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ABSTRACT

This paper presents a framework to tackle combinatorial optimization problems
using neural networks and reinforcement learning. We focus on the traveling
salesman problem (TSP) and train a recurrent network that, given a set of city
coordinates, predicts a distribution over different city permutations. Using nega-
tive tour length as the reward signal, we optimize the parameters of the recurrent
network using a policy gradient method. We compare learning the network param-
eters on a set of training graphs against learning them on individual test graphs.
The best results are obtained when the network is first optimized on a training set
and then refined on individual test graphs. Without any supervision and with min-
imal engineering, Neural Combinatorial Optimization achieves close to optimal
results on 2D Euclidean graphs with up to 100 nodes.

1 INTRODUCTION

Combinatorial optimization is a fundamental problem in computer science. A canonical example
is the traveling salesman problem (TSP), where given a graph, one needs to search the space of
permutations to find an optimal sequence of nodes with minimal total edge weights (tour length).
The TSP and its variants have myriad applications in planning, manufacturing, genetics, etc. (see
Applegate et al. (2011) for an overview).

Finding the optimal TSP solution is NP-hard, even in the two-dimensional Euclidean case (Papadim-
itriou, 1977), where the nodes are 2D points and edge weights are Euclidean distances between pairs
of points. In practice, TSP solvers rely on handcrafted heuristics that guide their search procedures to
find competitive tours. Even though these heuristics work well on TSP, once the problem statement
changes slightly, they need to be revised. In this paper, we advocate the use of machine learning
algorithms with minimal hand engineering to address the TSP and its variants, and more generally
combinatorial optimization. The end goal is to develop a generic framework which is applicable
across many optimization tasks by automatically discovering new heuristics based on the training
data.

While most successful machine learning techniques fall into the family of supervised learning, where
a mapping from training inputs to outputs is learned, supervised learning is not applicable to most
combinatorial optimization problems because one does not have access to optimal labels. However,
one can compare the quality of a set of solutions using a verifier, and provide some reward feedbacks
to a learning algorithm. Hence, we follow the reinforcement learning (RL) paradigm to tackle
combinatorial optimization. We empirically demonstrate that, even when using optimal solutions as
labeled data to optimize a supervised mapping, the generalization is rather poor compared to an RL
agent that explores different tours and observes their corresponding rewards.

We propose Neural Combinatorial Optimization, a framework to tackle combinatorial optimization
problems using reinforcement learning and neural networks. We consider two approaches based on
policy gradients (Williams, 1992). The first approach, called RL pretraining, uses a training set to
optimize a recurrent neural network (RNN) that parameterizes a stochastic policy over solutions,
using the expected reward as the objective. At test time, the policy is fixed, and one performs
inference by greedy decoding or sampling. The second approach, called active search, involves no
pretraining. It starts from a random policy and iteratively optimizes the RNN parameters on a single
test instance, again using the expected reward objective, while keeping track of the best solution
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Figure 1: Tour length ratios of our two methods against optimality. The first method is (Christofides,
1976) and the second method is RL pretraining followed by active search.

sampled during the search. We find that combining RL pretraining and active search works best in
practice.

On 2D Euclidean graphs with up to 100 nodes, without supervision, Neural Combinatorial Optimiza-
tion significantly outperforms the supervised learning approach to the TSP (Vinyals et al., 2015b)
and obtains close to optimal results (see Figure 1). Furthermore, we empirically demonstrate that
the same framework can solve to optimality the KnapSack problem (Kellerer et al., 2004), another
NP-hard problem, on instances with up to 200 items. These surprising results shed light on how
neural networks can be used as a general tool for tackling combinatorial optimization problems,
especially those that are difficult to design heuristics for.

2 PREVIOUS WORK

The Traveling Salesman Problem is a well studied combinatorial optimization problem. Many ex-
act or approximate algorithms have been proposed for both Euclidean and non-Euclidean graphs.
Christofides (1976) propose a heuristic algorithm involves computing a minimum-spanning tree and
a minimum-weight perfect matching. The algorithm has polynomial running time and returns solu-
tions that are guaranteed to be within a factor of 1.5× to optimality in the metric instance of the TSP.
For the 2D Euclidean TSP, Arora (1998) proposed an O

(
n(log n)O(c)

)
algorithm with a guaranteed

O(1 + 1/c) approximation ratio. This method recursively partitions the plane into rectangular re-
gions and then employs dynamic programming to find a tour that crosses their boundaries no more
than O(c) times.

The best known exact dynamic programming algorithm for TSP has a complexity of Θ(2nn2),
making it infeasible to scale up to large instances, say with 40 points. Nevertheless, state of the art
TSP solvers, thanks to carefully handcrafted heuristics that describe how to navigate the space of
feasible solutions in an efficient manner, can provably solve to optimality symmetric TSP instances
with thousands of nodes. Concorde (Applegate et al., 2006), widely accepted as one of the best
exact TSP solvers, makes use of cutting plane algorithms (Dantzig et al., 1954; Padberg & Rinaldi,
1990; Applegate et al., 2003), iteratively solving linear programming relaxations of the TSP, in
conjunction with a branch-and-bound approach that prunes parts of the search space that provably
will not contain an optimal solution.

More generic solvers, such as vehicle routing problem solvers (Google, 2016) that tackle a superset
of the TSP, rely on a combination of local search algorithms and metaheuristics. Local search
algorithms apply a specified set of local move operators on candidate solutions, based on hand-
engineered heuristics such as the Lin–Kernighan heuristic (S. Lin, 1973), to navigate from solution
to solution in the search space. A metaheuristic is then applied to propose uphill moves and escape
local optima. A popular choice of metaheuristic for the TSP and its variants is guided local search
(Voudouris & Tsang, 1999), which moves out of a local minimum by penalizing particular solution
features that it considers should not occur in a good solution.
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The application of neural networks to combinatorial optimization has a distinguished history, where
the majority of research focuses on the Traveling Salesman Problem (Smith, 1999). One of the
earliest proposals is the use of Hopfield networks (Hopfield & Tank, 1985). The authors modify
the network’s energy function to make it equivalent to the objective of TSP and then use Lagrange
multipliers to penalize the violations of the problem’s constraints. A limitation of this approach is
that it is sensitive to hyperparameters and parameter initialization as analyzed by (Wilson & Pawley,
1988). Overcoming this limitation is central to the subsequent work in the field, especially by (Aiyer
et al., 1990; Gee, 1993).

Parallel to the development of Hopfield networks is the work on using deformable template mod-
els to solve TSP. Perhaps most prominent is the invention of Elastic Nets as a means to solve
TSP (Durbin, 1987), and application of Self Organizing Map to TSP (Fort, 1988; Angeniol et al.,
1988; Kohonen, 1990). Addressing the limitations of deformable template models is central to the
following work in this area (Burke, 1994; Favata & Walker, 1991; Vakhutinsky & Golden, 1995).

Even though these neural networks have many appealing properties, they are still limited as research
work. When being carefully benchmarked, they have not yielded satisfying results compared to
algorithmic methods (Sarwar & Bhatti, 2012; La Maire & Mladenov, 2012). Perhaps due to the
negative results, this research direction is largely overlooked since the turn of the century.

Thanks to advances in sequence-to-sequence learning (Sutskever et al., 2014) with attention (Bah-
danau et al., 2015), neural networks are again the subject of study for TSP. In particular, they are
revisited in the work of Pointer Networks (Vinyals et al., 2015b), where a recurrent network with
non-parametric softmaxes is trained in a supervised manner to predict the sequence of visited cities.
Despite architecural improvements, their models were trained using supervised signals given by an
approximate solver.

3 NEURAL NETWORK ARCHITECTURE FOR TSP

We focus on the 2D Euclidean TSP in this paper. Given an input graph, represented as a sequence
of n cities in a two dimensional space s = {xi}ni=1 where each xi ∈ R2, we are concerned with
finding a permutation of the points π, termed a tour, that visits each city once and has the minimum
total length. We define the length of a tour defined by a permutation π as

L(π | s) =
∥∥xπ(n) − xπ(1)

∥∥
2

+

n−1∑
i=1

∥∥xπ(i) − xπ(i+1)

∥∥
2
, (1)

where ‖·‖2 denotes `2 norm.

We aim to learn the parameters of a stochastic policy p(π | s) that given an input set of points s,
assigns high probabilities to short tours and low probabilities to long tours. Our neural network
architecture uses the chain rule to factorize the probability of a tour as

p(π | s) =

n∏
i=1

p (π(i) | π(< i), s) , (2)

and then uses individual softmax modules to represent each term on the RHS of (2).

We are inspired by previous work (Sutskever et al., 2014) that makes use of the same factorization
based on the chain rule to address sequence to sequence problems like machine translation. One
can use a vanilla sequence to sequence model to address the TSP where the output vocabulary is
{1, 2, . . . , n}. However, there are two major issues with this approach: (1) networks trained in this
fashion cannot generalize to inputs with more than n cities. (2) one needs to have access to ground-
truth output permutations to optimize the parameters with conditional log-likelihood. We address
both isssues in this paper.

For generalization beyond a pre-specified graph size, we follow the approach of (Vinyals et al.,
2015b), which makes use of a set of non-parameteric softmax modules, resembling the attention
mechanism from (Bahdanau et al., 2015). This approach, named pointer network, allows the model
to effectively point to a specific position in the input sequence rather than predicting an index value
from a fixed-size vocabulary. We employ the pointer network architecture, depicted in Figure 2, as
our policy model to parameterize p(π | s).
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〈g〉 x2x1x5x4x4x3x2x1 x5

Figure 2: A pointer network architecture introduced by (Vinyals et al., 2015b).

3.1 ARCHITECTURE DETAILS

Our pointer network comprises two recurrent neural network (RNN) modules, encoder and decoder,
both of which consist of Long Short-Term Memory (LSTM) cells (Hochreiter & Schmidhuber,
1997). The encoder network reads the input sequence s, one city at a time, and transforms it into a
sequence of latent memory states {enci}ni=1 where enci ∈ Rd. The input to the encoder network at
time step i is a d-dimensional embedding of a 2D point xi, which is obtained via a linear transforma-
tion of xi shared across all input steps. The decoder network also maintains its latent memory states
{deci}ni=1 where deci ∈ Rd and, at each step i, uses a pointing mechanism to produce a distribution
over the next city to visit in the tour. Once the next city is selected, it is passed as the input to the
next decoder step. The input of the first decoder step (denoted by 〈g〉 in Figure 2) is a d-dimensional
vector treated as a trainable parameter of our neural network.

Our attention function, formally defined in Appendix A.1, takes as input a query vector q = deci ∈
Rd and a set of reference vectors ref = {enc1, . . . , enck} where enci ∈ Rd, and predicts a distri-
bution A(ref, q) over the set of k references. This probability distribution represents the degree to
which the model is pointing to a reference ri upon seeing a query q.

Vinyals et al. (2015a) also suggest including some additional computation steps, named glimpses,
to aggregate the contributions of different parts of the input sequence, very much like (Bahdanau
et al., 2015). We discuss this approach in details in Appendix A.1. In our experiments, we find that
utilizing one glimpse in the pointing mechanism yields performance gains at an insignificant cost
latency.

4 OPTIMIZATION WITH POLICY GRADIENTS

Vinyals et al. (2015b) propose training a pointer network using a supervised loss function comprising
conditional log-likelihood, which factors into a cross entropy objective between the network’s output
probabilities and the targets provided by a TSP solver. Learning from examples in such a way is
undesirable for NP-hard problems because (1) the performance of the model is tied to the quality
of the supervised labels, (2) getting high-quality labeled data is expensive and may be infeasible
for new problem statements, (3) one cares more about finding a competitive solution more than
replicating the results of another algorithm.

By contrast, we believe Reinforcement Learning (RL) provides an appropriate paradigm for training
neural networks for combinatorial optimization, especially because these problems have relatively
simple reward mechanisms that could be even used at test time. We hence propose to use model-free
policy-based Reinforcement Learning to optimize the parameters of a pointer network denoted θ.
Our training objective is the expected tour length which, given an input graph s, is defined as

J(θ | s) = Eπ∼pθ(.|s) L(π | s) . (3)

During training, our graphs are drawn from a distribution S, and the total training objective involves
sampling from the distribution of graphs, i.e. J(θ) = Es∼S J(θ | s) .
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Algorithm 1 Actor-critic training
1: procedure TRAIN(training set S, number of training steps T , batch size B)
2: Initialize pointer network params θ
3: Initialize critic network params θv
4: for t = 1 to T do
5: si ∼ SAMPLEINPUT(S) for i ∈ [|1, B|]
6: πi ∼ SAMPLESOLUTION(pθ(.|si)) for i ∈ [|1, B|]
7: bi ← bθv (si)

8: ∇θ ← 1
B

∑B
i=1(L(πi|si)− bi)∇θ log pθ(πi|si)

9: Lv ← 1
B

∑B
i=1 ‖bi − L(πi)‖

2
2

10: θ ← ADAM(θ,∇θ)
11: θv ← ADAM(θv,∇θvLv)
12: end for
13: return θ
14: end procedure

We resort to policy gradient methods and stochastic gradient descent to optimize the parameters.
The gradient of (3) is formulated using the well-known REINFORCE algorithm (Williams, 1992):

∇θJ(θ | s) = Eπ∼pθ(.|s)
[(
L(π | s)− b(s)

)
∇θ log pθ(π | s)

]
, (4)

where b(s) denotes a baseline function that does not depend on π and estimates the expected tour
length to reduce the variance of the gradients.

By drawing B i.i.d. sample graphs s1, s2, . . . , sB ∼ S and sampling a single tour per graph,
i.e. πi ∼ pθ(. | si), the gradient in (4) is approximated with Monte Carlo sampling as follows:

∇θJ(θ) ≈ 1

B

B∑
i=1

(
L(πi|si)− b(si)

)
∇θ log pθ(πi | si) . (5)

A simple and popular choice of the baseline b(s) is an exponential moving average of the rewards
obtained by the network over time to account for the fact that the policy improves with training.
While this choice of baseline proved sufficient to improve upon the Christofides algorithm, it suffers
from not being able to differentiate between different input graphs. In particular, the optimal tour
π∗ for a difficult graph s may be still discouraged if L(π∗|s) > b because b is shared across all
instances in the batch.

Using a parametric baseline to estimate the expected tour length Eπ∼pθ(.|s)L(π | s) typically im-
proves learning. Therefore, we introduce an auxiliary network, called a critic and parameterized
by θv , to learn the expected tour length found by our current policy pθ given an input sequence s.
The critic is trained with stochastic gradient descent on a mean squared error objective between its
predictions bθv (s) and the actual tour lengths sampled by the most recent policy. The additional
objective for optimizing the baseline parameters denoted θv is formulated as

L(θv) =
1

B

B∑
i=1

∥∥ bθv (si)− L(πi | si)
∥∥2
2
. (6)

Our training algorithm, described in Algorithm 1, is closely related to the asynchronous advan-
tage actor-critic (A3C) proposed in (Mnih et al., 2016), as the difference between the sampled tour
lengths and the critic’s predictions is an unbiased estimate of the advantage function. We perform
our updates asynchronously across multiple workers, but each worker also handles a mini-batch of
graphs for better gradient estimates.

4.1 SEARCH STRATEGIES

As evaluating a tour length is inexpensive, our TSP agent can easily simulate a search procedure at
inference time by considering multiple candidate solutions per graph and selecting the best. This
inference process resembles how solvers search over a large set of feasible solutions. In this paper,
we consider two search strategies detailed below, which we refer to as sampling and active search.
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Algorithm 2 Active Search
1: procedure ACTIVESEARCH(input s, θ, number of candidates K, B, α)
2: π ← RANDOMSOLUTION()
3: Lπ ← L(π | s)
4: n← dK

B
e

5: for t = 1 . . . n do
6: πi ∼ SAMPLESOLUTION(pθ(. | s)) for i ∈ [|1, B|]
7: j ← ARGMIN(L(π1 | s) . . . L(πB | s))
8: Lj ← L(πj | s)
9: if Lj < Lπ then

10: π ← πj
11: Lπ ← Lj
12: end if
13: ∇θ ← 1

B

∑B
i=1(L(πi | s)− b)∇θ log pθ(πi | si)

14: θ ← ADAM(θ,∇θ)
15: b← α ∗ b+ (1− α) ∗ ( 1

B

∑B
i=1 bi)

16: end for
17: return π
18: end procedure

Sampling. Our first approach is simply to sample many candidate tours from our stochastic policy
pθ(.|s) and select the shortest one. In contrast to heuristic solvers, we do not enforce our model
to sample different tours during the search. However, we can control the diversity of the sampled
tours with a temperature hyperparameter when sampling from our non-parametric softmax (see Ap-
pendix A.2). This sampling process yields significant improvements over greedy decoding, which
always selects the index with the largest probability. We also considered perturbing the pointing
mechanism with random noise and greedily decoding from the obtained modified policy, similarly
to Cho (2016), but this proved less effective than sampling in our experiments.

Active Search. Rather than sampling with a fixed model and ignoring the reward information ob-
tained from the sampled solutions, one can refine the parameters of the stochastic policy pθ during
inference to minimize Eπ∼pθ(.|s)L(π | s) on a single test input s. This approach proves especially
competitive when starting from a trained model. But more remarkably, it also produces satisfying
solutions when starting from an untrained model. We will refer to these two approaches as RL pre-
training - Active Search and Active Search because the model actively updates its parameters while
searching candidate solutions on a single test instance.

Active Search applies policy gradients similarly to Algorithm 1 but draws Monte Carlo samples
over candidate solutions π1 . . . πB ∼ pθ(.|s) for a single test input. It also resorts to an exponential
moving average baseline, rather than a critic, as there is no need to differentiate between inputs.
Our Active Search training algorithm is presented in Algorithm 2. We note that while RL training
does not require supervision, it still requires training data and hence generalization depends on the
training data distribution. In contrast, Active Search is distribution independent. Finally, since we
encode a set of cities as a sequence, we randomly shuffle the input sequence before feeding it to
our pointer network. This increases the stochasticity of the sampling procedure and leads to large
improvements in Active Search.

5 EXPERIMENTS

We conduct experiments to investigate the behavior of the proposed Neural Combinatorial Opti-
mization methods. We consider three benchmark tasks, Euclidean TSP20, 50 and 100, for which
we generate a test set of 1, 000 graphs. Points are drawn uniformly at random in the 2D unit square
[0, 1]2. Table 1 summarizes the configurations and different search strategies used in the experi-
ments. Our experimental procedure and results are as follows.

5.1 EXPERIMENTAL DETAILS

Across all experiments, we use mini-batches of 128 sequences, LSTM cells with 128 hidden units,
and embed the two coordinates of each point in a 128-dimensional space. We train our models with
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Table 1: Different learning configurations.

Configuration Learn on Sampling Refining
training data on test set on test set

RL pretraining-Greedy Yes No No
Active Search (AS) No Yes Yes
RL pretraining-Sampling Yes Yes No
RL pretraining-Active Search Yes Yes Yes

the Adam optimizer (Kingma & Ba, 2014) and use an initial learning rate of 10−3 for TSP20 and
TSP50 and 10−4 for TSP100 that we decay every 5000 steps by a factor of 0.96. We initialize our
parameters uniformly at random within [−0.08, 0.08] and clip the L2 norm of our gradients to 1.0.
We use up to one attention glimpse and observed that using more glimpses did not improve the
results. When searching, the mini-batches either consist of replications of the test sequence or its
permutations. The baseline decay is set to α = 0.99 in Active Search. Our model and training code
will be made availabe soon. Experiments were conducted using Tensorflow (Abadi et al., 2016).

Supervised Learning. In addition to the described baselines, we implement and train a pointer
network with supervised learning, similarly to (Vinyals et al., 2015b). While our supervised data
consists of one million optimal tours, we find that our supervised learning results are not as good as
those reported in by (Vinyals et al., 2015b). We suspect that learning from optimal tours is harder for
supervised pointer networks due to subtle features that the model cannot figure out only by looking
at given supervised targets. We thus refer to the results in (Vinyals et al., 2015b) for TSP20 and
TSP50 and report our results on TSP100, all of which are suboptimal compared to other approaches.

RL pretraining. For the RL experiments, we generate training mini-batches of inputs on the fly
and update the model parameters with the Actor Critic Algorithm 1. We use a validation set of
10, 000 randomly generated instances for hyper-parameter tuning. Our critic consists of an encoder
network having the same architecture as the policy network’s encoder, but followed by 3 processing
steps as described in (Vinyals et al., 2015a) and 2 fully connected layers with respectively 128 and 1
unit(s). We find that clipping the logits to [−10, 10] with a tanh activation function, as described in
Appendix A.2, helps with exploration and yields marginal performance gains. The simplest search
strategy using an RL pretrained model is greedy decoding, i.e. selecting the city with the largest
probability at each decoding step.

RL pretraining Sampling. For each test instance, we sample 1, 000 batches of solutions from a
pretrained model, after which we do not see significant improvement, and keep track of the shortest
tour. A grid search over the temperature hyperparameter found respective temperatures of 3.0, 2.0
and 1.0 to yield the best results for TSP20, TSP50 and TSP100.

RL pretraining Active Search. For each test instance, we initialize the model parameters from a
pretrained RL model and run Active Search for up to 10, 000 training steps. We set the learning rate
to a hundredth of the initial learning rate the TSP agent was trained on (i.e. 10−5 for TSP20/TSP50
and 10−6 for TSP100).

Active Search. We allow the model to train much longer to account for the fact that it starts from
scratch. For each test graph, we run Active Search for 100, 000 training steps on TSP20,50 and
200, 000 training steps on TSP100.

5.2 RESULTS AND ANALYSES

We compare our methods against Christofides (1976) as well as optimal solutions, which we get
from Concorde (Applegate et al., 2006). We report the average tour lengths of our approaches on
our three test sets in Table 2. All our methods comfortably outperform Christofides’. Notably,
results demonstrate that training with RL significantly improves over supervised learning (Vinyals
et al., 2015b). We present a more detailed comparison of methods in Figure 3, where we sort the
ratios to optimality of our different learning configurations.

Searching at inference time proves crucial to approach optimality. Most importantly, RL pretraining
Active Search is the best among all Neural Combinatorial Optimization methods and successfully re-
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Table 2: Average tour length (lower is better). Results marked (†) are from (Vinyals et al., 2015b).

Task Supervised
Learning

RL pretraining AS Christofides Optimalgreedy sampling AS
TSP20 3.88(†) 3.89 3.82 3.82 3.96 − 3.82
TSP50 6.09(†) 5.95 5.71 5.70 5.87 6.62 5.68
TSP100 10.81 8.30 7.92 7.83 8.19 9.18 7.77
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Figure 3: Sorted tour length ratios to optimality

covers optimal tours in a significant numbers of test cases. Remarkably, Active Search also achieves
satisfying results and outperforms the greedy policy obtained with RL pretraining.

In Table 3, we show the average performance of our search strategies on TSP50 and TSP100 as they
consider more batches of candidate solutions. We find that RL pretraining Sampling and RL pre-
training Active Search get most of their improvements over the greedy policy within a small number
of candidate batches but still benefit from longer search procedures. On the contrary, Active Search,
which starts from randomly initialized parameters, requires many more training steps before pro-
ducing competitive tours. Finally, we show randomly picked example tours found by our methods
in Figure 4 in Appendix A.3.

Table 3: Average tour lengths of all methods as they sample more mini-batches of tours. Each batch consists of
128 sequences

# Batches RL pretraining ASSampling T = 1 Sampling T = T ∗ AS

TSP50

0 5.97 6.41 5.97 23.84
50 5.80 5.80 5.74 17.83
100 5.79 5.79 5.74 16.29
1,000 5.73 5.71 5.71 12.47
10,000 − − 5.70 10.76
100,000 − − − 5.87

TSP100

0 8.59 8.59 8.59 49.12
50 8.13 8.13 7.97 39.15
100 8.10 8.10 7.95 37.07
1,000 7.92 7.92 7.88 25.74
10,000 − − 7.83 25.64
200,000 − − − 8.19

6 GENERALIZATION TO OTHER PROBLEMS

In this section, we discuss how to apply Neural Combinatorial Optimization to other problems than
the TSP. In Neural Combinatorial Optimization, the model architecture is tied to the given combi-
natorial optimization problem. Examples of useful networks include the pointer network, when the
output is a permutation or a truncated permutation or a subset of the input, and the classical seq2seq
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model for other kinds of structured outputs. For combinatorial problems that require to assign labels
to elements of the input, such as graph coloring, it is also possible to combine a pointer module and
a softmax module to simultaneously point and assign at decoding time. Constraints on the solutions
are added to the decoder to ensure the feasiliby of the solutions, similarly to how we enforce the
model to not point at the same city twice in our pointing mechanism (see Appendix A.1). Given
a model that outputs feasible solutions, the training procedures described in Section 4 can then be
applied by adapting the reward function depending on the optimization problem.

As an example of the flexibility of Neural Combinatorial Optimization, we consider the KnapSack
problem, another intensively studied problem in computer science. Given a set of n items i = 1...n,
each with weight wi and value vi and a maximum weight capacity ofW , the 0-1 KnapSack problem
consists in maximizing the sum of the values of items present in the knapsack so that the sum of the
weights is less than or equal to the knapsack capacity:

max
S⊆{1,2,...,n}

∑
i∈S

vi

subject to
∑
i∈S

wi ≤W
(7)

With wi, vi and W taking real values, the problem is NP-hard (Kellerer et al., 2004). Two
simple heuristics are ExpKnap, which employs brand-and-bound with Linear Programming
bounds (Pisinger, 1995), and MinKnap, which employs dynamic programming with enumerative
bounds (Pisinger, 1997). Exact solutions can also be optained by quantizing the weights to high
precisions and then performing dynamic programming with a pseudo-polynomial complexity (Bert-
simas & Demir, 2002).

We apply the pointer network and encode each knapsack instance as a sequence of 2D vectors
(wi, vi). At decoding time, the pointer network points to items to include in the knapsack and stops
when the total weight of the items collected so far exceeds the weight capacity.

We generate three datasets, KNAP50, KNAP100 and KNAP200, of a thousand instances with items’
weights and values drawn uniformly at random in [0, 1]. Without loss of generality (since we can
scale the items’ weights), we set the capacities to 12.5 for KNAP50 and 25 for KNAP100 and
KNAP200. We present the performances of RL pretraining-Greedy and Active Search (which we
run for 5, 000 training steps) in Table 4. RL pretraining-Greedy yields solutions that, in average, are
just 1% less than optimal and Active Search solves all instances to optimality.

Table 4: Performance of RL pretraining-Greedy and Active Search on KnapSack.

RL pretraining Active Search Optimal ExpKnap
greedy and MinKnap

KNAP50 19.86 20.07 20.07 20.07
KNAP100 40.27 40.50 40.50 40.50
KNAP200 57.10 57.45 57.45 57.45

7 CONCLUSION

This paper presents Neural Combinatorial Optimization, a framework to tackle combinatorial op-
timization with reinforcement learning and neural networks. We focus on the traveling salesman
problem (TSP) and present a set of results for each variation of the framework. Experiments demon-
strate that Neural Combinatorial Optimization achieves close to optimal results on 2D Euclidean
graphs with up to 100 nodes.
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A APPENDIX

A.1 POINTING AND ATTENDING

Pointing mechanism: Its computations are parameterized by two attention matrices Wref ,Wq ∈
Rd×d and an attention vector v ∈ Rd as follows:

ui =

{
v> · tanh (Wref · ri +Wq · q) if i 6= π(j) for all j < i

−∞ otherwise
for i = 1, 2, ..., k (8)

A(ref, q;Wref ,Wq, v)
def
= softmax(u). (9)

Our pointer network, at decoder step j, then assigns the probability of visiting the next point π(j)
of the tour as follows:

p(π(j)|π(< j), s)
def
= A(enc1:n, decj). (10)

Setting the logits of cities that already appeared in the tour to −∞, as shown in Equation 8, ensures
that our model only points at cities that have yet to be visited and hence outputs valid TSP tours.

Attending mechanism: Specifically, our glimpse function G(ref, q) takes the same inputs as the
attention function A and is parameterized by W g

ref ,W
g
q ∈ Rd×d and vg ∈ Rd. It performs the

following computations:

p = A(ref, q;W g
ref ,W

g
q , v

g) (11)

G(ref, q;W g
ref ,W

g
q , v

g)
def
=

k∑
i=1

ripi. (12)

The glimpse functionG essentially computes a linear combination of the reference vectors weighted
by the attention probabilities. It can also be applied multiple times on the same reference set ref :

g0
def
= q (13)

gl
def
= G(ref, gl−1;W g

ref ,W
g
q , v

g) (14)

Finally, the ultimate gl vector is passed to the attention function A(ref, gl;Wref ,Wq, v) to produce
the probabilities of the pointing mechanism. We observed empirically that glimpsing more than
once with the same parameters made the model less likely to learn and barely improved the results.

A.2 IMPROVING EXPLORATION

Softmax temperature: We modify Equation 9 as follows:

A(ref, q, T ;Wref ,Wq, v)
def
= softmax(u/T ), (15)

where T is a temperature hyperparameter set to T = 1 during training. When T > 1, the distribution
represented by A(ref, q) becomes less steep, hence preventing the model from being overconfident.

Logit clipping: We modify Equation 9 as follows:

A(ref, q;Wref ,Wq, v)
def
= softmax(C tanh(u)), (16)

whereC is a hyperparameter that controls the range of the logits and hence the entropy ofA(ref, q).
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A.3 SAMPLE TOURS

(5.934)

RL pretraining
-Greedy

(5.734)

RL pretraining
-Sampling

(5.688)

RL pretraining
-Active Search

(5.827)

Active Search

(5.688)

Optimal

(7.558)

RL pretraining
-Greedy

(7.467)

RL pretraining
-Sampling

(7.384)

RL pretraining
-Active Search

(7.507)

Active Search

(7.260)

Optimal

Figure 4: Sample tours. Top: TSP50; Bottom: TSP100.

13


	Introduction
	Previous Work
	Neural Network Architecture for TSP
	Architecture Details

	Optimization with policy gradients
	Search Strategies

	Experiments
	Experimental details
	Results and Analyses

	Generalization to other problems
	Conclusion
	 Appendix
	Pointing and Attending
	Improving exploration
	 Sample tours


