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Abstract

We extend the options framework for temporal abstraction in reinforcement learn-
ing from discounted Markov decision processes (MDPs) to average-reward MDPs.
Our contributions include general convergent off-policy inter-option learning algo-
rithms, intra-option algorithms for learning values and models, as well as sample-
based planning variants of our learning algorithms. Our algorithms and conver-
gence proofs extend those recently developed by Wan, Naik, and Sutton. We
also extend the notion of option-interrupting behaviour from the discounted to the
average-reward formulation. We show the efficacy of the proposed algorithms with
experiments on a continuing version of the Four-Room domain.

1 Introduction

Reinforcement learning (RL) is a formalism of trial-and-error learning in which an agent interacts
with an environment to learn a behavioral strategy that maximizes a notion of reward. In many
problems of interest, a learning agent may need to predict the consequences of its actions over
multiple levels of temporal abstraction. The options framework provides a way for defining courses
of actions over extended time scales, and for learning, planning, and representing knowledge with
them (Sutton, Precup, & Singh 1999, Sutton & Barto 2018). The options framework was originally
proposed within the discounted formulation of RL in which the agent tries to maximize the expected
discounted return from each state. We extend the options framework from the discounted formulation
to the average-reward formulation in which the goal is to find a policy that maximizes the rate of
reward.

Given a Markov decision process (MDP) and a fixed set of options, learning and planning algorithms
can be divided into two classes. The first class consists of inter-option algorithms, which enable an
agent to learn or plan with options instead of primitive actions. Given an option, the learning and
planning updates for this option in these algorithms occur only after the option’s actual or simulated
execution. Algorithms in this class are also called semi-MDP (SMDP) algorithms because given
an MDP, the decision process that selects among a set of options, executing each to termination,
is an SMDP (Sutton et al., 1999). The second class consists of algorithms in which learning or
planning updates occur after each state-action transition within options’ execution — these are called
intra-option algorithms. From a single state-action transition, these algorithms can learn or plan to
improve the values or policies for all options that may generate that transition, and are therefore
potentially more efficient than SMDP algorithms.

Several inter-option (SMDP) learning algorithms have been proposed for the average-reward formu-
lation (see, e.g., Das et al. 1999, Gosavi 2004, Vien & Chung 2008). To the best of our knowledge,
Gosavi’s (2004) algorithm is the only proven-convergent off-policy inter-option learning algorithm.
However, its convergence proof requires the underlying SMDP to have a special state that is recurrent
under all stationary policies. We extend Wan, Naik, and Sutton’s (2021) Differential Q-learning,
an off-policy control learning algorithm, to inter-option Differential Q-learning and show that it
converges without requiring a special state. For planning, we propose inter-option Differential
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Q-planning, which is the first convergent incremental (sampled-based) planning algorithm. The
existing proven-convergent inter-option planning algorithms (e.g., Schweitzer 1971, Puterman 1994,
Li & Cao 2010) are not incremental because they perform a full sweep over states for each planning
step.

Additionally, the literature seems to lack intra-option learning and planning algorithms within
the average-reward formulation for both values and models. We fill this gap by proposing such
algorithms in the average-reward formulation and provide their convergence results. These algorithms
are stochastic approximation algorithms solving the average-reward intra-option value and model
equations, which are also introduced in this paper for the first time.

Sutton et al. (1999) also introduced an algorithm to improve an agent’s behavior given estimated
option values. Instead of letting an option execute to termination, this algorithm involves potentially
interrupting an option’s execution to check if starting a new option might yield a better expected
outcome. If so, then the currently-executing option is terminated, and the new option is executed. Our
final contribution involves extending this notion of an interruption algorithm from the discounted to
the average-reward formulation.

2 Problem Setting

We formalize an agent’s interaction with its environment by a finite Markov decision process (MDP)
M and a finite set of options O. The MDP is defined by the tuple M = (S, A, R, p), where S is
a set of states, A is a set of actions, R is a set of rewards, andp: S X R x § x A — [0, 1] is the
dynamics of the environment. Each option o in O consists two components: the option’s policy

°: Ax S — [0,1], and a probability distribution of the option’s termination 5° : S — [0, 1]. For
simplicity, for any s € S,0 € O, we use 7(als, 0) to denote 7°(a, s) and S(s, 0) to denote 3°(s).
Sutton et al.’s (1999) options additionally have an initiation set that consists of the states at which
the option can be initiated. To simplify the presentation in this paper, we allow all options to be
initiated in all states of the state space; the algorithms and theoretical results can be easily extended
to incorporate initiation from specific states.

An option o executes as follows. First, the agent observes a state S; and chooses an action A
according to the option’s policy 7(-|S, 0). The agent then observes the next state S;11 and reward
Ry 11 according to p. The option either terminates at Sy 1 with probability 8(S¢41, 0), or continues
with action A;;1 chosen according to 7(-|S¢41,0). It then possibly terminates in S; 1o according
to 3(St+2,0), and so on. The behavior of the agent is determined by a policy that chooses options,
which we denote by pp, : S X O — [0, 1]. In state Sy, the agent selects an option O; € O according
to probability distribution 1 (|.S:). The option policy starts executing at S; and terminates S; k,
where K is a random variable denoting the number of time steps the option executed. At S;1k, a
new option is chosen according to p;(+|S;+ k), and so on. The agent-environment interactions go on
forever without any resets. Note that actions are a special case of options—every action a is an option
o that terminates after exactly one step (3(s,0) = 1, Vs) and whose policy is to pick a in every state
(m(als,0) =1, Vs).

Let 7T}, denote the time step when the n. — 1 option termmates and the n™ option is chosen. Denote

the n™ option by 0, = = Or,, its starting state by S, = = Sr,, the cumulative reward during its
execution by R, = f:}l 41 Ry, the state it terminates in by S, 1 = Sr,,, and its length by
L, = n+1 — I, Note that every option’s length is a random variable taking values among positive

integers. Then the option’s transition probability can be defined as p(s’, 7,1 | s,0) = Pr(Sp41 =
s Ry, =r,L,=1|5, =s,0, = o). Throughout the paper, we assume that the expected execution
time of any option starting from any state is finite.

Given an MDP M and the set of options O, M = (S,0, £, R, p) is a SMDP, where L is the set of
all possible lengths of options and R is the set of all possible options’ cumulative rewards . For this
SMDP, the reward rate of a policy of interest, i, given a starting state s and option o can be defined
as 70 (1) (s,0) = limy oo B[S0, Ri | So = 5,00 = o]/t Alternatively, at the level of option
transitions, 7(u) (s, 0) = lim, oo E,[> oR | So = 5,00 = o] JEL[> 1 Li | So = 5,00 = o).
It can be shown that the above two hmlts exist and are equlvalent (Puterman s (1994) propositions
11.4.1 and 11.4.7) under the following assumption:
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Assumption 1. Consider an MDP (S, 0, R,p'), where p/(s',r | 5,0) = 3, p(s',7, 1| 5, 0) for all
s’ 1, s,0. The Markov chain induced by any stationary policy in this MDP is recurrent.

Under Assumption 1, the reward rate does not depend on the start state-option pair, and hence we
denote it by just 7(u). The optimal reward rate can then be defined as r. = sup ¢y 7(u), where I1
denotes the set of all policies. The differential option-value function for a policy p is defined for all
se€eS,0e0asq,(s,0) =E,[Riy1 —7(1)+ Rego—r(p)+--- | S¢ = 5,0 = o). The evaluation
and optimality equations for SMDPs are, as given by Puterman (1994):

q(s,0) =Y p(s'sr, L] s,0)(r =71+ Y p(o|s)g(s',0)), (D
s/ r,l o’
q(s,0) = Z p(s'sr, 1] s,0)(r —7 -1+ maxq(s', 0)). ()
s’ ©
Just like the average-reward MDP Bellman equations, the SMDP Bellman equations have a unique
solution for 7 — 7(u) for evaluation and 7, for control — and a unique solution for ¢ only up to a
constant. Given an MDP and a set of options, the goal of the prediction problem is, for a given policy

1, to find the reward rate () and the differential value function (possibly with some constant offset).
The goal of the control problem is to find a policy that achieves the optimal reward rate r,.

3 Inter-Option Learning and Planning Algorithms

In this section, we present our inter-option learning and planning, prediction and control algorithms,
which extend Wan et al.’s (2021) differential learning and planning algorithms for average-reward
MDPs from actions to options. We begin with the control learning algorithm and then move on to the
prediction and planning algorithms.

Consider Wan et al.’s (2021) control learning algorithm:
Qe41(Se, Ar) = Qu(St, Ap) + by, Riy1 = Ry + naudy,

where @ is a vector of size |S x A| that approximates a solution of ¢ in the Bellman equation
for MDPs, R is a scalar estimate of the optimal reward rate, o; is a step-size sequence, 7 is a
positive constant, and d; is the temporal-difference (TD) error: 0; = R; — Ry + max, Q¢(Sty1,a) —
Q+(St, Ar). The most straightforward inter-option extension of Differential Q-learning is:

Qn+1(‘§n7 On) = Qn(S’TH On) + anana (3)
RnJrl = Rn + 7704n5m (4)

where @ is a vector of size |S x O] that approximates a solution of ¢ in (2), R is a scalar estimate of
T4, Qi 18 @ Step-size sequence, and J,, is the TD error:

6n = Ry — Ly Ry + max Qn(Spi1,0) — Qn(Sn, On). (5)

Such an algorithm is prone to instability because the option length L,, can be quite large, and any
error in the reward-rate estimate R,, gets multiplied with the potentially-large option length. Using
small step sizes might make the updates relatively stable, but at the cost of slowing down learning for
options of shorter lengths. This could make the choice of step size quite critical, especially when the
range of the options’ lengths is large and unknown. Alternatively, inspired by Schweitzer (1971), we
propose scaling the updates by the estimated length of the option being executed:

Qn—&-l(‘gna On) = Qn(gna On) + an(Sn/Ln(Sru On), (6)
Rn+1 = Rn + 7]an6n/Ln (S’n, On); (7)

where o, is a step-size sequence, L, (-, -) comes from an additional vector of estimates L : S x O —
R that approximates expected lengths of state-option pairs, updated from experience by:

where (3, is an another step-size sequence. The TD-error §,, in (6) and (7) is as in (5) with L,, (S’n, On)
instead of L,,. These equations make up our inter-option Differential Q-learning algorithm.
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Similarly, our prediction learning algorithm, called inter-option Differential Q-evaluation, also has
update rules (6-8) but with the TD error now equal to:

5” = Rn - Ln(‘gna On)R7L + Z ,U(O‘Sn-i-l)Qn(S’n-&-l; 0) - Qn(S’n; On)- (9)

Theorem 1 (Convergence of intra-option algorithms, informal). If Assumption 1 holds, step sizes are
decreased appropriately, all state-option pairs are visited for an infinite number of times, and the
relative visitation frequency between any two pairs is finite:
1. inter-option Differential Q-learning (5-8) converges almost surely, R,, to r, and Q,, to a
solution of (2), and () to v, where pu, is a greedy policy w.r.t. Q,

2. inter-option Differential Q-evaluation (6-9) converges almost surely, R,, to () and Q,, to
a solution of (1).

The convergence proofs for the inter-option (as well as the subsequent intra-option) algorithms are
based on a result that generalizes Wan et al.’s (2021) and Abounadi et al.’s (2001) proof techniques
from primitive actions to options. We present this result in Appendix A.1 and the formal theorem
statements as well as proofs in Appendix A.2.

Remark: The scaling factor Ln(S’", On) used in the algorithm is the expected option length instead
of the sampled option length. Scaling the updates by the expected option lengths guarantees that
fixed points of the updates are the same as those of (3—4), which are the solutions of (2). This is
not guaranteed to be true when using the sampled option length. We discuss this in more detail in
Appendix C.1.

The inter-option planning algorithms for prediction and control are similar to the learning algorithms
except that they use simulated experience generated by a (given or learned) model instead of real
experience. In addition, they only have two update rules, (6) and (7), and not (8) because the model
provides the expected length of a given option from a given state (see Section 5 for a complete
specification of option models). The planning algorithms and their convergence results are presented
in Appendix A.2.

Empirical Evaluation. We tested our inter-option Differential Q-
learning with Gosavi’s (2004) algorithm as a baseline in a variant
of Sutton et al.’s (1999) Four-Room domain (shown in Figure 1). The
agent starts in the yellow cell. The goal states are indicated by green
cells. Every experiment in this paper uses only one of the green cells
as a goal state; the other two are considered as empty cells. There are
four primitive actions of moving up, down, left, right. The agent
receives a reward of +1 when it moves into the goal cell, O otherwise.

In addition to the four primitive actions, the agent has eight options

that take it from a given room to the hallways adjoining the room. The Figure 1: A continuing vari-
arrows in Figure 1 illustrate the policy of one of the eight options. For  ,nt of the Four-Room do-
this option, the policy in the empty cells (not marked with arrows) i y9in where the task is to
to uniformly-randomly pick among the four primitive actions. The repetitively go from the yel-
termination probability is O for all the cells with arrows and 1 for the |ow start state to one of
empty cells. The other seven options are defined in a similar way. (he three green goal states.
Denote the set of primitive actions as A and the set of hallway options  Ajso shown is an option
as H. Including the primitive actions, the agent has 12 options in total. policy to go to the upper

In the first experiment, we tested inter-option Differential Q-learning hallway cell; more details
with three different sets of options, O = A, O = Hand O = A + H. N-text.

The task was to reach the green cell G1, the shortest path to which from

the starting state is 16 steps. Hence the best possible reward rate for this task is 1/16 = 0.0625. The
agent used an e-greedy policy with € = 0.1. For each of the two step-sizes «, and £3,,, we tested five
choices: 277,z € {1,3,5,7,9}. In addition, we tested five choices of  : 10~%, x € {0, 1,2, 3,4}.
@ and R were initialized to 0; L was initialized to 1. Each parameter setting was run for 200,000 steps
and repeated 30 times. The left subfigure of Figure 2 shows a typical learning curve for each of the
three sets of options, with o = 273, 3 = 271, and p = 10~*. The parameter study for O = A +H
w.r.t. o and 7, with 8 = 271, is presented in the right subfigure of Figure 2. The metric is the average
reward obtained over the entire training period. Complete parameter studies for O = H+ A, O =H
and O = A are presented in Appendix B.1.
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Figure 2: Plots showing some learning curves and the parameter study of inter-option Differential
Q-learning on the continuing Four-Room domain when the goal was to go to G1. Left: A point
on the solid line denotes reward rate over the last 1000 time steps and the shaded region indicates
one standard error. The behavior using the three different sets of options was as expected. Right:
Sensitivity of performance to o and 17 when using O = A + H and 8 = 2~!. The x-axis denotes
step size «; the y-axis denotes the rate of the rewards averaged over all 200,000 steps of training,
reflecting the rate of learning. The error bars denote one standard error. The algorithm’s rate of
learning varied little over a broad range of its parameters « and 7.

The learning curves in the left panel of Figure 2 show that the agent achieved a relatively stable
reward rate after 100,000 steps in all three cases. Using just primitive actions, the learning curve rises
the slowest, indicating that hallway options indeed help the agent reach the goal faster. But solely
using the hallway options is not very useful in the long run as the goal G1 is not a hallway state. Note
that because of the e-greedy behavior policy, the learning curves do not reach the optimal reward rate
of 0.0625. These observations mirror those by Sutton et al. (1999) in the discounted formulation.

The sensitivity curves of inter-option Differential Q-learning (right panel of Figure 2) indicate that,
in this Four-Room domain, the algorithm was not sensitive to parameters 7, performed well for a
wide range of step sizes a, and showed low variance across different runs. We also found that the
algorithm was not sensitive to g either; this and the additional parameter studies involving the two
other option sets are presented in Appendix B.1.

We also tested Gosavi’s (2004) algorithm as a baseline. 008

Recall it is the only proven-convergent SMDP off-policy
control learning algorithm prior to our work. The algo-
rithm estimates the reward rate by tracking the cumulative
reward C' obtained by the options and dividing it by the

0.06

Reward 0-04

another estimate 7' the tracks the length of the options. fate ‘
If the n™" option executed is a greedy choice, then these 002
estimates are updated using:
0.004 7 —
= cn + ﬂn (Rn — Cn), Step-size

Figure 3: Parameter studies showing
Gosavi’s (2004) algorithm’s rate of learn-
i1/ Ty ing is relatively more sensitive to the
choices of its two parameters com-
A _ _ ] pared to our inter-option Differential Q-
Wheq O,} is not greegly, Rn+1_ = Ry. The opt}on—value learning. The experimental setting and
function is updated w1t.h (3) with §,, as defined in '(5'). Qn  the plot axes are the same as mentioned
and 3, are two step-size sequences. The sensitivity of j, Figure 2’s caption.
this algorithm with O = A 4 H is shown in Figure 3.
Compared to inter-option Differential Q-learning, this baseline has one less parameter, but its
performance was found to be more sensitive to the values of both its step-size parameters. In addition,
the error bars were generally larger, suggesting that the variance across different runs was also higher.

C7(71—0—1
Tn+1 = Tn + 6n<i/n - Tn>7
Rn+1

To conclude, our experiments with the continuing Four-Room domain show that our inter-option
Differential Q-learning indeed finds the optimal policy given a set of options, in accordance with
Theorem 1. In addition, its performance seems to be robust to the choices of its parameters.
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4 Intra-Option Value Learning and Planning Algorithms

In this section, we introduce intra-option value learning and planning algorithms. The objectives are
same as that of inter-option value learning algorithms. As mentioned earlier, intra-option algorithms
learn from every transition Sy, A;, Ry 1, St41 during the execution of a given option O,. Moreover,
intra-option algorithms also make updates for every option o € O, including ones that may potentially
never be executed.

To develop our algorithms, we first establish the intra-option evaluation and optimality equations in
the average-reward case. The general form of the intra-option Bellman equation is:

q(s,0) = Z’IT(G |s,0) Zp(s’,r | 5,a) (r -7+ ul(s, o)) (10)

a

where ¢ € RISIXIOl and 7 € R are free variables. The optimality and evaluation equations use
u? = ul and u? = ug, respectively, defined Vs’ € S,0 € O as:

ul(s',0) = ul(s',0) = (1= B(s',0))q(s,0) + B(s', 0) max q(s', o), (11)

ul(s',0) = ull(s',0) = (1= B(s',0))a(s',0) + B(s',0) D u(0']s)a(s', o). (12)

Intuitively, the u? term accounts for the two possibilities of an option terminating or continuing in
the next state. These equations generalize the average-reward Bellman equations given by Puterman
(1994). The following theorem characterizes the solutions to the intra-option Bellman equations.

Theorem 2 (Solutions to intra-option Bellman equations). If Assumption I holds, then:

1. a) there exists a7 = R and a q € RISI*I9! for which (10) and (11) holds, b) the solution of
T is unique and is equal to T, the solutions of q form a set {q. + ce | ¢ € R} where e is an
all-one vector of size |S| x |0, ¢) a greedy policy w.r.t. a solution of q achieves the optimal
reward rate 1.

2. a) there exists a7 € R and a q € RS9l for which (10) and (12) holds, b) the solution of
T is unique and is equal to r(u), the solutions of q form a set {q,, + ce | c € R}.

The proof extends that of Corollary 8.2.7, Theorem 8.4.3, and Theorem 8.4.4 by Puterman (1994),
and is presented in Appendix A.3.

Our intra-option control and prediction algorithms are stochastic approximation algorithms solving
the intra-option optimality and evaluation equations respectively. Both the algorithms maintain
a vector of estimates Q(s,0) and a scalar estimate R, just like our inter-option algorithms (since
intra-option algorithms make updates after every transition, they do not need to maintain an estimator
for option lengths (L) like the inter-option algorithms). Our control algorithm, called intra-option
Differential Q-learning, updates estimates () and R by:

Qt+1(5t7 0) = Qt(St7 0) + atpt(0)5t(0), V (XS 07 (13)
Rip1 = Ri+nay Y, pi(0)6:(0), (14)
ocO
where « is a step-size sequence, p;(0) = % is the importance sampling ratio, and:

5:(0) = Ri1 — Ry +u2* (Sp41,0) — Qe(St, 0). (15)

Our prediction algorithm, called intra-option Differential Q-evaluation, also update () and R by (13)
and (14) but with the TD error:

5:(0) = Re1 — Ry + ud* (Ses1,0) — Qe(St, 0). (16)

Theorem 3 (Convergence of intra-option algorithms; informal). Under the same assumptions as
those of Theorem 1:

1. intra-option Differential Q-learning algorithm (13—15) converges almost surely, R; to r.,
Q¢ to a solution of q in (10) and (11), and r(p;) to r., where i is a greedy policy w.r.t. Qy,
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2. intra-option Differential Q-evaluation algorithm (13,14,16) converges almost surely, R, to
r(u), Q¢ to a solution of q in (10) and (12).

Remark: The intra-option learning methods introduced in this section can be used with options
having stochastic policies. This is possible with the use of the important sampling ratios as described
above. Sutton et al.’s (1999) discounted intra-option learning methods were restricted to options
having deterministic policies.

Again, the intra-option value planning algorithms are similar to the learning algorithms except that
they use simulated experience generated by a given or learned model instead of real experience. The
planning algorithms and their convergence results are presented in Appendix A.4.

Empirical Evaluation. We conducted another experi-
ment in the Four-Room domain to show that intra-option
Differential Q-learning can learn the values of hallway
options H using only primitive actions .4. As mentioned
earlier, there are no intra-option average-reward baseline
algorithms, so this is a proof-of-concept experiment.

Reward 0-04
Rate
The goal state for this experiment was G2, which can be
reached using the option that leads to the lower hallway.
The optimal reward rate in this case is 1/14 ~ 0.714 with
both O = H and O = A. We applied intra-option Differ-
ential Q-learning using a behavior policy that chose the
four primitive actions with equal probability in all states.
Each parameter setting was run for 200,000 steps and re-
peated 30 times. For evaluation, we saved the learned

50000 100000

Total Steps

150000 200000

Figure 4: Learning curve showing that
the greedy policy corresponding to the
hallway options’ option-value function
achieves the optimal reward rate on the

option value function after every 1000 steps and computed
the average reward of the corresponding greedy policy
over 1000 steps.

Figure 4 shows the learning curve of this average re-
ward across the 30 independent runs for parameters o =

continuing Four-Room domain. The
value function was learned via intra-
option Differential Q-learning using a
behavior policy consisting only of prim-
itive actions; the hallway options were

0.125,7 = 0.1. The agent indeed succeeds in learning never executed.

the option-value function corresponding to the hallway op-
tions using a behavior policy consisting only of primitive actions. The parameter study of intra-option
Differential Q-learning is presented in Appendix B.2.

5 Intra-Option Model Learning and Planning Algorithms

In this section, we first describe option models within the average-reward formulation. We then
introduce an algorithm to learn such models in an intra-option fashion. This option-model learning
algorithm can be combined with the planning algorithms from the previous section to obtain a
complete model-based average-reward options algorithm that learns option models and plans with
them (we present this algorithm in Appendix C.2).

The average-reward option model is similar to the discounted options model but with key distinctions.
Sutton et al.’s (1999) discounted option model has two parts: the dynamics part and the reward
part. Given a state and an option, the dynamics part predicts the discounted occupancy of states
upon termination, and the reward part predicts the expected (discounted) sum of rewards during
the execution of the option. In the average-reward setting, apart from the dynamics and the reward
parts, an option model has a third part—the duration part—that predicts the duration of execution of
the option. In addition, the dynamics part predicts the state distribution upon termination without
discounting and reward part predicts the undiscounted cumulative rewards during the execution of
the option.

Formally, the dynamics part is m?(s'[s,0) = >, p(s’,7,1]s,0), the probability that option o
terminates in state s" when starting from state s. The reward partis m”(s,0) =Y, p(s’,r,l]s,0)r,
the expected cumulative reward during the execution of option o when starting from state s. Finally,
the duration part is m!(s, 0) = > e D(8',7,1]s,0) 1, the expected duration of option o when starting
from state s.
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We now present a set of recursive equations that are key to our model-learning algorithms. These
equations extend the discounted Bellman equations for option models (Sutton et al. 1999) to the
average-reward formulation.

mP (x| s,0) = ZTK‘(CL | 5,0) Zp(s’,r | 5,a) (,3(8/70)]1(56 =5+ (1 =B, 0)mP (x| s/,o)), a7

m' (s,0) = Zﬂ(a | s,0) Zp(s/, r|s,a) (r + (1 - B(s, o))mr(s/,o)), (18)
m!(s,0) =Y m(a]s,0)Y p(s',r | s,0) (14 (1 - B(s',0)m'(s',0)). (19)

The following theorem (see Appendix A.5 for the proof) shows that (m?, m”, m!) is the unique
solution of (17-19) and therefore the models can be obtained by solving these equations.

Theorem 4 (Solutions to Bellman equations for option models). There exist unique mP &
RISXIOXIS| g e RISIXION gnd m! e RISIXION for which (17), (18), and(19) hold. Further,
ifmP,m", m 7l satisfy (17), (18), and (19), then mP = mP,m"” = m”,m! = m'.

Our intra-option model-learning algorithm solves the above recursive equations using the following
TD-like update rules for each option o:

M, (x| St,0) = Mf (x| St,0) + a (B(SHLO)H(S:&H =)

+ (1= B(Set1,0)) MP (2 | Spy1,0) — MP(x | St,o)), Vzes, (20)
M{y1(St,0) = M{ (St,0) + at (Rt+1 + (1= B(St11,0)) M{ (St11,0) — M{ (S, 0)) 21
ML 1(St,0) = M (S1,0) + (1 + (1= B(Si11,0)) M (Sy11,0) — ML(S:, o)) 22)

where M? is a |S| x |O| x |S|-sized vector of estimates, M™ and M are both |S| x |O|-sized vectors
of estimates, and o is a sequence of step sizes. Standard stochastic approximation results can be
applied to show the algorithm’s convergence (see Appendix A.6 for details).

Theorem 5 (Convergence of the intra-option model learning algorithm, informal). Under Assump-
tion 1, if the step sizes are set appropriately and all the state-option pairs are updated an infinite
number of times, then the intra-option model-learning algorithm (20-22) converges almost surely,
M} to mP, M tom”, and M} to m'.

Our intra-option model-learning algorithms (20-22) can be applied with simulated one-step transitions
generated by a given action model, resulting to a planning algorithm that produces an estimated
option model. The planning algorithm and its convergence result are presented in Appendix A.6.

6 Interruption to Improve Policy Over Options

In all the algorithms we considered so far, the policy over options would select an option, execute
the option policy till termination, then select a new option. Sutton et al. (1999) showed that the
policy over options can be improved by allowing the interruption of an option midway through its
execution to start a seemingly better option. We now show that this interruption result applies for
average-reward options as well (see Appendix A.7 for the proof).

Theorem 6 (Interruption). For any MDP, any set of options O, and any policy i : S x O — [0, 1],
define a new set of options, O', with a one-to-one mapping between the two option sets as follows:
forevery o = (w, ) € O, define a corresponding o' = (w,3') € O’ where 3’ = 3, but for any state
s in which q,,(s,0) < v,(s), B'(s) = 1. Let the interrupted policy ;' be such that for all s € S and
forall o' € O, 1/ (s,0") = u(s,0), where o is the option in O corresponding to o'. Then:

1. the new policy over options 1’ is not worse than the old one p, i.e., v(p') > r(u),

2. if there exists a state s € S from which there is a non-zero probability of encountering an
interruption upon initiating 1’ in s, then r(p') > r(p).
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In short, the above theorem shows that interruption produces a behavior that achieves a higher reward
rate than without interruption. Note that interruption behavior is only applicable with intra-option
algorithms; complete option transitions are needed in inter-option algorithms.

Empirical Evaluation. We tested the intra-option Differ-

ential Q-learning algorithm with and without interruption 0.08
in the Four-Room domain. We set the goal as G3 and al-
lowed the agent to choose and learn only from the set of
all hallway options . With just hallway options, without
interruption, the best strategy is to first move to the lower ~ fepard 00t
hallway and then try to reach the goal by following options 0.02] e o
that pick random actions in the states near the hallway and ) Acting without Interruption
goal. With interruption, the agent can first move to the /
left hallway, then take the option that moves the agent to ' 100000 TO?tz(l’gi(gpﬁ 300000 400000
the lower hallway but terminate when other options have

higher option-values. This termination is most likely to  Figure 5: Learning curves showing that
occur in the cell just above G3. The agent then needs a executing options with interruptions can
fewer number of steps in expectation to reach the goal. achieve a higher reward rate than execut-
ing options till termination in the domain
described in the adjoining text.

Figure 5 shows learning curves using intra-option Differ-
ential Q-learning with and without interruptions on this
problem. Each parameter setting was run for 400,000
steps and repeated 30 times. The learning curves shown correspond to aw = 0.125 and n = 0.1. As
expected, the agent achieved a higher reward rate by using interruptions. The parameter study of the
interruption algorithm along with the rest of the experimental details is presented in Appendix B.3.

7 Conclusions, Limitations, and Future Work

In this paper, we extended learning and planning algorithms for the options framework — originally
proposed by Sutton et al. (1999) for discounted-reward MDPs — to average-reward MDPs. The
inter-option learning algorithm presented in this paper is more general than previous work in that its
convergence proof does not require existence of any special states in the MDP. We also established
intra-option Bellman equations in average-reward MDPs and used them to propose the first intra-
option learning algorithms for average-reward MDPs. Finally, we extended the interruption algorithm
and its related theory from the discounted to the average-reward setting. Our experiments on a
continuing version of the classic Four-Room domain show the efficacy of the proposed algorithms.
We believe that our contributions will enable widespread use of options in the average-reward setting.

The most immediate line of future work involves extending these ideas from the tabular case to
the general case of function approximation, starting with linear function approximation. The idea
of linear (discounted) options can be extended to the average-reward case, perhaps by building on
the theory used by Zhang et al. (2021). Using the results developed in this paper, we also foresee
extensions to more ideas from the discounted setting involving function approximation such as Bacon
et al.’s (2017) option-critic architecture to the average-reward setting.

This paper assumes that a fixed set of options is provided and the agent then learns or plans using them.
One of the most important challenges in the options framework is the discovery of options. We think
the discovery problem is orthogonal to the problem formulation. Hence existing option-discovery
algorithms developed for the discounted setting (e.g., by McGovern & Barto 2001, Menache et
al. 2002, Simsek & Barto 2004, Singh et al. 2004, Van Djik & Polani 2011, Machado et al. 2017)
can be easily extended to the average-reward setting. Relatively more work might be required in
extending approaches that couple the problems of option discovery and learning (e.g., Gregor et
al. 2016, Eysenbach et al. 2018, Achiam et al. 2018, Veeriah et al. 2021).

Another limitation of this paper is that it deals with learning and planning separately. We also need
combined methods that learn models and plan with them; some ideas are discussed in Appendix C.
Finally, we would like to get more empirical experience with the algorithms proposed in this paper,
both in pedagogical tabular problems and challenging large-scale problems. Nevertheless, we believe
this paper makes novel contributions that are significant for the use of temporal abstractions in
average-reward reinforcement learning.
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