
PLAYING SNES IN
THE RETRO LEARNING ENVIRONMENT

Nadav Bhonker*, Shai Rozenberg* and Itay Hubara
Department of Electrical Engineering
Technion, Israel Institute of Technology
(*) indicates equal contribution
{nadavbh,shairoz}@tx.technion.ac.il
itayhubara@gmail.com

ABSTRACT

Mastering a video game requires skill, tactics and strategy. While these attributes
may be acquired naturally by human players, teaching them to a computer pro-
gram is a far more challenging task. In recent years, extensive research was carried
out in the field of reinforcement learning and numerous algorithms were intro-
duced, aiming to learn how to perform human tasks such as playing video games.
As a result, the Arcade Learning Environment (ALE) (Bellemare et al., 2013) has
become a commonly used benchmark environment allowing algorithms to train on
various Atari 2600 games. In many games the state-of-the-art algorithms outper-
form humans. In this paper we introduce a new learning environment, the Retro
Learning Environment — RLE, based on the Super Nintendo Entertainment Sys-
tem (SNES). The environment is expandable, allowing for more video games and
consoles to be easily added to the environment, while maintaining the same inter-
face as ALE. Moreover, RLE is compatible with Python and Torch. SNES games
pose a significant challenge to current algorithms due to their higher level of com-
plexity and versatility. As an attempt to overcome these challenges, we introduce
a novel training method based on RLE ability to train two agents by letting them
compete.

1 INTRODUCTION

Controlling artificial agents using only raw high-dimensional input data such as image or sound is
a difficult and important task in the field of Reinforcement Learning (RL). Recent breakthroughs in
the field allow its utilization in real-world applications such as autonomous driving (Shalev-Shwartz
et al., 2016), navigation (Bischoff et al., 2013), financial predictions (Du et al.) and more. Agent
interaction with the real world is usually either expensive or not feasible, as the real world is far too
complex for the agent to perceive. Therefore in practice the interaction is simulated by a virtual en-
vironment which receives feedback on a decision made by the algorithm. Traditionally, games were
used as a RL environment, dating back to Chess (Campbell et al., 2002), Checkers (Schaeffer et al.,
1992), backgammon (Tesauro, 1995) and the more recent Go (Silver et al., 2016). Modern games of-
ten present problems and tasks which are highly correlated with real-world problems. For example,
an agent that masters a racing game, by observing a simulated driver’s view screen as input, may
be usefull for the development of an autonomous driver. For high-dimensional input, the leading
benchmark is the Arcade Learning Environment (ALE) (Bellemare et al., 2013) which provides a
common interface to dozens of Atari 2600 games, each presents a different challenge. ALE provides
an extensive benchmarking platform, allowing a controlled experiment setup for algorithm evalua-
tion and comparison. The main challenge posed by ALE is to successfully play as many Atari 2600
games as possible (i.e., achieving a score higher than an expert human player) without providing the
algorithm any game-specific information (i.e., using the same input available to a human - the game
screen and score). A key work to tackle this problem is the Deep Q-Networks algorithm (Mnih
et al., 2015), which made a breakthrough in the field of Deep Reinforcement Learning by achieving
human level performance on 29 out of 49 games. In this work we present a new environment —
the Retro Learning Environment (RLE). RLE sets new challenges by providing a unified interface

1



for Atari 2600 games as well as more advanced gaming consoles. As a start we focused on the
Super Nintendo Entertainment System (SNES). Out of the five SNES games we tested using state-
of-the-art algorithms, only one was able to outperform an expert human player. As an additional
feature, RLE introduces a simple way to compare algorithms by letting them compete against each
other. Furthermore, we leveraged this approach by training the agents against each other, rather than
against a pre-configured in-game AI. We conducted several experiments with this new feature and
discovered that agents tend to learn how to overcome their current opponent rather than generalize
the game being played. However, if an agent is trained against an ensemble of different opponents,
its robustness increases. The main contributions of the paper are as follows:

• Introducing a novel RL environment with significant challenges, which could lead to new
and more advanced RL algorithms.

• A new benchmarking technique for agents evaluation, by enabling them to compete against
each other, rather than playing against the in-game AI.

• A new method to train an agent by enabling it to train against several opponents, making
the final policy more robust.

• Encapsulating several different challenges to a single RL environment.

2 RELATED WORK

2.1 ARCADE LEARNING ENVIRONMENT

The Arcade Learning Environment is a software framework designed for the development of RL
algorithms, by playing Atari 2600 games. The interface provided by ALE allows the algorithms to
select an action and receive the Atari screen and a reward in every step. The action is the equivalent
to a human’s joystick button combination and the reward is the difference between the scores at
time stamp t and t− 1. The diversity of games for Atari provides a solid benchmark since different
games have significantly different goals. Atari 2600 has over 500 games, currently over 70 of them
are implemented in ALE and are commonly used for algorithm comparison.

2.2 INFINITE MARIO

Infinite Mario (Togelius et al., 2009) is a remake of the classic Super Mario game in which levels are
randomly generated. On these levels the Mario AI Competition was held. During the competition,
several algorithms were trained on Infinite Mario and their performances were measured in terms
of the number of stages completed. As opposed to ALE, training is not based on the raw screen
data but rather on an indication of Mario’s (the player’s) location and objects in its surrounding.
This environment no longer poses a challenge for state of the art algorithms, but still serves as a
benchmark platform. Its main shortcoming lie in the fact that it provides only a single game to
be learnt. Additionally, the environment provides hand-crafted features, extracted directly from the
simulator, to the algorithm. This allowed the use of planning algorithms that highly outperform any
learning based algorithm.

2.3 OPENAI GYM

The OpenAI gym (Brockman et al., 2016) is an open source platform with the purpose of creating
an interface between RL environments and algorithms for evaluation and comparison purposes.
OpenAI Gym is currently very popular due to the large number of environments supported by it.
For example ALE, Go, MouintainCar and VizDoom (Zhu et al., 2016), an environment for the
learning of the 3D first-person-shooter game ”Doom”. OpenAI Gym’s recent appearance and wide
usage indicates the growing interest and research done in the field of RL.

2.4 OPENAI UNIVERSE

Universe (Universe, 2016) is a platform within the OpenAI framework in which RL algorithms can
train on over a thousand games. Universe includes very advanced games such as GTA V, Portal as
well as other tasks (e.g. browser tasks). Unlike RLE, Universe doesn’t run the games locally and

2



requires a VNC interface to a server that runs the games. This leads to a lower frame rate and thus
longer training times.

2.5 MALMO

Malmo (Johnson et al., 2016) is an artificial intelligence experimentation platform of the famous
game ”Minecraft”. Although Malmo consists of only a single game, it presents numerous challenges
since the ”Minecraft” game can be configured differently each time. The input to the RL algorithms
include specific features indicating the ”state” of the game and the current reward.

2.6 DEEPMIND LAB

DeepMind Lab (Dee) is a first-person 3D platform environment which allows training RL algorithms
on several different challenges: static/random map navigation, collect fruit (a form of reward) and
a laser-tag challenge where the objective is to tag the opponents controlled by the in-game AI. In
LAB the agent observations are the game screen (with an additional depth channel) and the velocity
of the character. LAB supports four games (one game - four different modes).

2.7 DEEP Q-LEARNING

In our work, we used several variant of the Deep Q-Network algorithm (DQN) (Mnih et al., 2013),
an RL algorithm whose goal is to find an optimal policy (i.e., given a current state, choose action
that maximize the final score). The state of the game is simply the game screen, and the action is
a combination of joystick buttons that the game responds to (i.e., moving ,jumping). DQN learns
through trial and error while trying to estimate the ”Q-function”, which predicts the score at the
end of the game given the current state and selected action. The Q-function is represented using a
convolution neural network that receives the screen as input and predicts the best possible action at
it’s output. The Q-function weights θ are updated according to:

θt+1(st, at) = θt + α(Rt+1 + γmax
a

(Qt(st+1, a; θt))−Qt(st, at; θt))∇θQt(st, at; θt), (1)

where st , st+1 are the current and next states, at is the action chosen, α is the step size, γ is
the discounting factor and Rt+1 is the reward received by applying at at st. Other than DQN, we
examined two leading algorithms on the RLE: Double Deep Q-Learning (D-DQN) (Van Hasselt
et al., 2015), a DQN based algorithm with a modified network update rule. Dueling Double DQN
(Wang et al., 2015), a modification of D-DQN’s architecture in which the Q-function is modeled
using a state (screen) dependent estimator and an action dependent estimator.

3 THE RETRO LEARNING ENVIRONMENT

3.1 SUPER NINTENDO ENTERTAINMENT SYSTEM

The Super Nintendo Entertainment System (SNES) is a home video game console developed by
Nintendo and released in 1990. A total of 783 games were released, among them, the iconic Super
Mario World, Donkey Kong Country and The Legend of Zelda. Table (1) presents a comparison
between Atari 2600 and SNES game consoles, from which it is clear that SNES games are far more
complex.

3.2 IMPLEMENTATION

To allow easier integration with current platforms and algorithms, we based our environment on the
ALE, with the aim of maintaining as much of its interface as possible. While the ALE is highly
coupled with the Atari emulator, Stella1, RLE takes a different approach and separates the learning
environment from the emulator. This was achieved by incorporating an interface named LibRetro (li-
bRetro site), that allows communication between front-end programs to game-console emulators.
Currently, LibRetro supports over 15 game consoles, each containing hundreds of games, at an esti-
mated total of over 7,000 games that can potentially be supported using this interface. Examples of

1http://stella.sourceforge.net/

3



supported game consoles include Nintendo Entertainment System, Game Boy, N64, Sega Genesis,
Saturn, Dreamcast and Sony PlayStation. We chose to focus on the SNES game console imple-
mented using the snes9x2 as it’s games present interesting, yet plausible to overcome challenges.

3.3 SOURCE CODE

RLE is fully available as open source software for use under GNU’s General Public License3. The
environment is implemented in C++ with an interface to algorithms in C++, Python and Lua. Adding
a new game to the environment is a relatively simple process.

3.4 RLE INTERFACE

RLE provides a unified interface to all games in its supported consoles, acting as an RL-wrapper to
the LibRetro interface. Initialization of the environment is done by providing a game (ROM file)
and a gaming-console (denoted by ’core’). Upon initialization, the first state is the initial frame of
the game, skipping all menu selection screens. The cores are provided with the RLE and installed
together with the environment. Actions have a bit-wise representation where each controller button
is represented by a one-hot vector. Therefore a combination of several buttons is possible using
the bit-wise OR operator. The number of valid buttons combinations is larger than 700, therefore
only the meaningful combinations are provided. The environments observation is the game screen,
provided as a 3D array of 32 bit per pixel with dimensions which vary depending on the game. The
reward can be defined differently per game, usually we set it to be the score difference between
two consecutive frames. By setting different configuration to the environment, it is possible to alter
in-game properties such as difficulty (i.e easy, medium, hard), its characters, levels, etc.

Table 1: Atari 2600 and SNES comparison
Atari 2600 SNES

Number of Games 565 783
CPU speed 1.19MHz 3.58MHz
ROM size 2-4KB 0.5-6MB
RAM size 128 bytes 128KB
Color depth 8 bit 16 bit
Screen Size 160x210 256x224 or 512x448
Number of controller buttons 5 12
Possible buttons combinations 18 over 720

3.5 ENVIRONMENT CHALLENGES

Integrating SNES with RLE presents new challenges to the field of RL where visual information in
the form of an image is the only state available to the agent. Obviously, SNES games are significantly
more complex and unpredictable than Atari games. For example in sports games, such as NBA,
while the player (agent) controls a single player, all the other nine players’ behavior is determined by
pre-programmed agents, each exhibiting random behavior. In addition, many SNES games exhibit
delayed rewards in the course of their play (i.e., reward for an actions is given many time steps after
it was performed). Similarly, in some of the SNES games, an agent can obtain a reward that is
indirectly related to the imposed task. For example, in platform games, such as Super Mario, reward
is received for collecting coins and defeating enemies, while the goal of the challenge is to reach the
end of the level which requires to move to keep moving to the right. Moreover, upon completing a
level, a score bonus is given according to the time required for its completion. Therefore collecting
coins or defeating enemies is not necessarily preferable if it consumes too much time. Analysis
of such games is presented in section 4.2. Moreover, unlike Atari that consists of eight directions
and one action button, SNES has eight-directions pad and six actions buttons. Since combinations of
buttons are allowed, and required at times, the actual actions space may be larger than 700, compared
to the maximum of 18 actions in Atari. Furthermore, the background in SNES is very rich, filled

2http://www.snes9x.com/
3https://github.com/nadavbh12/Retro-Learning-Environment

4



with details which may move locally or across the screen, effectively acting as non-stationary noise
since it provided little to no information regarding the state itself. Finally, we note that SNES utilized
the first 3D games. In the game Wolfenstein, the player must navigate a maze from a first-person
perspective, while dodging and attacking enemies. The SNES offers plenty of other 3D games such
as flight and racing games which exhibit similar challenges. These games are much more realistic,
thus inferring from SNES games to ”real world” tasks, as in the case of self driving cars, might be
more beneficial. A visual comparison of two games, Atari and SNES, is presented in Figure (1).

Figure 1: Atari 2600 and SNES game screen comparison: Left: ”Boxing” an Atari 2600 fighting
game , Right: ”Mortal Kombat” a SNES fighting game. Note the exceptional difference in the
amount of details between the two games. Therefore, distinguishing a relevant signal from noise is
much more difficult.

Table 2: Comparison between RLE and the latest RL environments
Characteristics RLE OpenAI Inifinte ALE Project DeepMind

Universe Mario Malmo Lab
Number of Games 8 out of 7000+ 1000+ 1 74 1 4
In game Yes NO No No Yes Yes
adjustments1

Frame rate 530fps2(SNES) 60fps 5675fps2 120fps <7000fps <1000fps
Observation (Input) screen, Screen hand crafted screen, hand crafted screen + depth

RAM features RAM features and velocity
1 Allowing changes in-the game configurations (e.g., changing difficulty, characters,

etc.)
2 Measured on an i7-5930k CPU

4 EXPERIMENTS

4.1 EVALUATION METHODOLOGY

The evaluation methodology that we used for benchmarking the different algorithms is the popular
method proposed by (Mnih et al., 2013). Each examined algorithm is trained until either it reached
convergence or 100 epochs (each epoch corresponds to 50,000 actions), thereafter it is evaluated by
performing 30 episodes of every game. Each episode ends either by reaching a terminal state or
after 5 minutes. The results are averaged per game and compared to the average result of a human
player. For each game the human player was given two hours for training, and his performances
were evaluated over 20 episodes. As the various algorithms don’t use the game audio in the learning
process, the audio was muted for both the agent and the human. From both, humans and agents
score, a random agent score (an agent performing actions randomly) was subtracted to assure that
learning indeed occurred. It is important to note that DQN’s ε-greedy approach (select a random
action with a small probability ε) is present during testing thus assuring that the same sequence
of actions isn’t repeated. While the screen dimensions in SNES are larger than those of Atari, in

5



our experiments we maintained the same pre-processing of DQN (i.e., downscaling the image to
84x84 pixels and converting to gray-scale). We argue that downscaling the image size doesn’t affect
a human’s ability to play the game, therefore suitable for RL algorithms as well. To handle the
large action space, we limited the algorithm’s actions to the minimal button combinations which
provide unique behavior. For example, on many games the R and L action buttons don’t have any
use therefore their use and combinations were omitted.

4.1.1 RESULTS

A thorough comparison of the four different agents’ performances on SNES games can be seen in
Figure (2). The full results can be found in Table (3). Only in the game Mortal Kombat a trained
agent was able to surpass a expert human player performance as opposed to Atari games where the
same algorithms have surpassed a human player on the vast majority of the games.

One example is Wolfenstein game, a 3D first-person shooter game, requires solving 3D vision tasks,
navigating in a maze and detecting object. As evident from figure (2), all agents produce poor results
indicating a lack of the required properties. By using ε-greedy approach the agents weren’t able to
explore enough states (or even other rooms in our case). The algorithm’s final policy appeared as
a random walk in a 3D space. Exploration based on visited states such as presented in Bellemare
et al. (2016) might help addressing this issue. An interesting case is Gradius III, a side-scrolling,
flight-shooter game. While the trained agent was able to master the technical aspects of the game,
which includes shooting incoming enemies and dodging their projectiles, it’s final score is still far
from a human’s. This is due to a hidden game mechanism in the form of ”power-ups”, which can be
accumulated, and significantly increase the players abilities. The more power-ups collected without
being use — the larger their final impact will be. While this game-mechanism is evident to a human,
the agent acts myopically and uses the power-up straight away4.

noa3c.pngnoa3c.png

Figure 2: DQN, DDQN and Duel-DDQN performance. Results were normalized by subtracting the
a random agent’s score and dividing by the human player score. Thus 100 represents a human player
and zero a random agent.

4A video demonstration can be found at https://youtu.be/nUl9XLMveEU

6



4.2 REWARD SHAPING

As part of the environment and algorithm evaluation process, we investigated two case studies. First
is a game on which DQN had failed to achieve a better-than-random score, and second is a game on
which the training duration was significantly longer than that of other games.

In the first case study, we used a 2D back-view racing game ”F-Zero”. In this game, one is required
to complete four laps of the track while avoiding other race cars. The reward, as defined by the score
of the game, is only received upon completing a lap. This is an extreme case of a reward delay. A lap
may last as long as 30 seconds, which span over 450 states (actions) before reward is received. Since
DQN’s exploration is a simple ε-greedy approach, it was not able to produce a useful strategy. We
approached this issue using reward shaping, essentially a modification of the reward to be a function
of the reward and the observation, rather than the reward alone. Here, we define the reward to be
the sum of the score and the agent’s speed (a metric displayed on the screen of the game). Indeed
when the reward was defined as such, the agents learned to finish the race in first place within a short
training period.

The second case study is the famous game of Super Mario. In this game the agent, Mario, is required
to reach the right-hand side of the screen, while avoiding enemies and collecting coins. We found
this case interesting as it involves several challenges at once: dynamic background that can change
drastically within a level, sparse and delayed rewards and multiple tasks (such as avoiding enemies
and pits, advancing rightwards and collecting coins). To our surprise, DQN was able to reach the
end of the level without any reward shaping, this was possible since the agent receives rewards for
events (collecting coins, stomping on enemies etc.) that tend to appear to the right of the player,
causing the agent to prefer moving right. However, the training time required for convergence was
significantly longer than other games. We defined the reward as the sum of the in-game reward and
a bonus granted according the the player’s position, making moving right preferable. This reward
proved useful, as training time required for convergence decreased significantly. The two games
above can be seen in Figure (3).

Figure (4) illustrates the agent’s average value function . Though both were able complete the stage
trained upon, the convergence rate with reward shaping is significantly quicker due to the immediate
realization of the agent to move rightwards.

Figure 3: Left: The game Super Mario with added bonus for moving right, enabling the agent to
master them game after less training time. Right: The game F-Zero. By granting a reward for speed
the agent was able to master this game, as oppose to using solely the in-game reward.

4.3 RIVALRY TRAINING

As an additional feature RLE presents a novel setup in which two distinct agents may compete
against each other (available only for multi-player games). We conducted three experiments on this
setup: the first use was to train two different agents against the in-game AI, as done in previous
sections, and evaluate their performance by letting them compete against each other. Here, rather

7



Figure 4: Averaged action-value (Q) for Super Mario trained with reward bonus for moving right
(blue) and without (red).

than achieving the highest score, the goal was to win a tournament which consist of 50 rounds,
as common in human-player competitions. The second experiment was to initially train two agents
against the in-game AI, and resume the training while rivaling one another. In this case, we evaluated
the agent by playing again against the in-game AI, separately. Finally, in our last experiment we try
to boost the agent capabilities by alternated it’s opponents, switching between the in-game AI and
other trained agents.

4.3.1 RIVALRY TRAINING RESULTS

We chose the game Mortal Kombat, a two character side viewed fighting game (a screenshot of
the game can be seen in Figure (1), as a testbed for the above, as it exhibits favorable properties:
both players share the same screen, the agent’s optimal policy is heavily dependent on the rival’s
behavior, unlike racing games for example. In order to evaluate two agents fairly, both were trained
using the same characters maintaining the identity of rival and agent. Furthermore, to remove the
impact of the starting positions of both agents on their performances, the starting positions were
initialized randomly.

In the first experiment we evaluated all combinations of DQN against D-DQN and Dueling D-DQN.
Each agent was trained against the in-game AI until convergence. Then 50 matches were performed
between the two agents. DQN lost 28 out of 50 games against Dueling D-DQN and 33 against
D-DQN. D-DQN lost 26 time to Dueling D-DQN. This win balance isn’t far from the random
case, since the algorithms converged into a policy in which movement towards the opponent is not
required rather than generalize the game. Therefore, in many episodes, little interaction between the
two agents occur, leading to a semi-random outcome.

In our second experiment we continued the training process of a the D-DQN network by letting it
compete against the Dueling D-DQN network. We evaluated the re-trained network by playing 30
episodes against the in-game AI. After training, D-DQN was able to win 28 out of 30 games, yet
when faced again against the in-game AI its performance deteriorated drastically (from an average of
17000 to an average of -22000). This demonstrated a form of catastrophic forgetting (Goodfellow
et al., 2013) even though the agents played the same game.

In our third experiment we trained a Dueling D-DQN agent against three different rivals: the in-game
AI, a trained DQN agent and a trained Dueling-DQN agent, in an alternating manner, such that in

8



each episode a different rival was playing as the opponent with the intention of preventing the agent
from learning a policy suitable for just one opponent. The new agent was able to achieve a score
of 162,966 (compared to the ”normal” dueling D-DQN which achieved 169,633). As a new and
objective measure of generalization, we’ve configured the in-game AI difficulty to be ”very hard”
(as opposed to the default ”medium” difficulty). In this metric the alternating version achieved
83,400 compared to -33,266 of the dueling D-DQN which was trained in default setting. Thus,
proving that the agent learned to generalize to other policies which weren’t observed while training.

4.4 FUTURE CHALLENGES

As demonstrated, RLE presents numerous challenges that have yet to be answered. In addition to
being able to learn all available games, the task of learning games in which reward delay is extreme,
such as F-Zero without reward shaping, remains an unsolved challenge. Additionally, some games,
such as Super Mario, feature several stages that differ in background and the levels structure. The
task of generalizing platform games, as in learning on one stage and being tested on the other, is
another unexplored challenge. Likewise surpassing human performance remains a challenge since
current state-of-the-art algorithms still struggling with the many SNES games.

5 CONCLUSION

We introduced a rich environment for evaluating and developing reinforcement learning algorithms
which presents significant challenges to current state-of-the-art algorithms. In comparison to other
environments RLE provides a large amount of games with access to both the screen and the in-
game state. The modular implementation we chose allows extensions of the environment with new
consoles and games, thus ensuring the relevance of the environment to RL algorithms for years to
come (see Table (2)). We’ve encountered several games in which the learning process is highly
dependent on the reward definition. This issue can be addressed and explored in RLE as reward
definition can be done easily. The challenges presented in the RLE consist of: 3D interpretation,
delayed reward, noisy background, stochastic AI behavior and more. Although some algorithms
were able to play successfully on part of the games, to fully overcome these challenges, an agent
must incorporate both technique and strategy. Therefore, we believe, that the RLE is a great platform
for future RL research.

6 ACKNOWLEDGMENTS

The authors are grateful to the Signal and Image Processing Lab (SIPL) staff for their support, Alfred
Agrell and the LibRetro community for their support and Marc G. Bellemare for his valuable inputs.

REFERENCES

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
jun 2013.

M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying count-
based exploration and intrinsic motivation. arXiv preprint arXiv:1606.01868, 2016.

B. Bischoff, D. Nguyen-Tuong, I.-H. Lee, F. Streichert, and A. Knoll. Hierarchical reinforcement
learning for robot navigation. In ESANN, 2013.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. arXiv preprint arXiv:1606.01540, 2016.

M. Campbell, A. J. Hoane, and F.-h. Hsu. Deep blue. Artificial Intelligence, 134(1):57–83, 2002.

X. Du, J. Zhai, and K. Lv. Algorithm trading using q-learning and recurrent reinforcement learning.
positions.

9



I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An empirical investigation of
catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The malmo platform for artificial intelligence
experimentation. In International Joint Conference On Artificial Intelligence (IJCAI), page 4246,
2016.

libRetro site. Libretro. www.libretro.com. Accessed: 2016-11-03.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron. A world championship
caliber checkers program. Artificial Intelligence, 53(2):273–289, 1992.

S. Shalev-Shwartz, N. Ben-Zrihem, A. Cohen, and A. Shashua. Long-term planning by short-term
prediction. arXiv preprint arXiv:1602.01580, 2016.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

G. Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 38(3):
58–68, 1995.

J. Togelius, S. Karakovskiy, J. Koutnı́k, and J. Schmidhuber. Super mario evolution. In 2009 IEEE
Symposium on Computational Intelligence and Games, pages 156–161. IEEE, 2009.

Universe. Universe. universe.openai.com, 2016. Accessed: 2016-12-13.

H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. CoRR,
abs/1509.06461, 2015.

Z. Wang, N. de Freitas, and M. Lanctot. Dueling network architectures for deep reinforcement
learning. arXiv preprint arXiv:1511.06581, 2015.

Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi. Target-driven visual
navigation in indoor scenes using deep reinforcement learning. arXiv preprint arXiv:1609.05143,
2016.

10



Appendices
Experimental Results

Table 3: Average results of DQN, D-DQN, Dueling D-DQN and a Human player
DQN D-DQN Dueling D-DQN Human

F-Zero 3116 3636 5161 6298

Gradius III 7583 12343 16929 24440

Mortal Kombat 83733 56200 169300 132441

Super Mario 11765 16946 20030 36386

Wolfenstein 100 83 40 2952

11


	Introduction
	Related Work
	Arcade Learning Environment
	Infinite Mario
	OpenAI Gym
	OpenAI Universe
	Malmo
	DeepMind Lab
	Deep Q-Learning

	The Retro Learning Environment
	Super Nintendo Entertainment System
	Implementation
	Source Code
	RLE Interface
	Environment Challenges

	Experiments
	Evaluation Methodology
	Results

	Reward Shaping
	Rivalry Training
	Rivalry Training Results

	Future Challenges

	Conclusion
	Acknowledgments
	Appendices

