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Abstract

Affine coupling flows (RealNVPs) are a popular normalizing flow architecture1

that works surprisingly well in practice. This calls for theoretical understanding.2

Existing work shows that such flows weakly converge to arbitrary data distributions3

[1]. However, they make no statement about the stricter convergence criterion used4

in practice, the maximum likelihood loss. For the first time, we make a quantitative5

statement about this kind of convergence: We prove that affine coupling flows6

perform whitening of the data distribution (i.e. diagonalize the covariance matrix)7

and derive corresponding convergence bounds that show a linear convergence rate8

in the depth of the flow. Numerical experiments demonstrate the implications of9

our theory and point at open questions.10

1 Introduction11

Normalizing flows [2, 3] are among the most promising approaches to generative machine learning12

and have already demonstrated convincing performance in a wide variety of practical applications,13

ranging from image analysis [4, 5, 6, 7, 8] to astrophysics [9], mechanical engineering [10], computa-14

tional biology [11] and medicine [12]. As the name suggests, normalizing flows represent complex15

data distributions as bijective transformations (also known as flows or push-forwards) of standard16

normal or other well-understood distributions.17

In this paper, we focus on a theoretical underpinning of affine coupling flows (RealNVPs [5]), a18

particularly effective realization of normalizing flows in terms of invertible neural networks. All19

of the above mentioned applications are actually implemented using variants of RealNVP. Their20

central building blocks are affine coupling layers, which decompose the space into two subspaces21

called active and passive subspace. Only the active dimensions are transformed conditioned on the22

passive dimensions, using affine mappings that are computationally easy to invert. In order to vary23

the assignment of dimensions to the active and passive subspaces, coupling layers are combined with24

preceding orthonormal transformation layers into affine coupling blocks. These blocks are arranged25

into deep networks such that the orthonormal transformations are sampled uniformly at random from26

the orthogonal matrices and the affine layers are trained with the maximum likelihood objective, see27

Equation (2). Upon convergence of the training, the sequence of coupling blocks gradually transforms28

the probability density that generated the given training data, into a standard normal distribution (of29

the same dimensionality) and vice versa.30

Since the resulting normalizing flows deviate significantly from optimal transport flows [13] and31

the bulk of the mathematical literature is focusing on optimal transport, an analysis tailored to32

the RealNVP architecture is lacking. In a landmark paper, [1] proved that sufficiently large affine33

coupling flows weakly converge to arbitrary data densities. The notion of weak convergence is34

critical here, as it does not imply convergence in maximum likelihood [14, Remark 3]. Maximum35

likelihood (or, equivalently, the Kullback-Leibler divergence) is the loss that is actually used in36

practice. It can be used for gradient descent and it guarantees not only convergence in samples37

(“x ⇠ q(x) ! x ⇠ p(x)”) but also in density estimates (“q(x) ! p(x)”). It is strong in the sense38
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Figure 1: (Left) The Maximum Likelihood Loss L (blue) can be split into the non-Gaussianity

G (orange) [17] and the non-Standardness S (green) of the latent code z = f✓(x): L = G + S

(Proposition 1). For the latter, we give explicit guarantees as one more coupling block is added in
Theorems 1 and 2 and show a global convergence rate in Theorem 3. (Right) Typical fit of EMNIST
digits by a standard affine coupling flow for various depths. Our theory (Theorem 1) upper bounds
the average S for L+ 1 coupling blocks given a trained model with L coupling blocks (dotted green).
We observe in this experiment that our bound is predictive for how much end-to-end training reduces
S .

that the square root of the KL-divergence upper bounds (up to a factor 2) the total variation metric, and39

hence also the Wasserstein metric if the underlying space is bounded [15]. Moreover, convergence40

under the KL-divergence implies weak convergence which is fundamental for robust statistics [16].41

We take a first step towards showing that affine coupling blocks also converge in terms of maxi-42

mum likelihood. To the best of our knowledge, our paper presents for the first time a quantitative43

convergence analysis of normalizing flows realized by RealNVPs based on this strong notion of44

convergence.45

Specifically, we make the following contributions towards this goal:46

• We utilize that the loss of a normalizing flow can be decomposed into two parts (Figure 1):47

The divergence to the nearest Gaussian (non-Gaussianity) plus the divergence of that48

Gaussian to the standard normal (non-Standardness).49

• The contribution of a single coupling layer on the non-Standardness is analyzed in terms of50

matrix operations (Schur complement and scaling).51

• Explicit bounds for the non-Standardness after a single coupling block in expectation over52

all orthonormal transformations are derived.53

• We use these results to prove that a sequence of coupling blocks whitens the data covariance54

and to derive linear convergence rates for this process.55

We confirm our theoretical findings experimentally and identify directions for further improvement.56

2 Related work57

Analyzing which distributions affine coupling flows can approximate is an active area of research.58

[1] showed it is possible to approximate arbitrary invertible functions using single-active dimension59

affine couplings. From this, they conclude that such affine coupling flows weakly converge to any60

probability density. [14] require only three affine coupling blocks to show convergence to arbitrary61

densities in Wasserstein distance. Both universality results, however, require that the couplings62

become ill-conditioned (i.e. the learnt functions become increasingly discontinuous as the error63

decreases, whereas in practice one observes that functions remain smooth). Also, they consider only a64

finite subspace of the data space. Even more importantly, the convergence criterion employed in their65

proofs (weak convergence resp. convergence under Wasserstein metric) is critical: [14] remarked that66

those criteria do not imply convergence in the loss that is employed in practice, the Kullback-Leibler67
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divergence (equivalent to maximum likelihood loss). An arbitrarily small distance in any of the above68

metrics can even result in an infinite KL divergence. In contrast to previous work on affine coupling69

flows, we work directly on the KL divergence. We decompose the KL in two contributions and show70

the flow’s convergence for one of the parts.71

Regarding when ill-conditioned flows need to arise to fit a distribution, [18] showed that well-72

conditioned affine couplings can approximate log-concave padded distributions, again in terms of73

Wasserstein distance. Lipschitz flows on the other hand cannot model arbitrary tail behavior, but this74

can be fixed by adapting the latent distribution [19].75

For other kinds of normalizing flows, similar universality results exist: [20] for weak convergence76

of sum-of-squares polynomial coupling flows, extended by [21] to the stronger total variation77

convergence, which also does not imply convergence in KL divergence in general; [22] for zero-78

padded affine coupling flows in weak convergence; [23, 24] for Neural ODEs in invertible function79

approximation and weak convergence.80

Closely related to our work, [14, Theorem 2] shows that 48 linear affine coupling blocks are sufficient81

to represent any invertible linear function Ax+ b with det(A) > 0. This also allows mapping any82

Gaussian distribution N (m,⌃) to the standard normal N (0, I). We put this statement into context in83

terms of the KL divergence: The loss is exactly composed of the divergence to the nearest Gaussian84

and of that Gaussian to the standard normal. We then make strong statements about the convergence85

of the latter, concluding that for typical flows a smaller number of layers is required for accurate86

approximation than predicted by [14].87

3 Affine coupling flow fundamentals88

The idea of normalizing flows is to learn an invertible function f✓(x) that maps data from some89

unknown distribution p(x) given by samples to latent variables z = f✓(x) so that z follow a simple90

distribution, typically the standard normal. f✓ then yields a model for the data distribution via the91

change of variables formula (e.g. [5]):92

q(x) = N (f✓(x); 0, I)| det J |, (1)

where J = rf✓(x) is the Jacobian of f✓(x). We can train a normalizing flow via the maximum93

likelihood loss, which is equivalent to minimizing the Kullback-Leibler divergence between the94

distribution of the latent code q(z), as given by z = f✓(x) when x ⇠ p(x), and the standard normal:95

L = DKL(q(z)||N (0, I)). (2)

The invertible architecture that makes up f✓ has to (1) be computationally easy to invert, (2) be able96

to represent complex transformations, and (3) have a tractable Jacobian determinant [9]. Building97

such an architecture is an active area of research, see e.g. [2]. In this work, we focus on a typical98

variant of affine coupling flows, based on the simple and popular RealNVP architecture [5]. It is99

a deep architecture that consists of several blocks, each containing a rotation layer and an affine100

coupling layer:101

fblock(x) = (fcpl � frot)(x). (3)
The affine coupling fcpl splits an incoming vector in two parts along the coordinate axis: The first102

part, which we call passive, is transformed by a global affine transformation. The second part, which103

we call active, is modified as a function of the passive dimensions:104

fcpl(x0) = fcpl

✓
p0

a0

◆
=

✓
r � p0 + u

s(p0)� a0 + t(p0)

◆
=:

✓
p1

a1

◆
. (4)

Here, s : RD/2
! RD/2

+ and t : RD/2
! RD/2 are arbitrary functions, that are typically represented105

by neural networks, and r 2 RD/2
+ and u 2 RD/2 are vector-valued parameters. � denotes the106

element-wise product. As the passive dimensions are transformed by fcpl in a simple manner, the107

above function is trivial to invert: Call x1 = (p1; a1) the output of the layer, then solving for108

x0 = (p0; a0) is trivial as p0 = (p1 � u) ↵ r (↵ is element-wise division). Use p0 to evaluate109

s(p0), t(p0) and recover a0 = (a1 � t(p0))↵ s(p0).110

If we were to concatenate several RealNVP layers, the entire network would never change the passive111

dimensions apart from an element-wise affine transformation. Here, the rotation layers frot(x) = Qx112
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come into play. They multiply an orthogonal matrix Q to the data, changing which subspaces are113

passive resp. active. This matrix is typically fixed at random at initialization and then left unchanged114

during training. A rotation layer is trivial to invert by transposing the matrix: f�1
rot (x) = Q

T
x.115

Note that the affine transformation of the passive dimensions is a modification from the original116

formulation of RealNVP in [5]. However, it adds very little computational overhead while simplifying117

our theoretical analysis greatly. Also, it is used in practice like in the popular INN framework FrEIA.118

4 Affine coupling layers as whitening transformation119

The central mathematical question we answer in this work is the following: How can a deep affine120

coupling flow whiten the data? As the latent distribution is a standard normal, whitening is a necessary121

condition for the flow to converge. This is a direct property of the loss:122

Proposition 1 (Pythagorean Identity, Proof in Appendix B.1). Given data with distribution p(x) with123

mean m and covariance ⌃. Then, the Kullback-Leibler divergence to a standard normal distribution124

decomposes as follows:125

DKL(p(x)||N (0, I)) = DKL(p(x)||N (m,⌃))| {z }
non-Gaussianity G(p)

+DKL(N (m,⌃)||N (0, I))| {z }
non-Standardness S(p)

(5)

and the non-Standardness again decomposes:126

S(p) = DKL(N (m,⌃)||N (m,Diag(⌃)))| {z }
Correlation C(p)

+DKL(N (m,Diag(⌃))||N (0, I))| {z }
Diagonal non-Standardness

. (6)

This splits the transport from the data distribution to the latent standard normal into three parts: (1)127

From the data to the nearest Gaussian distribution N (m,⌃), measured by G. (2) From that nearest128

Gaussian to the corresponding uncorrelated Gaussian N (m,Diag(⌃)), measured C. (3) From the129

uncorrelated Gaussian to standard normal.130

We do not make explicit use of the fact that the non-Standardness can again be decomposed,131

but we show it nevertheless to relate our result to the literature: The Pythagorean identity132

DKL(p(x)||N (m,Diag(⌃))) = G(p) + C(p) has been shown before by [17, Section 2.3]. Both133

their and our result are specific applications of the general [25, Theorem 3.8] from information134

geometry. Our proof is given in Appendix B.1.135

Proposition 1 is visualized in Figure 1. In an experiment, we fit a set of affine coupling flows of136

increasing depths to the EMNIST digit dataset [26] using maximum likelihood loss and measure the137

capability of each flow in decreasing G and S. The form of the non-Standardness S is given by the138

well-known the KL-divergence between the involved normal distributions, see Appendix B.1; it is139

invariant under rotations Q:140

S(m,⌃) := S(p) =
1

2
(kmk

2 + tr⌃�D � log det⌃)) = S(Qm,Q⌃QT). (7)

By writing S(m,⌃), we emphasize the sole dependence on the first two moments.141

The non-Standardness S will be our central measure on how far the covariance and mean have142

approached the target standard normal in the latent space. We give explicit loss guarantees for S for a143

single RealNVP block in Theorems 1 and 2 and imply a linear convergence rate for a deep network144

in Theorem 3. In practice, G converges similar to S (see Figure 1). While our results in the present145

paper provide quantitative bounds for S , we merely guarantee that G does not increase from block to146

block and leave a quantitative analysis for future work.147

Deep Normalizing Flows are typically trained end-to-end, i.e. all parameters are randomly initialized148

and the entire stack of blocks is trained at the same time. In this work, our ansatz is to consider149

how much an isolated coupling block can reduce the non-Standardness S(m,⌃). Then, we combine150

the effect of many isolated blocks, disregarding potential further improvements to S due to joint,151

cooperative learning of all blocks. This greatly simplifies the theoretical analysis of the network, but152

still results in strong statements. It is not a restriction on the model: Any function that is achieved in153

block-wise training could also be the solution of end-to-end training.154

Our first result shows which mean m1 and covariance ⌃1 a single coupling layer fcpl produces to155

minimize S(m1,⌃1) given data with mean m and covariance ⌃, rotated by Q:156
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Figure 2: How a single coupling layer can whiten the covariance at the example of the EMNIST
digits covariance matrix (first panel). The covariance after a single layer trained experimentally
to minimize non-Standardness S(m1,⌃1) (second panel), which matches closely the prediction of
Proposition 2 (third panel). The difference between theory and experiment vanishes (last panel).

Proposition 2 (Proof in Appendix B.2). Given D-dimensional data with mean m and covariance ⌃157

and a rotation matrix Q. Split the covariance of the rotated data into four blocks, corresponding to158

the passive and active dimensions of the coupling layer:159

Q⌃QT = ⌃0 =

✓
⌃0,pp ⌃0,pa

⌃0,ap ⌃0,aa

◆
(8)

Then, the moments m1,⌃1 minimizing Equation (7) that can be reached by fcpl are:160

m1 = 0, ⌃1 =

✓
M(⌃0,pp) 0

0 M(⌃0,aa � ⌃0,ap⌃
�1
0,pp⌃0,pa)

◆
. (9)

At this minimum of S , G does not increase.161

The function M takes a matrix A and rescales the diagonal to 1 as follows. It is a well-known162

operation in numerics called Diagonal scaling or Jacobi preconditioning:163

M(A)ij =
p
AiiAjj

�1
Aij = (Diag(A)�1/2

ADiag(A)�1/2)ij . (10)

Proposition 2 shows that the main change the coupling block can enact on the covariance is making164

the passive and active dimensions uncorrelated. This is achieved by the Schur complement ⌃0,aa �165

⌃0,ap⌃
�1
0,pp⌃0,pa. It coincides with the covariance of a Gaussian that is conditioned on the passive166

subspace. Afterwards, the diagonal is rescaled to one, matching the standard deviations of all167

dimensions with the desired latent code. The result also ensures that any improvement in S is not168

borrowed from the loss by increasing G. In practice, we observe that both S and G can decrease by169

the action of a single layer (see Figure 1).170

The proof is based on a more general result how a single layer maximally reduces the Maximum171

Likelihood Loss for arbitrary data [13]. Here, we apply their result to the non-Standardness S . Details172

can be found in Appendix B.2.173

Figure 2 shows an experiment in which a single layer was trained to bring the covariance of EMNIST174

digits [26] as close to the identity as possible. The experimental result coincides with the prediction175

by Proposition 2. Due to the finite batch-size, a small difference between theory and experiment176

remains.177

5 Explicit convergence rate178

In Section 4, we showed how a single affine coupling layer acts on the first two moments of a given179

data distribution to whiten it. We now explicitly demonstrate how much progress this means in terms180

of the non-Standardness S(m1,⌃1), averaged over rotations Q, (Theorems 1 and 2) and show the181

consequences for multiple blocks (Theorem 3).182
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5.1 Single affine coupling block guarantees183

Proposition 2 allows the computation of the minimum non-Standardness after a single coupling block184

given its rotation Q, by evaluating S(m1,⌃1). In fact, if we were to choose Q such that the data185

is rotated so that principal components lie on the axes (i.e. obtain Q using PCA), a single coupling186

block suffices to reduce the covariance to the identity: ⌃0 = Q⌃QT would be a diagonal matrix187

and ⌃1 = I . This is not the case in practice, where this optimal orientation has zero probability: Q188

is chosen uniformly at random before training from all orthogonal matrices. One could argue that189

one should whiten the data before passing it to the affine coupling flow, reducing S to zero from the190

start. However, any change in the architecture could possibly alter the performance of the network191

with regard to reducing the non-Gaussianity G. Also, our work shows that affine coupling flows are192

already well-equipped to bring the non-Standardness to zero without such modifications. To properly193

describe the achievable non-Standardness S , we formulate all guarantees as expectations over the194

rotation Q, corresponding to the loss averaged over training runs.195

We make two mild assumptions on our data that are part of usual data-preprocessing, when the mean196

is subtracted from the data and all data points are divided by the scalar
p
tr⌃/D (not to be confused197

with diagonal preconditioning, which acts dimension-wise).198

Assumption 1. The data p(x) is centered: Ex⇠p(x)[x] = 0.199

Assumption 2. The covariance is normalized: tr⌃ = D.200

The assumptions simplify the non-Standardness in Equation (7), which now only depends on the201

determinant of ⌃:202

S(⌃) = �
1
2 log det⌃ == �

1
2 log det⌃0 = S(⌃0) (11)

for arbitrary rotation Q. We aim to compute the average non-Standardness after a single block203

EQ2p(Q)[S(⌃1(Q))]. For any Q, S(⌃1) is again given by the determinant of the covariance ⌃1(Q)204

as Assumptions 1 and 2 remain fulfilled: By Proposition 2 m1 = 0 and the diagonal preconditioning205

M ensures that the trace of ⌃1 is D. We write det(⌃1) via Ma and Mp, the diagonal matrices that206

make up the diagonal preconditioning in Equation (10), and use the Schur determinantal formula207

for the determinant of block matrices: det(⌃0,pp) det(⌃0,aa � ⌃0,ap⌃
�1
0,pp⌃0,pa) = det(⌃0) =208

det(⌃) [27]. We thus get det(⌃1) = det(Mp⌃0,ppMp) det(Ma(⌃0,aa � ⌃0,ap⌃
�1
0,pp⌃0,pa)Ma) =209

det(M2
p
) det(M2

a
) det(⌃). Inserting this into Equation (11), we find:210

S(⌃1) = �
1
2 (log det⌃+ log detM2

p
+ log detM2

a
)  S(⌃0) = S(⌃). (12)

The inequality S(⌃1)  S(⌃0) holds because ⌃1 = ⌃0 is an admissible solution of the coupling211

layer optimization, but ⌃1 as given by Proposition 2 is a minimizer of S(⌃1).212

We average this quantity over training runs, i.e. over rotations Q:213

EQ⇠p(Q)[S(⌃1)] = �
1
2

�
log det⌃+ EQ⇠p(Q)[log detM

2
p
] + EQ⇠p(Q)[log detM

2
a
]
�
. (13)

The main difficulty lies in the computation of EQ⇠p(Q)[log detM
2
a
]. Here, we contribute the two214

strong statements Theorems 1 and 2 below.215

5.1.1 Precise guarantee216

The first result relies on projected orbital measures as developed by [28]. This theory describes the217

eigenvalues of submatrices of matrices in a random basis. We require such a result for integrating218

over p(Q) in EQ⇠p(Q)[log detM
2
a
]. In contrast to typical choices of p(Q), the theory to this date219

only covers data rotated by unitary matrices.1 To comply with [28], we make the following two220

additional assumptions:221

Assumption 3. The distribution of rotations is the Haar measure over unitary matrices U(D).222

Assumption 4. The eigenvalues of the covariance matrix ⌃ are distinct: �i 6= �j for i 6= j.223

One could think that the step from orthogonal to unitary rotations takes us far away from the scenario224

we want to consider. We will later observe empirically that the difference between averaging over225

1The only result known to us would yield predictions for D = 2 [29], whereas we are interested in the case
of large D.
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Figure 3: Comparison between predicted non-Standardness and experiment for 48-dimensional
parametrized eigenvalue spectra (insets), varied over a parameter which controls the spread of the
spectrum and thus changes S. The experimental average over orthogonal rotations matrices (blue,
shaded by Interquartile Range IQR) is closely matched by the experimental average over unitary

matrices (dotted blue). The prediction by Theorem 1 is a close upper bound that closely matches the
experimental behavior (orange). The predictions by Theorem 2 are less precise, but converge to the
same value as the precise bound for covariances close to the identitiy: ‘Var-max’ is Equation (16a)
(green) and ‘Loss-only’ is Equation (16b) (red). More details and examples in Appendix A.3.

unitary and orthogonal matrices is negligible. Technically, the data remains real at the optimum if we226

apply the inverse of the rotation layer after the transformation (see Appendix B.3). We will write227

EQ⇠U(D)[ · ] to denote expectations over unitary matrices. Assumption 4 is typically satisfied when228

working with real data that are in ‘general position’.229

We are now ready to compute the average training performance of a single affine coupling block:230

Theorem 1 (Proof in Appendix B.3). Given D-dimensional data with covariance ⌃ with eigenvalues231

�1, . . .�D. Assume that Assumptions 1 to 4 hold. Then, after a single affine coupling block, the232

expected non-Standardness is bounded from above:233

EQ2U(D)[S(⌃1(Q))] < S(⌃) + D

2 log

✓
(�1)

D

2 +1
DX

i=1

�
1�D

2
i

log(�i)R(��1
i

;��1
6=i

)eD

2 �1
(��1

6=i
)

◆
.

(14)
Here, � 6=i := {�1, . . . ,�i�1,�i+1, . . . ,�D} and R, eK are given by:234

R(a; {bi}
N

i=1) =
NY

i=1

1

a� bi
and eK({bi}

N

i=1) =
X

0<i1<···<iKN

bi1 · · · biK . (15)

Inequality (14) sharply bounds the expected non-Standardness that can be achieved by a single affine235

block. The only approximation made is an inequality which comes close to equality as the dimension236

D increases due to the concentration of the corresponding probability distribution.237

Figure 3 shows an experiment confirming Theorem 1. We start with covariance matrices using238

parametrized eigenvalue spectra. On each, we first apply a single affine coupling block with random239

Q and train the coupling that maximally reduces S (Proposition 2). Then we iteratively append240

32 additional blocks in the same manner, building a flow of that depth. We average the resulting241

empirical ratio S(⌃1)/S(⌃) over several orthogonal orientations Q of the rotation layer for each242

input covariance matrix. Then, we compare this to (i) experimentally averaging over unitary rotations243

and (ii) to the prediction by Theorem 1 and confirm that it is a valid and close upper bound. Details244

for replication and more examples can be found in Appendix A.3.245

The proof explicitly integrates E[M2
a
] using [28] (see Appendix B.3). Numerically evaluating246

Equation (14) can be hard even for small D as the summands scale as O(exp(D)), but the overall247

sum scales as O(D). High values cancel due to R alternating in sign, and one requires arbitrary-248

precision floating point software to evaluate Equation (14).249
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5.1.2 Interpretable guarantee250

The guarantee in Theorem 1 yields useful predictions, but it does not lend itself to further analysis:251

How does the bound behave over several coupling blocks? What is the behavior for varying dimension252

D? Also, Assumption 3 restricts formal reasoning as we are interested in averaging over orthogonal253

and not unitary rotations. Our second single-block guarantee depends only on simple metrics of the254

covariance. Moreover, we drop Assumptions 3 and 4, averaging over orthogonal, not unitary, Q:255

Theorem 2 (Proof in Appendix B.4). Given D-dimensional data fulfilling Assumptions 1 and 2 with256

covariance ⌃ with eigenvalues �1, . . .�D. Then, after a single affine coupling block, the expected257

loss can be bounded from above:258

EQ2O(D)[S(⌃1(Q))]  S(⌃) + D

4 log

 
1�

D
2

2(D � 1)(D + 2)

Var[�]

�max

!
(16a)

 S(⌃) + D

4 log

 
1�

D
2

(D � 1)(D + 2)

1�
p

1� gD

1 +
p

1� gD
(1� g)

!
(16b)

< S(⌃). (16c)

Here, g is the geometric mean of the eigenvalues: g =
Q

D

i=1 �
1/D
i

= exp(�2S(⌃)/D) < 1 which259

is a bijection of S(⌃).260

These two new bounds on the average achievable non-Standardness S after a single block are also261

depicted in Figure 3. They make useful predictions, but are less precise than Theorem 1. The second262

bound will be especially useful in what follows because it only depends on the non-Standardness263

before the block S(⌃).264

The full proof is given in Appendix B.4. It relies on the integration of monomials of entries of random265

orthogonal matrices as described by [30] and the arithmetic mean-geometric mean inequality by [31].266

The first bound suggests an important property of the non-Standardness convergence of an affine267

coupling flow in terms of dimension: The performance only marginally depends on the dimension. To268

see this, divide Equation (16a) by D to obtain a statement about the non-Standardness per dimension269

S/D. Then take several data sets with different dimension but same spectrum characteristics270

(i.e. same geometric mean, variance and maximum of covariance eigenvalues). The guarantee is then271

approximately constant in D (it varies slightly with D
2
/(D2 +D � 2), which is always close to 1).272

5.2 Deep network guarantee273

The previous Section 5.1 was concerned with determining how much a single RealNVP block can274

typically contribute towards reducing the S to zero. Now, we extend this result to compute the275

expected non-Standardness after a deep affine coupling network as an explicit function of the number276

of blocks. We again treat the rotation layer of each block as a random variable, as it is randomly277

determined before training.278

We find that the convergence rate of the covariance to the identity is (at least) linear:279

Theorem 3 (Proof in Appendix B.5). Given D-dimensional data fulfilling Assumptions 1 and 2 with280

covariance ⌃. Then, after L affine coupling blocks, the expected loss is smaller than:281

EQ1,...,QL2O(D)[S(⌃L)]  �
�
S(⌃)

�L
S(⌃), (17)

where the convergence rate depends on the non-Standardness before training:282

�(S) = 1 + 1
4S/D

log

 
1�

D
2

(D � 1)(D + 2)

1�
p

1� g(S)D

1 +
p

1� g(S)D

�
1� g(S)

�
!

< 1. (18)

The non-Standardness decreases at least exponentially fast in the number of blocks. The convergence283

rate that holds for a deep network is computed using the non-Standardness of the input data S(⌃).284

This rate comes from Equation (16b). The proof uses that �(S) improves from block to block as285

S decreases (see Appendix B.5). Again, g(S) = exp(�2S/D) < 1 is the geometric mean of286

eigenvalues of ⌃, which increases from block to block.287
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Figure 4: Deep network convergence of covariance on toy dataset. (Left) Each line shows the
experimental convergence of S via the repeated application of Proposition 2, averaged over 32 runs
with different rotations Q. (Right) The empirical convergence rate (blue), i.e. the ratio of S before
and after a block, is correctly bounded from above by our predictions in Theorem 1 (orange), and
the bounds in Theorem 2: Equation (16a) (green) and Equation (16b) (red). The solid lines show
the ratio (bounds) averaged over the toy dataset and rotations, the shade is the IQR. The experiment
suggests that a convergence rate like Theorem 3 can also be derived for the remaining bounds.

Figure 4 shows the convergence of the non-Standardness to zero in an experiment. We build a toy288

dataset of various covariances where we aim to capture a plethora of possible cases (see Appendix A.4).289

We apply a single affine coupling block with random Q and the coupling that maximally reduces S290

via Proposition 2. We iterate adding such blocks 32 times, building a flow of that depth. The resulting291

convergence of S as a function of depth is averaged over 32 runs with different rotations. The292

measured curve confirms Theorem 3. We find that the rate � in Equation (18) is correct, but several293

experiments show even faster convergence in practice. Indeed, the experiments suggest that dividing294

all upper bounds for E[S(⌃1)] in Theorems 1 and 2 by S(⌃) also bounds the non-Standardness ratio295

for subsequent blocks. Formally, we conjecture that E[S(⌃L)]/S(⌃)  (B/S(⌃))L where B is the296

rhs. of Equations (14) and (16a) (Theorem 3 shows exactly this for Equation (16b)). We leave a proof297

or falsification of this conjecture open to future work.298

The experiment also suggests that all bounds agree after a few blocks, leaving a small gap to the299

experiment. We can explicitly compute this limit value of �(S) by taking S ! 0:300

�(S)
S!0
���!

D(D+2)�4
2(D�1)(D+2) 2

⇥
1/2, 5/9

⇤
. (19)

The two experimental observations together with this limit value suggest the heuristic that a single301

additional coupling block typically reduces the non-Standardness S by a factor of approximately302

50% if previous blocks are left unchanged, and possibly faster if cooperations between blocks are303

taken into account.304

6 Conclusion305

To the best of our knowledge, this is the first work on affine coupling flows that provides a quantitative306

convergence analysis in terms of the KL divergence. Specifically, a minimal convergence rate is307

established at which affine flows whiten the covariance of the input data under this strong measure308

of discrepancy of probability distributions. Splitting the loss into the non-Gaussianity G and the309

non-Standardness S , we show that this whitening is a necessary condition for the flow to converge and310

give explicit guarantees. Our derivations suggest the rule of thumb that S can typically be reduced by311

about 50% per coupling block.312

Our central idea was to separate out the contribution a single isolated block can make to reduce the313

loss, arguing that end-to-end training can only outperform the concatenation of isolated blocks.314

Having separated the tasks an affine coupling flow has to solve, and having explained how the315

non-Standardness S can be reduced to zero, we hope that explaining the convergence under non-316

Gaussianity G comes within reach. In practice, it converges similarly fast as S (see Figure 1).317

9



References318

[1] Takeshi Teshima, Isao Ishikawa, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and Masashi319

Sugiyama. Coupling-based Invertible Neural Networks Are Universal Diffeomorphism Approx-320

imators. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances321

in Neural Information Processing Systems, volume 33, pages 3362–3373. Curran Associates,322

Inc., 2020.323

[2] Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing Flows: An Introduc-324

tion and Review of Current Methods. IEEE Transactions on Pattern Analysis and Machine325

Intelligence, 43(11):3964–3979, November 2021.326

[3] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji327

Lakshminarayanan. Normalizing Flows for Probabilistic Modeling and Inference. J. Machine328

Learning Research, 22:1–64, April 2021. arXiv: 1912.02762.329

[4] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components330

estimation. arXiv preprint arXiv:1410.8516, 2014.331

[5] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.332

arXiv preprint arXiv:1605.08803, 2016.333

[6] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.334

In Advances in neural information processing systems, pages 10215–10224, 2018.335

[7] Radek Mackowiak, Lynton Ardizzone, Ullrich Kothe, and Carsten Rother. Generative classifiers336

as a basis for trustworthy image classification. In Proceedings of the IEEE/CVF Conference on337

Computer Vision and Pattern Recognition, pages 2971–2981, 2021.338

[8] Lynton Ardizzone, Radek Mackowiak, Carsten Rother, and Ullrich Köthe. Training Normalizing339

Flows with the Information Bottleneck for Competitive Generative Classification. Advances in340

Neural Information Processing Systems, 33, 2020. arXiv: 2001.06448.341

[9] Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Analyzing Inverse Problems342

with Invertible Neural Networks. In International Conference on Learning Representations,343

2018.344

[10] Pablo Noever-Castelos, Lynton Ardizzone, and Claudio Balzani. Model updating of wind345

turbine blade cross sections with invertible neural networks. Wind Energy, 25(3):573–599,346

March 2022.347

[11] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling348

equilibrium states of many-body systems with deep learning. Science, 365(6457):eaaw1147,349

2019. Publisher: American Association for the Advancement of Science.350

[12] Tim J. Adler, Lynton Ardizzone, Anant Vemuri, Leonardo Ayala, Janek Gröhl, Thomas Kirch-351

ner, Sebastian Wirkert, Jakob Kruse, Carsten Rother, Ullrich Köthe, and Lena Maier-Hein.352

Uncertainty-aware performance assessment of optical imaging modalities with invertible neural353

networks. International Journal of Computer Assisted Radiology and Surgery, 14(6):997–1007,354

June 2019.355

[13] Felix Draxler, Jonathan Schwarz, Christoph Schnörr, and Ullrich Köthe. Characterizing the356

Role of a Single Coupling Layer in Affine Normalizing Flows. In Zeynep Akata, Andreas357

Geiger, and Torsten Sattler, editors, Pattern Recognition, volume 12544, pages 1–14. Springer358

International Publishing, Cham, 2021. Series Title: Lecture Notes in Computer Science.359

[14] Frederic Koehler, Viraj Mehta, and Andrej Risteski. Representational aspects of depth and360

conditioning in normalizing flows. In Marina Meila and Tong Zhang, editors, Proceedings of the361

38th International Conference on Machine Learning, volume 139 of Proceedings of Machine362

Learning Research, pages 5628–5636. PMLR, July 2021.363

[15] A. L. Gibbs and F. E. Su. On Choosing and Bounding Probability Metrics. Int. Statistical364

Review, 70(3):419–435, 2002.365

10



[16] P. J. Huber and E. M. Ronchetti. Robust Statistics. John Wiley & Sons, Inc., 2nd edition, 2009.366

[17] Jean-Francois Cardoso. Dependence, Correlation and Gaussianity in Independent Component367

Analysis. J. Machine Learning Research, 4:1177–1203, 2003.368

[18] Holden Lee, Chirag Pabbaraju, Anish Sevekari, and Andrej Risteski. Universal Approximation369

for Log-concave Distributions using Well-conditioned Normalizing Flows. arXiv:2107.02951370

[cs, stat], July 2021. arXiv: 2107.02951.371

[19] Priyank Jaini, Ivan Kobyzev, Yaoliang Yu, and Marcus Brubaker. Tails of Lipschitz Triangular372

Flows. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International373

Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,374

pages 4673–4681. PMLR, July 2020.375

[20] Priyank Jaini, Kira A. Selby, and Yaoliang Yu. Sum-of-Squares Polynomial Flow. In Kamalika376

Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference377

on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 3009–378

3018. PMLR, June 2019.379

[21] Isao Ishikawa, Takeshi Teshima, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and Masashi380

Sugiyama. Universal approximation property of invertible neural networks, 2022.381

[22] Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Augmented Normalizing Flows: Bridging382

the Gap Between Generative Flows and Latent Variable Models. arXiv:2002.07101 [cs, stat],383

February 2020. arXiv: 2002.07101.384

[23] Han Zhang, Xi Gao, Jacob Unterman, and Tom Arodz. Approximation Capabilities of Neural385

ODEs and Invertible Residual Networks. arXiv:1907.12998 [cs, stat], February 2020. arXiv:386

1907.12998.387

[24] Takeshi Teshima, Koichi Tojo, Masahiro Ikeda, Isao Ishikawa, and Kenta Oono. Universal388

Approximation Property of Neural Ordinary Differential Equations. arXiv:2012.02414 [cs,389

math, stat], December 2020. arXiv: 2012.02414.390

[25] Shun-ichi Amari and Hiroshi Nagaoka. Methods of Information Geometry, volume 191 of391

Translations of Mathematical Monographs. American Mathematical Society, Providence, Rhode392

Island, April 2007.393

[26] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an extension394

of MNIST to handwritten letters. arXiv:1702.05373 [cs], March 2017. arXiv: 1702.05373.395

[27] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.396

[28] Grigori Olshanski. Projections of orbital measures, Gelfand-Tsetlin polytopes, and splines.397

arXiv:1302.7116 [math], February 2013. arXiv: 1302.7116.398

[29] Jacques Faraut. Rayleigh theorem, projection of orbital measures and spline functions. Advances399

in Pure and Applied Mathematics, 6(4), January 2015.400

[30] T. Gorin. Integrals of monomials over the orthogonal group. Journal of Mathematical Physics,401

43(6):3342–3351, June 2002.402

[31] D. I. Cartwright and M. J. Field. A refinement of the arithmetic mean-geometric mean inequality.403

Proceedings of the American Mathematical Society, 71(1):36–38, 1978.404

Checklist405

1. For all authors...406

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s407

contributions and scope? [Yes]408

(b) Did you describe the limitations of your work? [Yes] see Section 6.409

11



(c) Did you discuss any potential negative societal impacts of your work? [Yes] Generative410

modeling, which this paper aims to improve, can be used in harmful ways to generate411

Deepfakes for disinformation.412

(d) Have you read the ethics review guidelines and ensured that your paper conforms to413

them? [Yes]414

2. If you are including theoretical results...415

(a) Did you state the full set of assumptions of all theoretical results? [Yes]416

(b) Did you include complete proofs of all theoretical results? [Yes] Full proofs are in417

Appendix B.418

3. If you ran experiments...419

(a) Did you include the code, data, and instructions needed to reproduce the main experi-420

mental results (either in the supplemental material or as a URL)? [No] Code will be421

made available upon publication.422

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they423

were chosen)? [Yes] See Appendix A.424

(c) Did you report error bars (e.g., with respect to the random seed after running experi-425

ments multiple times)? [Yes] Except for Figure 1 which shows a single training run per426

block, but a different seed is used for each initialization.427

(d) Did you include the total amount of compute and the type of resources used (e.g., type428

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.429

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...430

(a) If your work uses existing assets, did you cite the creators? [Yes]431

(b) Did you mention the license of the assets? [N/A]432

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]433

434

(d) Did you discuss whether and how consent was obtained from people whose data you’re435

using/curating? [N/A]436

(e) Did you discuss whether the data you are using/curating contains personally identifiable437

information or offensive content? [N/A]438

5. If you used crowdsourcing or conducted research with human subjects...439

(a) Did you include the full text of instructions given to participants and screenshots, if440

applicable? [N/A]441

(b) Did you describe any potential participant risks, with links to Institutional Review442

Board (IRB) approvals, if applicable? [N/A]443

(c) Did you include the estimated hourly wage paid to participants and the total amount444

spent on participant compensation? [N/A]445

12


	Introduction
	Related work
	Affine coupling flow fundamentals
	Affine coupling layers as whitening transformation
	Explicit convergence rate
	Single affine coupling block guarantees
	Precise guarantee
	Interpretable guarantee

	Deep network guarantee

	Conclusion
	Details on Experiments
	Deep network on EMNIST
	Single Layer on EMNIST Digit Covariance
	Single Block on Toy Data
	Layerwise Training on Toy Data

	Detailed proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Softening Assumption 2: Covariance not normalized
	Softening Assumption 4: Degenerate eigenvalues

