
Word2Fun: Modelling Words as Functions for
Diachronic Word Representation

Benyou Wang1, Emanuele Di Buccio1,2, and Massimo Melucci1
1Department of Information Engineering

2Department of Statistical Sciences
University of Padova, Padova, Italy

{wang,dibuccio,melo}@dei.unipd.it

Abstract

Word meaning may change over time as a reflection of changes in human soci-
ety. Therefore, modeling time in word representation is necessary for some of
the user tasks. Most existing diachronic word representation approaches train
the embeddings separately for each pre-grouped time-stamped corpus and align
these embeddings, e.g., by orthogonal projections, vector initialization, temporal
referencing, and compass. However, not only does word meaning change in a
short time, word meaning may also be subject to evolution over long timespans,
thus resulting in a unified continuous process. A recent approach called ‘Diff-
Time’ models semantic evolution as functions parameterized by multiple-layer
nonlinear neural networks over time. In this paper, we will carry on this line of
work by learning implicit functions over time for each word. Our approach, called
‘Word2Fun’, reduces the space complexity from O(TV D) to O(kV D) where k is
a small constant (k � T). In particular, a specific instance based on polynomial
functions could provably approximate any function modeling word evolution with
a given negligible error thanks to the Weierstrass Approximation Theorem. The
effectiveness of the proposed approach is evaluated in diverse tasks including time-
aware word clustering, temporal analogy, and semantic change detection. Code at:
https://github.com/wabyking/Word2Fun.git.

1 Introduction

Word meaning changes over time as a reflection of the changes of human society. Not only does word
meaning change in a short time, word meaning may also be subject to evolution over long timespans.
The causes of the change of word meaning may be cultural, societal, or technological [23]. Such
lexical semantic change phenomenon has been investigated for some decades [3, 23].

Modeling the change of word meaning recently relies on distributed representations of words [2, 14]
and adopting time-specific word vectors as diachronic word representation. The training is based on
diachronic text corpora, which are obtained by partitioning the corpora into bins of textual documents
labeled by time. A popular training paradigm within such an approach is known as train-and-align:
first, the embeddings are trained separately for each pre-grouped time-stamped corpus; then, the
embeddings are aligned by computing, e.g. orthogonal projections [9, 12], vector initialization [11],
temporal referencing [7], parameter regularizers [26, 20], aligned compass [4], or latent diffusion
[1]. The methods above do not model word meaning evolution as a continuous process, but consider
one-hop transformation between pair of timestamps. However, the meaning of some words may
smoothly evolve across a long-range span, according to a mixture of short and long timespans
or in general according to unknown patterns which cannot straightforwardly be represented only
considering one-hop transformations.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://github.com/wabyking/Word2Fun.git

A recent approach called ‘DiffTime’ [18] models semantic evolution as functions parameterized
by multiple-layer nonlinear neural networks over time. Our paper carries on this line of work by
modeling the change of word meaning as implicit functions for diachronic word representation, and
considering word meaning evolution as a continuous process. These functions have considerable
expressive power since trigonometric polynomials can approximate any functions with a given
negligible error thanks to the Weierstrass Approximation Theorem. Even if the proposed approach is
general, we will focus on trigonometric functions.

We experimentally show that modelling each word as a finite number of trigonometric functions
combined together in trigonometric polynomials is an effective approach to modeling the change
of word meaning. Our experimental investigation also shows that the proposed method, even using
fewer parameters, achieves better performance than the state-of-the-art (SOTA) diachronic word
representation in time-aware word clustering, temporal analogy, and semantic change detection tasks,
showing its potential for the research in diachronic word meaning representation and processing.

2 Background

2.1 Problem Definition

Representing words in vector space, i.e., a static word embedding [14] h : N→ RD, is a common
practice. However, static word embedding cannot model word dynamics over time, which is crucial
when considering time-dependent corpora and some tasks, such as those carried out by specialists
like linguists or sociologists. Diachronic word embedding (DWE) [9] (sometimes called Dynamic
Word Embedding [1]) assumes that each word has a meaning which may vary with time. One word
wi with index i has its meaning represented as a D-dimensional vector Ui,t ∈ RD at a given time
t. Therefore, DWE can be formalized as a mapping from N× N to RD, i.e. from the pair (i, t) to a
D-dimensional vector defined over a real field.

Most methods for DWE separately train embeddings for each time t ∈ N. Note that even if we
assume t ∈ N, all formalizations can be extended to t ∈ R; in practice, the granularity between
two consecutive times is fixed, e.g., one year, thus representing t in N is enough. The vectors that

represent V words in time t are defined as U·,t
def
= [U1,t,U2,t · · · ,UV,t] ∈ RV D.

2.2 Alignment Issues for Rotation-invariant Embeddings

There are typically two ways to obtain word vectors: one method is matrix factorization, the other
method is prediction-based neural methods; the former method is also related to the latter [13]. When
considering the matrix factorization case, a common approach [26] is to approximate a given Positive
Pointwise Mutual Information (PPMI) matrix Mt ∈ RV×V by means of the V word vectors U·,t
such that U·,tUT·,t ≈ Mt. The entries of Mt are measures of a relationship between words; for
example, the entry at row i and column j may measure the degree of co-occurrence of the i-th word
with the j-word within fixed-size textual windows. The word embeddings can be obtained by either
using an eigenvalue method or a matrix factorization method which finds

U·,t = arg min
V

|V V T −Mt|F (1)

However, we have that U′·,t = U·,tR can be an alternative solution of Eq. 1 for any orthogonal rotation
matrix R ∈ RD×D. Indeed, U·,tR(U·,tR)T = U·,tRRT (U·,t)T = U·,t(U·,t)T , since RRT = I .
Therefore, training word embeddings according to Eq. 1 is non-convex [1] and as a consequence a
global minimum might not exist.

Moreover, if diachronic word embeddings are trained twice on the same time-specific corpus yet
with different random seeds, different solutions may result. It is also possible that two word vectors
corresponding to different times, i.e., U·,t1 and U·,t2 cannot be compared because they might be
arbitrarily rotated. One has to align these time-specific word embeddings. The rotation-invariant
issue is also present for prediction-based word embeddings e.g., Word2Vec [14].

2

Table 1: Comparison of existing diachronic word representation and Word2Fun. i refers to a word
index; j refers to a dimension index. The target embedding C ∈ RV D is not considered in this table.

Diachronic word vectors formalization Param.

Word2Vec static word embeddings Wi V D
linear projection [12, 9]

Bi,t ; Bi,t ∈ RD TV D

Aligned vector initialization [11]
Diachronic discrepancy penalty [20, 26]
Word2Vec latent diffusion [1]

temporal referencing [7]
aligned by compass [4]
DiffTime [18] NN (fword(i), ftime(t)), NN 2V D +D3 + 4D2

Word2Fun

linear function Wi + Kit 2V D
I (Time2Fun) Bi + sin(Ωt) V D +D

II (w/ fixed freqs) Bi + Ri[sin(Ωt; cos(Ωt]),Ωj = 1
10000

j/D
2 2V D

III (w/ trainable freqs) Bi + Ri[sin(Ω
(1)
i t); cos(Ω

(2)
i t)] 3V D

IV (w/ trainable phases) Bi + Ri[sin(Ω
(1)
i t+ Θ

(1)
i); cos(Ω

(2)
i t+ Θ

(2)
i)] 4V D

2.3 Existing Work of Diachronic Word Embedding

Existing DWE, e.g., [1, 9] considers word meaning evolution in two consecutive time-specific corpora
(e.g., t1 and t2), instead of a whole continuous process. They train word vectors for each time-specific
corpus and then align them using orthogonal projections [9, 12], vector initialization [11], temporal
referencing [7], parameter regularizers [26, 20], aligned compass [4], latent diffusion [1]. Tab. 1
summarizes these approaches. The number of parameters of the alignment-based dynamic word
embeddings is proportional to the number T of time bins, resulting in a parameter space of O(TV D).
This is a notable cost with a long time span, e.g., splitting COHA dataset yearly results in 200
time slices (T = 200). Furthermore, transformations between two any consecutive time bins are
independent, namely, Ui,t1 ,Ui,t2 may be totally independent of the one between Ui,t2 ,Ui,t3 even
if they are close in the time. Note that these approaches might lose some power when modeling
such sequential evolution with more than two time bins in the event of word meaning that gradually
evolves during a longer timespan, e.g., many decades. Lastly, dividing a corpus into separate time
bins may lead to many smaller training sets. Word vectors in a time bin are trained with roughly 1

T
training examples instead of all examples. This might be an issue with time-unbalanced dynamic
corpora. For example, when there are much fewer documents in a specific year t than others, the
word-specific word vectors in that year may be distorted because of underfitting; it may therefore
negatively affect the long-range transformation of word meaning change.

DiffTime [18] was the first work to model word meaning evolution as a continuous process to the
best of our knowledge. It leverages multiple-layer neural networks to aggregate output from a word
encoder f and a time encoder g. Even if the parameter scale does not increase with a bigger T ,
DiffTime additionally introduces much more parameters (e.g., D3). Such learned functions are less
interpretable due to the depth and non-linearity of neural networks. We argue that the neural network
architecture in [18] is ad hoc without theoretical approximation guarantee for semantic shift.

3 Methodology: Modelling Words as Functions

3.1 Formulation

To smoothly model word meaning change over time we represent each word as a continuous function:
a specific word vector at time t is represented as the values of the function when the variable equals t,
which is inspired by [24, 18, 10, 25]. More formally, our approach aims to learn a mapping f that
maps each word wi, with index i ∈ N, to functions over time:

f : N→ (g : N→ RD)

where g is a function over a variable t ∈ N. Note that the output of g is a D-dimensional vector,
g(t) ∈ RD. Let us denote f(i) as gi. A word wi at time t is represented as a D-dimensional vector
Ui,t = f(i)(t) = gi(t).

3

Examples of g are linear functions g(t) = b+kt with parameters b,k ∈ RD or a sinusoidal functions
g(t) = b+ r sin(ωt+ θ) with parameters b, r,ω,θ ∈ RD. Section 4 reports some remarks on the
considered instantiations of g and how they are linked to previously proposed approaches.

3.2 A Skip-gram Implementation with a Compass

The Skip-gram model architecture tries to predict the source context words (surrounding words) given
a target word (the center word), which was considered to achieve the reverse of what the CBOW
model does. Let us denote u as the target word and v as the source word, and negatively-sampled
target words V̂ = {v̂i}. It learns a diachronic word representation method f : N× R→ RD and a
static word mapping h : N→ RD; f(u, t) denotes the diachronic word vector of wu in time t.

The static word embedding h(u) is introduced to align the diachronic word vectors in different
times; it is called a compass in [4]. The compass is used as an anchor to project time-specific word
embedding in different times to unified designated vector space. Our implementation of the compass
differs from [4], since we jointly train the static compass and diachronic word vectors simultaneously,
thus avoiding a two-stage training and the compass can be non-fixed in the second stage.

The loss function is defined as:

L = −
∑

(u,v,V̂,t)∈Dtrain

log(δ(f(u, t)h(v)T)) +
1

|V̂|

∑
v̂i∈V̂

log(δ(−f(u, t)h(v̂i)
T))

 (2)

δ is the sigmoid activation function. The algorithm is explained in Algo. 1, and the details on the
parameterization are reported in Tab. 1.

ALGORITHM 1: Training algorithm for Word2Fun.
Require: time-stamped corpora C;

a diachronic word mapping f : (N,R)→ ND
a static word mapping h : N→ RD

1: shuffling time-stamped corpora
2: for each epoch do
3: for each document d with a timestamp t in C do
4: for each skip-gram (u, v) in d do
5: calculating the loss for the positive sample Lpos = log(δ(f(u, t)h(v)T))

6: generating negatively-sampled target words V̂
7: calculating the loss for negative samples Lneg = −

∑
v̂i∈V̂ log(δ(−f(u, t)h(v̂i)

T))
8: back-propagating using the loss L = Lpos + Lneg
9: end for

10: end for
11: end for

4 Which Functions?

4.1 Function Approximation using Polynomials

For a skip-gram pair (wi, wj),1 the similarity degree between a context word wi and a target word
wj in time t is calculated as a dot product between the time-specific context embedding f(i, t) and
the static target embedding h(j), the latter being the ‘compass’:

yi,j(t) = f(i, t)h(j)T (3)

yi,j(t) is function of time and it measures the similarity between wi and wj over time;2 we argue that
semantic meaning evolution can be captured by approximating arbitrary between-word similarity
over time. How to approximate yi,j(t) by selecting appropriate parameterization of f and h?

1If wi and wj appear together in a h-size window, we call (wi, wj) as a skip-gram pair in this paper, wi is
the context word and wj is the target word, and vice versa.

2For PPMI factorization to obtain word vectors, yi,j(t) is the changing PPMI between wi and wj over time.

4

Let us recall the Weierstrass Approximation Theorem that states that every continuous real function
defined on [a, b] can be approximated by a real polynomial. Note that Theorem 1 also holds for
trigonometric polynomial defined in Definition 1, see Corollary 1.

Theorem 1. Weierstrass Approximation Theorem. Let F be a continuous real-valued function
defined on the real interval [a, b]. For any ε > 0, there exists a polynomial P such that for all
x ∈ [a, b], we have |F (x)− P (x)|∞ < ε.

Definition 1. A trigonometric polynomial of degree D is an expression of the form ∆ +∑D
k=1 αk cos(kx) + βk sin(kx), where ∆, α1, . . . , αD, β1, . . . , βD ∈ R.

Corollary 1. Approximation by trigonometric polynomials For every continuous 2π-periodical
function F : R→ R defined on the real interval [0, 2π], and for any ε > 0, there exists a trigonometric
polynomial P such that for all x ∈ [0, 2π], we have |F (x)− P (x)|∞ < ε.

Corollary 2. The trigonometric polynomials span{1, sinx, cosx, · · · , sin(Dx), cos(Dx)} is dense
in C[0, 2π] iff span{1, sin 2πx

a−b , cos 2πx
a−b , · · · , sin

2πDx
a−b , cos 2πDx

a−b } is dense in C[a, b].

From Corollary 1 [16, 27] we know that a trigonometric polynomial
{0, sinx, cosx, · · · , sin(Dx), cos(Dx)} spans a subspace that can approximate any continu-
ous functions defined on [0, 2π], i.e., it is dense in C[0, 2π]. By Corollary 2, one can conclude that a
weighted sum of trigonometric functions with appropriate periods can approximate any continuous
functions defined in an arbitrary closed interval [16].

4.2 Sinusoidal Parameterization in Word2Fun

Since the static embedding h(j) is not related to time t, we consider f(i, t) with sinusoidal paramer-
ization (a mixture of cosine and sine functions plus a bias term). Then Eq. 3 will result in:3

yi,j(t) = f(i, t)h(j)T =
∑

Bi,1 + Ri,1 sin(Ω1t)
Bi,2 + Ri,2 cos(Ω1t)

· · ·
Bi,D−1 + Ri,D−1 sin(ΩD

2
t)

Bi,D + Ri,D cos(ΩD
2
t)

�

Cj,1

Cj,2

· · ·
Cj,D−1

Cj,D

=

D∑
k=1

Bi,kCj,k︸ ︷︷ ︸
∆

+

D
2∑

k=1

Ri,2k−1Cj,2k−1︸ ︷︷ ︸
αi,j,k

sin(Ωkt) + Ri,2kCj,2k︸ ︷︷ ︸
βi,j,k

cos(Ωkt)

(4)

Therefore, yi,j(t) is a weighted sum of sinusoidal functions plus a constant term ∆ =
∑D
k=1Bi,kCj,k.

By replacing the coefficients with αi,j,k and βi,j,k, we can rewrite Eq. 4 as yi,j(t) = ∆ +∑D
2

k=1 αi,j,k sin(Ωkt) + βi,j,k cos(Ωkt); {αi,j,k}
D
2

k=1 and {βi,j,k}
D
2

k=1 are the coefficients and

{Ωk}
D
2

k=1 are the corresponding frequencies. Following the argument in [5] when discussing approxi-
mation properties of sine and cosine activation functions, since linear combinations of sine and cosine
generate all finite trigonometric polynomials that have approximation properties described in Section
4.1, the dot product between the diachronic embedding f(i, t) and the static target embedding h(i),
denoted as yi,j(t) can capture any evolving relations between arbitrary skip-gram pairs.

By iteratively training all skip-gram pairs, Word2Fun can model complicated semantic change
across time. Intuitively, small frequencies would reflect some long-range evolution, while some
big frequencies would capture short-range evolution. Such periodical property would allow such
functions to capture long enough evolution without considering boundedness issues.

4.3 Investigated Function Parameterizations

Linear functions. A real polynomial naturally induce: Ui,t = gi(t) = bi + ki � [1, t, t2, · · · tD]T .
Since tD is computationally expensive and sometimes meets the overflow issue, we choose a simpler
case with a linear function parameterization of Word2fun: Ui,t = gi(t) = bi + kit.

3� is the element-wise multiplication

5

Table 2: Statistics of diachronic corpora.
corpus num. of tokens time range time granularity T Vocab

COHA [6] 472M 1810 - 2009 every decade 20 43, 734
New York Times [26] 105M 1990 - 2016 yearly 27 20, 314

Sinusoidal functions. In this work, we investigate the sinusoidal parameterization. We use a
combination of sine and cosine functions; i.e., half of dimensions are parameterized by sine functions
and half of them are parameterized by cosine functions. Considering the domain of time t ∈ N
and its range in this paper, we adopt a set of frequencies {ωi} [24] that is different from standard
trigonometric polynomial. The Word2Fun II is defined as below:

gi(t) = bi + ri[cos(Ωt); sin(Ωt)], Ωj =
1

10000

j/D
2

, j ∈ [1, · · · , D
2

] (5)

Note we add a static component bi that is independent from time. In Word2Fun III we also learn
word-specific frequencies: Ui,t = gi(t) = bi + ri[sin(ω

(1)
i t); cos(ω

(2)
i t)] 4. Word2Fun IV adds

trainable word-specific phases: Ui,t = gi(t) = bi + ri[sin(ω
(1)
i t + θ

(1)
i); cos(ω

(2)
i t + θ

(2)
i)], see

Tab. 1. ω(1)
i ∈ RD

2 is different from ω
(2)
i ∈ RD

2 . θ(1)i ∈ RD
2 is different from θ

(2)
i ∈ RD

2 .

Standard static word vectors, e.g., [14], can be considered as constant functions, a special case of
Word2fun since bi is a time-agnostic word vector. For instance, (1) in the case of the linear function,
ki = 0; (2) in the case of sinusoidal function, ri = 0 or ωi is small enough. Both these cases results
in gi = bi. The additional parameters ωi and ri are expected to capture the word meaning evolution.

Time2Fun: purely encoding time as functions. We can separately learn a word mapping and a
time mapping:

fword : N −→ RD, ftime : N −→ RD (6)
Then wi at time t can be represented as Ui,t = fword(i) + ftime(t), where ftime can be a function
over time, e.g., ftime = Kt or ftime = sin(Ωt) — the latter corresponds to Word2Fun I in Tab. 1.
Time2Fun is close to [18] which represents time as a continuous variable and model a word’s usage
as a function of time. [10] also explores to use time as an extra feature for various tasks.

5 Experiments

5.1 Data and Experimental Settings

Corpora. The diachronic corpora used in this paper are reported in Tab. 2. The Corpus of Historical
American English (COHA) [6] is the largest structured corpus of historical English (the 1820s-2010s),
contains more than 475 million words and is balanced by genre decade by decade. The New York
Times (NYT) [26] contains 99,872 articles published between January 1990 and July 2016; besides
the article text, metadata including title, author, release date, and section label were also collected.

Baselines. We choose the baselines from [26]. Static Word2Vec: the standard word2vec embeddings
[14], trained on the entire corpus and ignoring time information. Transformed Word2Vec [12]: the
embeddings are first trained separately by factorizing PPMI matrix for each year, and then transformed
by optimizing a linear transformation matrix which minimizes the distance between two consequent
time-stamped trained embeddings for the k nearest words’ embeddings to the querying words. Aligned
Word2Vec [9] : the embeddings are first trained by factorizing the PPMI matrix for each year t, and then
aligned by searching for the best orthonormal transformation between two consequent time-stamped
trained embeddings. Dynamic Word Embedding [26] learns word embedding by factorizing PPMI
matrix in individual time; plus, it imposes a regularizer to encourage two subsequent word embedding
being similar for alignment. Besides those baselines, we considered DiffTime [18] (described in
Sec. 2.3 and Compass Aligned Word Embedding [4] that exploits fixed target embeddings to align
time-specific context embeddings. The former has a embedding size of 150 and its hidden dimension
is 50, and the latter has a embedding size of 100; the both have more parameters than Word2Fun.

4Sinusoidal functions introduce infinite local minima due to the periodicity of sinusoidal functions [15], but
we empirically found it performs well [10] and leave the above issue a future work.

6

Table 3: Experimental results of time-aware word clustering.

Method 10 Clusters 15 Clusters 20 Clusters
NMI Fβ NMI Fβ NMI Fβ

Global/static word vector [14] 0.6736 0.6163 0.6867 0.7147 0.6713 0.7214
Transformed Word2Vec [12] 0.5175 0.4584 0.5221 0.5072 0.5130 0.5373
Aligned Word2Vec [9] 0.6580 0.6530 0.6618 0.7115 0.6386 0.7187
Dynamic Word2Vec [26] 0.7175 0.6949 0.7162 0.7515 0.6906 0.7585
Compass aligned Word2Vec [4] 0.5191 0.3750 0.5062 0.4051 0.5077 0.4331
DiffTime [18] 0.6945 0.6723 0.6727 0.7161 0.6576 0.7275
Word2Fun linear 0.1676 0.1813 0.2826 0.3035 0.2473 0.2932
Word2Fun I (Time2Fun) 0.1703 0.1783 0.2691 0.2680 0.2842 0.2649
Word2Fun II 0.7281 0.7147 0.7181 0.7645 0.7012 0.7616
Word2Fun III 0.7233 0.7080 0.7086 0.7701 0.6980 0.7630
Word2Fun IV 0.7111 0.6913 0.7023 0.7451 0.6823 0.7602

Experimental settings. We removed words that appear less than 200 times, as [26] did. We used
the Adam optimizer with a learning rate of 0.0025. The batch size can be as big as it achieves
the upper bound of memory of GPU. The model converged in less than 20 epochs with no drop
in terms of loss. We computed the average performance on the last three saved checkpoints. For
sinusoidal functions, we used a mixture of cosine functions and sine functions. The dimension was
100; we preliminary found that models with bigger dimensions (e.g. 200 or 300) can slightly improve
performance. Word2Fun with all settings was slightly slower than the standard Word2Vec due to
additional computation for obtaining word vectors. However, all methods include Word2Vec and
Word2Fun took 10-15 minutes for one epoch in a single Nvidia V100 32G GPU for NYT dataset.

5.2 Quantitative Evaluation

5.2.1 Time-aware Word Clustering

The time-aware word clustering task was proposed in [26] and exploits the NYT dataset. If one word
was extremely frequent in a particular section, it was labeled as most-used in that section.5 Such
section annotation was used to evaluate the clustering results. Across 11 sections, there were 1,888
triplets denoted as (wi, ti, si) to indicate that word wi in year ti was associated with section si.

We apply spherical K-means on learned time-specific word vectors using cosine distance, with K
= 10, 15, and 20 clusters. As in [26], we used Normalized Mutual Information (NMI) and Fβ-
measure to measure the consistency between section label and clustering results. NMI was defined as
NMI(C,S) = 2MI(C,S)/(E(C) + E(S)), where S denotes section labels ({si}) for word-year pairs
{(wi, ti)} and C denotes clustering categories ({ci}) for these word-year pairs {(wi, ti)}. MI(·, ·)
and E(·) are the functions to compute Mutual Information and Entropy respectively. Fβ= (β2+1)PR

β2P+R

measures the effectiveness as a β-weighted harmonic mean of precision and recall. As in [26], we set
β = 5 to emphasise recall to penalizing false negative more.

Experimental results. As shown in Tab. 3, the proposed Word2fun II, III and IV outperformed
all the baseline methods. Word2Fun with linear parameterization and Word2fun I performed nearly
the worst, since they could not learn word-dependent evolution. Word2fun IV achieved worse
performance than III, thus showing that adding phase seems unbeneficial to Word2Fun.

5.2.2 Temporal Analogy

The Temporal Analogy task [22] utilizes quadruples (w(1), t(1), w(2), t(2)) to say that “w(1) in year
t(1)” is like “w(2) in year t(2)”. To examine the quality of temporal analogy, [26] created a task
to investigate equivalences across years. For example, given obama in 2012, we aim to find its
equivalent word in 2002. As we know obama was the U.S. president in 2012, its equivalent word

5News articles in NYT dataset are tagged with their ‘sections’ such as ‘Business’, ‘Sports’, ‘World’, and
‘Technology’. For example, we see that amazon occurs 41% of the time in World in 1995, associating strongly
with the rainforest, and 50% of the time in Technology in 2012, associating strongly with e-commerce.

7

Table 4: Experimental results of temporal analogy in test1
Method MRR P@1 P@3 P@5 P@10

Global/static Word2Vec [14] 0.3560 0.2664 0.4210 0.4774 0.5612
Transformed Word2Vec [12] 0.0920 0.0500 0.1168 0.1482 0.1910
Aligned Word2Vec [9] 0.1582 0.1066 0.1814 0.2241 0.2953
Dynamic Word2Vec [26] 0.4222 0.3306 0.4854 0.5488 0.6191
Compass aligned Word2Vec [4] 0.481 0.404 0.534 0.582 0.636
DiffTime [18] 0.3759 0.2738 0.4200 0.5070 0.5912
Word2Fun linear 0.3016 0.2649 0.3255 0.3426 0.3630
Word2Fun I (Time2Fun) 0.3735 0.2646 0.4300 0.4955 0.5874
Word2Fun II 0.4061 0.2756 0.4916 0.5614 0.6434
Word2Fun III 0.4354 0.3076 0.5330 0.5837 0.6647
Word2Fun IV 0.4208 0.2954 0.5076 0.5715 0.6470

Table 5: Experimental results of temporal analogy in test2
Method MRR P@1 P@3 P@5 P@10

Global/static Word2Vec [14] 0.0472 0.0000 0.0787 0.0787 0.2022
Transformed Word2Vec [12] 0.0664 0.0404 0.0764 0.0989 0.1438
Aligned Word2Vec [9] 0.0500 0.0225 0.0517 0.0787 0.1416
Dynamic Word2Vec [26] 0.1444 0.0764 0.1596 0.2202 0.3820
Compass Aligned Word Embedding [4] 0.1361 0.0749 0.1918 0.2904 0.3918
DiffTime [18] 0.1259 0.0055 0.1562 0.2219 0.3973
Word2Fun linear 0.0425 0.0137 0.0384 0.0630 0.1014
Word2Fun I (Time2Fun) 0.0992 0.0000 0.1315 0.1726 0.2849
Word2Fun II 0.1194 0.0358 0.1075 0.2219 0.3863
Word2Fun III 0.1824 0.0795 0.1973 0.2932 0.4164
Word2Fun IV 0.1536 0.0548 0.1562 0.2411 0.3918

in 2002 is bush, who was the U.S. president in 2002. In this way, there are two test sets. The first
set (test1) is based on publicly recorded knowledge that lists different names for a particular role,
such as U.S. president for each year. Human experts generated the second test (test2) to explore
emerging technologies, brands, and significant events (e.g., disease outbreaks and financial crisis) ,
etc. Reciprocal Rank (MRR) and Precision@K (P@K) are used for the evaluation.

Experimental results. As shown in Tab. 4 and Tab. 5, Word2Fun III outperformed all baselines in
test2 and some metrics (including P@5, P@10) in test1. In test1, Word2Fun performed worse than
Compass-aligned Word2Vec [4] in terms of MRR and P@1; this might be explained by Word2Fun
has fewer parameters than [4].

5.2.3 Semantic Change Detection

Semeval-2020 task ‘Unsupervised lexical semantic change detection’ [21] released a dataset for Se-
mantic Change Detection with human-annotated semantically-shift degrees. It provides semantically-
shift degree of thirty seven English words from the timespan 1810-1860 to the timespan 1960-2010.
The task aims to predict semantically-shift degree and the performance is evaluated by Pearson and
Spearman correlation. We split data of every decade into time bins. We used Word2Fun trained on
COHA dataset. For each word, we take the cosine distance between the average word vectors in the
first five decade and last five decade- as the semantic change degree.

Experimental Results. As shown in Tab. 6, Word2Fun outperformed the five mentioned baselines
and the most effective approaches in the Semeval-2020 task. Note that the task participants [19, 17]
did not train on the same text collection; they used a subset of COHA and we use a complete one.

5.3 Analysis of Word2Fun

Parameter interpretability To better understand the learned parameters, we will consider
Word2Fun III since it was the best performing one. In Word2Fun III, a word wi is represented

8

Table 6: Semantic change detection. Baselines in the first group are implemented by this work.
models Pearson Spearman

Global/static Word2Vec [14] nan nan
Transformed Word2Vec [12] 0.0727 0.0865
Aligned Word2Vec [9] 0.3333 0.3083
Dynamic Word2Vec [26] 0.2727 0.2877
Compass aligned word embedding [4] 0.3199 0.2567
DiffTime [18] 0.3504 0.4146
Word2Fun linear -0.1200 -0.0790
Word2Fun I (Time2Fun) 0.3925 0.4550
Word2Fun II 0.4478 0.5038
Word2Fun III 0.5355 0.4057
Word2Fun IV 0.4483 0.3578
multilingual BERT [19] (SemEval-2020 1st) - 0.436
ensemble between aligned Word2Vec and BERT [17] (SemEval-2020 2nd) - 0.422

Table 7: Learned parameters for semantic change detection. AVG means average for a vector.
Learned parameters Definition Pearson Spearman

frequencies term AVG(|Ωi|) 0.0958 0.1748
amplitude term AVG(|Ri|) 0.1213 0.0474
bias term AVG(|Bi|) -0.3640 -0.2636
ratio between the amplitude and bias terms AVG(|Ri|)/AVG(|Bi|) 0.4141 0.2358

as Bi + Ri[sin(Ω
(1)
i t); cos(Ω

(2)
i t)] where Bi,Ri,Ωi ∈ RD. There are three cases where the

function degrade to a constant function: a) Absolute values of elements in Bi is much larger than
that ofRi; b)Ri = 0; or c) Ωi = 0. Intuitively, smallerBi, biggerRi or Ωi indicates that the word
wi is sensitive to time. In other words, the meaning of words more likely changes over time in the
case of smallerBi, biggerRi or Ωi.

To examine the above intuition, we define the average of the absolute values for these parameters
(i.e., Bi,Ri,Ωi) computed over all the dimensions as indicators for semantically-shift degree.
Since in Word2Fun III,Bi is the time-unrelated term whileRi[sin(Ω

(1)
i t); cos(Ω

(2)
i t)] is the time

related term, we also take the ratio between AVG(|Ri|) and AVG(|Bi|) as an indicator (last row of
Tab. 7). Tab. 7 confirms our intuition. Especially, the Pearson correlation values of last two rows are
significant with p < 0.05. Although the result in Tab. 7 is not as good as the results in Tab. 6, Tab. 7
is surprising since these indicators do not consider the two specific evaluation timespans and they
therefore capture the word evolution speed over the whole timespan.

When checking distribution of these parameters, we observe that semantically-shifted words generally
have slightly bigger frequencies, bigger amplitudes, and smaller biases. Interestingly, nearly 70% of
the sinusoidal functions does not complete a whole period in 20 decades (from 1810s to 2010s).

Visualization of learned functions Learned functions for the top 4 semantically-shifted words and
another top 4 semantically-unshifted words6 are visualized in Fig. 1: we selected two dimensions for
cosine functions (see Fig. 1a and 1b) and two dimensions for sine functions (see Fig. 1c and 1d) in
Word2Fun III. Fig. 1a shows that the function in first dimension learns nearly constant functions for
the two semantically-unshifted words (namely, chairman and relationship), indicating the
two words will not change their representation over time for this dimension. In Fig. 1b, we could
observe that amplitudes for semantic-shifted words are bigger than amplitudes for semantic-unshifted
words. In Fig. 1c and 1d with sine functions, the evolution for semantic-shifted words seems to be
severe than semantic-unshifted words. In Fig. 1c, it shows some long-term evolution with bigger
periods (smaller frequencies). We argue that the proposed Word2Fun has the potential to model
long-term word meaning evolution, such long-term evolution might span decades or even centuries
[8] especially for general language usage shift.

6We used the annotated test set in Sec. 5.2.3. The top 4 semantically-unshifted words are graft, plane,
prop, tip; the top 4 semantically-shifted words are chairman, fiction, relationship, risk.

9

1810s 1860s 1960s 2010s
3

2

1

0

1

2

3

graftplane

prop

tip

chairman
fiction

relationship
risk

(a) The 1-st dimension with cosine functions.

1810s 1860s 1960s 2010s
3

2

1

0

1

2

3
graft

plane

prop
tip

chairman
fiction

relationship
risk

(b) The 13-th dimension with cosine functions.

1810s 1860s 1960s 2010s
3

2

1

0

1

2

3

graft

plane

prop
tip

chairman

fiction
relationship

risk

(c) The 35-th dimension with sine functions.

1810s 1860s 1960s 2010s
3

2

1

0

1

2

3

graft
plane
proptip

chairman

fiction

relationship

risk

(d) The 44-th dimension with sine functions.

Figure 1: We show some learned functions for top 4 semantically-shifted words in purple and top 4
semantically-unshifted words in blue, for Word2Fun III with 50 dimension. The first half dimensions
(1-25) use cosine functions while the last half dimensions (26-50) use sine functions.

Table 8: Most similar words for apple, european, phone, and browser from the year 1990 (denoted as
90) to 2016 (denoted as 16). All words are lower cased.

word 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

apple sorbet | chutney | android |
browser netscape | android
phone telephone | 911 | password |
european republics | euro | republics | euro | hollande | republics | euro |

Case study In Tab. 8, we report some results from the trained word representation in the NYT
dataset that ranges from 1990 to 2009. We can see that the word ‘apple’ in the 90s were more about a
fruit used to prepare sorbet or chutney. Since the invention of Android in the early 2000s, ‘apple’
has become more related to Android. The same trend can be seen in the case of ‘browser’: it was
used in personal computer (e.g., netscape browser) in PC era, and then became more popular in
mobile devices (e.g., in Android system) in the mobile Internet era. As for ‘phone’, it typically
referred to a traditional telephone in 1990s, and it has become related to 911 (an universal emergency
number) since 9/11 attacks. In the mobile internet era, phone is highly related to password since
intelligent phones need password while the fixed-line phone does not need. These cases suggest that
the proposed Word2Fun can model such semantic change to some extent.

6 Conclusion and Future Work

To smoothly model word meaning evolution in a single process, this paper proposes to model the
change of word meaning as explicit functions. With a specific type of function like sinusoidal
functions, our approach consists of a sum of many sinusoids to approximate the change of word
meaning. The proposed method achieves comparable and sometimes better performance than SOTA
dynamic word embedding in time-aware word clustering, temporal analogy, and semantic change
detection while with fewer parameters. This work is a preliminary step to develop a sinusoidal
function approximation in diachronic word representation. However, we argue this paradigm can
inspire more work on a general time-series or sequential modeling research.

10

Acknowledgments

This work has been supported by the Quantum Access and Retrieval Theory (QUARTZ) project,
which has received funding from the European Union‘s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 721321.

This work has also in part been supported by MIUR (Italian Ministry of Education, University and
Research) through the initiative “Departments of Excellence 2018-2022” (Law 232/2016).

We would like to thank the authors of [4] and [18] for their support in reproducing their experiments.
Moreover, we would like to also thank the anonymous reviewers for the very constructive comments.

Societal Impacts

We acknowledge that source data for training has a direct impact on learned embeddings. Documents
in source data may involve various biases e.g. (e.g., political, racial, and sexual biases). Therefore, it
may also introduce biases from source data to learned embedding that may affect decision making and
predictions in downstream tasks. More importantly, such biases may vary over time; manipulating
the ratios of documents at different time may have different results in embeddings. We encourage
that future studies based on this work should consider this matter.

References
[1] Robert Bamler and Stephan Mandt. Dynamic word embeddings. In Doina Precup and Yee Whye

Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 380–389. PMLR, 06–11 Aug 2017.

[2] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic
language model. The Journal of Machine Learning Research, 3:1137–1155, 2003.

[3] Ronnie Cann, Ruth Kempson, and Eleni Gregoromichelaki. Semantics: An introduction to
meaning in language. Cambridge University Press, 2009.

[4] Valerio Di Carlo, Federico Bianchi, and Matteo Palmonari. Training temporal word embeddings
with a compass. In Proceedings of The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI, pages 6326–6334. AAAI Press, 2019.

[5] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

[6] Mark Davies. Expanding horizons in historical linguistics with the 400-million word corpus of
historical american english. Corpora, 7(2):121–157, 2012.

[7] Haim Dubossarsky, Simon Hengchen, Nina Tahmasebi, and Dominik Schlechtweg. Time-out:
Temporal referencing for robust modeling of lexical semantic change. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 457–470, Florence,
Italy, July 2019. Association for Computational Linguistics.

[8] Jacob Eisenstein. Measuring and modeling language change. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Tutorials, pages 9–14, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[9] William L. Hamilton, Jure Leskovec, and Dan Jurafsky. Diachronic word embeddings reveal
statistical laws of semantic change. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1489–1501, Berlin, Germany,
August 2016. Association for Computational Linguistics.

[10] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota,
Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec:
Learning a vector representation of time. arXiv preprint arXiv:1907.05321, 2019.

11

[11] Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan Hegde, and Slav Petrov. Temporal analysis
of language through neural language models. In Proceedings of the ACL 2014 Workshop on
Language Technologies and Computational Social Science, pages 61–65, Baltimore, MD, USA,
June 2014. Association for Computational Linguistics.

[12] Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. Statistically significant
detection of linguistic change. In Proceedings of the 24th International Conference on World
Wide Web, pages 625–635, 2015.

[13] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In
Proceedings of the 27th International Conference on Neural Information Processing Systems -
Volume 2, NIPS’14, page 2177–2185, Cambridge, MA, USA, 2014. MIT Press.

[14] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In Yoshua Bengio and Yann LeCun, editors, 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings, 2013.

[15] Giambattista Parascandolo, Heikki Huttunen, and Tuomas Virtanen. Taming the waves: Sine as
activation function in deep neural networks. https://openreview.net/pdf?id=Sks3zF9eg, visited
on October 2021, 2016.

[16] Allan Pinkus. Weierstrass and approximation theory. Journal of Approximation Theory,
107(1):1–66, 2000.

[17] Martin Pömsl and Roman Lyapin. Circe at SemEval-2020 Task 1: Ensembling context-free and
context-dependent word representations. ACL, 2020.

[18] Alex Rosenfeld and Katrin Erk. Deep neural models of semantic shift. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 474–484, 2018.

[19] David Rother, Thomas Haider, and Steffen Eger. Cmce at SemEval-2020 Task 1: Clustering on
manifolds of contextualized embeddings to detect historical meaning shifts. In Proceedings of
the Fourteenth Workshop on Semantic Evaluation, pages 187–193, 2020.

[20] Maja Rudolph and David Blei. Dynamic embeddings for language evolution. In Proceedings of
the 2018 World Wide Web Conference, pages 1003–1011, 2018.

[21] Dominik Schlechtweg, Barbara McGillivray, Simon Hengchen, Haim Dubossarsky, and Nina
Tahmasebi. SemEval-2020 Task 1: Unsupervised lexical semantic change detection. SemEval,
2020.

[22] Terrence Szymanski. Temporal word analogies: Identifying lexical replacement with diachronic
word embeddings. In Proceedings of the 55th annual meeting of the association for computa-
tional linguistics (volume 2: Short papers), pages 448–453, 2017.

[23] Nina Tahmasebi, Lars Borin, and Adam Jatowt. Survey of computational approaches to lexical
semantic change, 2019.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. NIPS 2017, 2017.

[25] Benyou Wang, Lifeng Shang, Christina Lioma, Xin Jiang, Hao Yang, Qun Liu, and Jakob Grue
Simonsen. On position embeddings in BERT. In International Conference on Learning
Representations, 2021.

[26] Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, and Hui Xiong. Dynamic word embeddings
for evolving semantic discovery. In Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, WSDM ’18, page 673–681, New York, NY, USA, 2018.
Association for Computing Machinery.

[27] Matt Young. The Stone-Weierstrass theorem. In MATH 328 Notes. Queen’s University at
Kingston, 2006.

12

	Introduction
	Background
	Problem Definition
	Alignment Issues for Rotation-invariant Embeddings
	Existing Work of Diachronic Word Embedding

	Methodology: Modelling Words as Functions
	Formulation
	A Skip-gram Implementation with a Compass

	Which Functions?
	Function Approximation using Polynomials
	Sinusoidal Parameterization in Word2Fun
	Investigated Function Parameterizations

	Experiments
	Data and Experimental Settings
	Quantitative Evaluation
	Time-aware Word Clustering
	Temporal Analogy
	Semantic Change Detection

	Analysis of Word2Fun

	Conclusion and Future Work

