint arXiv:2012.04584, 2020.351

[17] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for352

open domain question answering. arXiv preprint arXiv:2007.01282, 2020.353

10

[18] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE354

Transactions on Big Data, 2019.355

[19] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu, Sergey Edunov,356

Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering.357

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,358

EMNLP 2020, Online, November 16-20, 2020.359

[20] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. General-360

ization through memorization: Nearest neighbor language models. ICLR 2020, 2019.361

[21] Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword362

tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.363

[22] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,364

Chris Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee,365

Kristina N. Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le,366

and Slav Petrov. Natural questions: a benchmark for question answering research. Transactions367

of the Association of Computational Linguistics, 2019.368

[23] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman369

Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented370

generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing371

Systems, 33:9459–9474, 2020.372

[24] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search373

using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and374

machine intelligence, 42(4):824–836, 2018.375

[25] Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B Hall, Daniel Cer, and376

Yinfei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models.377

arXiv preprint arXiv:2108.08877, 2021.378

[26] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel379

Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network380

training. arXiv preprint arXiv:2104.10350, 2021.381

[27] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,382

John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language383

models: Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446,384

2021.385

[28] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,386

Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified387

text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.388

[29] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,389

Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified390

text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.391

[30] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions392

for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.393

[31] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: BM25 and394

beyond. Now Publishers Inc, 2009.395

[32] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory396

cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.397

[33] Devendra Singh, Siva Reddy, Will Hamilton, Chris Dyer, and Dani Yogatama. End-to-end398

training of multi-document reader and retriever for open-domain question answering. Advances399

in Neural Information Processing Systems, 34, 2021.400

11

[34] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,401

Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using402

deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language403

model. arXiv preprint arXiv:2201.11990, 2022.404

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,405

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information406

processing systems, 30, 2017.407

[36] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed,408

and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense409

text retrieval. In International Conference on Learning Representations (ICLR), April 2021.410

[37] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,411

Aditya Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text412

transformer. In Proceedings of the 2021 Conference of the North American Chapter of the413

Association for Computational Linguistics: Human Language Technologies, pages 483–498,414

Online, June 2021. Association for Computational Linguistics.415

[38] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V416

Le. Xlnet: Generalized autoregressive pretraining for language understanding. Advances in417

neural information processing systems, 32, 2019.418

[39] Dani Yogatama, Cyprien de Masson d’Autume, and Lingpeng Kong. Adaptive semiparametric419

language models. Transactions of the Association for Computational Linguistics, 9:362–373,420

2021.421

12

Checklist422

1. For all authors...423

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s424

contributions and scope? [Yes]425

(b) Did you describe the limitations of your work? [Yes] We mentioned the limitations in426

Section 6.427

(c) Did you discuss any potential negative societal impacts of your work? [No]428

(d) Have you read the ethics review guidelines and ensured that your paper conforms to429

them? [Yes]430

2. If you are including theoretical results...431

(a) Did you state the full set of assumptions of all theoretical results? [N/A]432

(b) Did you include complete proofs of all theoretical results? [N/A]433

3. If you ran experiments...434

(a) Did you include the code, data, and instructions needed to reproduce the main experi-435

mental results (either in the supplemental material or as a URL)? [No] We still need to436

clean up the code before it’s ready.437

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they438

were chosen)? [Yes] See Section 4 and Section 5.439

(c) Did you report error bars (e.g., with respect to the random seed after running experi-440

ments multiple times)? [No] It would take too long and too much resources to run each441

experiment multiple times.442

(d) Did you include the total amount of compute and the type of resources used (e.g., type443

of GPUs, internal cluster, or cloud provider)? [Yes] We reported the type of device we444

used to train the model as well as the steps per second for mT5 XL model. For more445

information on run time, see Appendix.446

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...447

(a) If your work uses existing assets, did you cite the creators? [Yes]448

(b) Did you mention the license of the assets? [Yes] Will be mentioned in Appendix.449

(c) Did you include any new assets either in the supplemental material or as a URL? [No]450

(d) Did you discuss whether and how consent was obtained from people whose data you’re451

using/curating? [N/A]452

(e) Did you discuss whether the data you are using/curating contains personally identifiable453

information or offensive content? [N/A]454

5. If you used crowdsourcing or conducted research with human subjects...455

(a) Did you include the full text of instructions given to participants and screenshots, if456

applicable? [N/A]457

(b) Did you describe any potential participant risks, with links to Institutional Review458

Board (IRB) approvals, if applicable? [N/A]459

(c) Did you include the estimated hourly wage paid to participants and the total amount460

spent on participant compensation? [N/A]461

13

	Introduction
	Related Works
	Architecture
	Auto-regression Language Modeling
	Experimental Setup
	Retriever Training
	Ablation and Analysis
	Training Details

	Open Domain Question Answering
	Natural Question
	Grounded Answer Generation

	Computational Discussion
	Conclusion

