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ABSTRACT

We establish a theoretical link between evolutionary algorithms and variational pa-
rameter optimization of probabilistic generative models with binary hidden vari-
ables. While the novel approach is independent of the actual generative model,
here we use two such models to investigate the applicability and scalability of the
approach: a noisy-OR Bayes Net (as a standard example of binary data) and Bi-
nary Sparse Coding (as a model for continuous data). Learning of probabilistic
generative models is first formulated as approximate maximum likelihood opti-
mization using variational expectation maximization (EM). We choose truncated
posteriors as variational distributions in which discrete latent states serve as vari-
ational parameters. In the variational E-step, the latent states are then optimized
according to a tractable free-energy objective. Given a data point, we can show
that evolutionary algorithms can be used for the variational optimization loop by
(A) considering the bit-vectors of the latent states as genomes of individuals, and
by (B) defining the fitness of the individuals as the (log) joint probabilities given
by the used generative model. As a proof of concept, we apply the novel evo-
lutionary EM approach to the optimization of the parameters of noisy-OR Bayes
nets and binary sparse coding on artificial and real data (natural image patches).
Using point mutations and single-point cross-over for the evolutionary algorithm,
we find that scalable variational EM algorithms are obtained which efficiently im-
prove the data likelihood. In general we believe that, with the link established
here, standard as well as recent results in the field of evolutionary optimization
can be leveraged to address the difficult problem of parameter optimization in
generative models.

1 INTRODUCTION

Evolutionary algorithms (EA) have been introduced (e.g. Fogel et al., 1966; Rechenberg, 1965) as
a technique for function optimization using methods inspired by biological evolutionary processes
such as mutation, recombination, and selection. As such EAs are of interest as tools to solve Machine
Learning problems, and they have been frequently applied to a number of tasks such as clustering
(Pernkopf & Bouchaffra, 2005; Hruschka et al., 2009), reinforcement learning (Salimans et al.,
2017), and hierarchical unsupervised (Myers et al., 1999) or deep supervised learning (e.g., Stanley
& Miikkulainen 2002 and Suganuma et al. 2017; Real et al. 2017 for recent examples). In some of
these tasks EAs have been investigated as alternatives to standard procedures (Hruschka et al., 2009),
but most frequently EAs are used to solve specific sub-problems. For example, for classification with
Deep Neural Networks (DNNs LeCun et al., 2015; Schmidhuber, 2015), EAs are frequently applied
to solve the sub-problem of selecting the best DNN architectures for a given task (e.g. Stanley &
Miikkulainen, 2002; Suganuma et al., 2017) or more generally to find the best hyper-parameters of
a DNN (e.g. Loshchilov & Hutter, 2016; Real et al., 2017).

Inspired by these previous contributions, we here ask if EAs and learning algorithms can be linked
more tightly. To address this question we make use of the theoretical framework of probabilistic
generative models and expectation maximization (EM Dempster et al., 1977) approaches for param-
eter optimization. The probabilistic approach in combination with EM is appealing as it establishes
a very general unifying framework able to encompass diverse algorithms from clustering and dimen-
sionality reduction (Roweis, 1998; Tipping & Bishop, 1999) over feature learning and sparse coding
(Olshausen & Field, 1997) to deep learning approaches (Patel et al., 2016). However, for most gen-
erative data models, EM is computationally intractable and requires approximations. Variational
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EM is a very prominent such approximation and is continuously further developed to become more
efficient, more accurate and more autonomously applicable. Variational EM seeks to approximately
solve optimization problems of functions with potentially many local optima in potentially very high
dimensional spaces. The key observation exploited in this study is that a variational EM algorithm
can be formulated such that latent states serve as variational parameters. If the latent states are then
considered as genomes of individuals, EAs emerge as a very natural choice for optimization in the
variational loop of EM.

2 TRUNCATED VARIATIONAL EM

A probabilistic generative model stochastically generates data points ~y using a set of hidden (or
latent) variables ~s. The generative process can be formally expressed in the form of joint probability
p(~s, ~y |Θ), where Θ are the model parameters. Given a set of N data points, ~y(1), . . . , ~y(N) =
~y(1:N), learning seeks to change the parameters Θ so that the data generated by the generative model
becomes as similar as possible to the N real data points. One of the most popular approaches to
achieve this goal is to seek maximum likelihood (ML) parameters Θ∗, i.e., parameters that maximize
the data log-likelihood for a given generative model:

L(Θ) := log(L(Θ)) =
∑
n

log (
∑
{~s}

p (~yn, ~s | Θ)) (1)

To efficiently find (approximate) ML parameters we follow Saul & Jordan (1996); Neal & Hinton
(1998); Jordan et al. (1999) who reformulated the problem in terms of a maximization of a lower
bound of the log-likelihood, the free energy F (~q,Θ). Free energies are given by

F(q(1:N),Θ) =

N∑
n=1

(∑
{~s}

q(n)(~s) log
(
p(~s, ~y (n) |Θ)

))
+

N∑
n=1

H(q(n)(~s)) , (2)

where q(n)(~s) are variational distributions, and where H(q) denotes the entropy of a distribution q.
For the purposes of this study, we consider elementary generative models which are difficult to train
because of exponentially large state spaces. These models serve well for illustrating the approach
but we stress that any generative model which gives rise to a joint distribution p(~s, ~y |Θ) can be
trained with the approach discussed here as long as the latents ~s are binary.

In order to find approximate maximum likelihood solutions, distributions q(n)(~s) are sought that
approximate the intractable posterior distributions p(~s | ~y (n),Θ) as well as possible, which results
in the free-energy being as similar (or tight) as possible to the exact log-likelihood. At the same
time variational distributions have to result in tractable parameter updates. Standard approaches
include Gaussian variational distributions (e.g. Opper & Winther, 2005) or mean-field variational
distributions (Jordan et al., 1999). If we denote the parameters of the variational distributions by Λ,
then a variational EM algorithm consists of iteratively maximizingF(Λ,Θ) w.r.t. Λ in the variational
E-step and w.r.t. Θ in the M-step. The M-step can hereby maintain the same functional form as for
exact EM but the expectation values now have to be computed w.r.t. the variational distributions.

Instead of using parametric functions such as Gaussians or factored (mean-field) distributions, for
our purposes we choose truncated variational distributions defined as a function of a finite set of
states (Lücke & Eggert, 2010; Sheikh et al., 2014; Shelton et al., 2017). These states will later serve
as populations of evolutionary algorithms. If we denote Kn a population of hidden states for a given
data point ~y (n), then variational distributions and their corresponding expectation values are given
by (e.g. Lücke & Eggert, 2010; Sheikh et al., 2014):

qn(~s | Kn,Θ) :=
p (~s | ~yn,Θ)∑

~s′∈Kn

p (~s′ | ~yn,Θ)
δ(~s ∈ Kn), 〈g(~s)〉qn =

∑
~s∈Kn

p(~s, ~yn |Θ)g(~s)∑
~s′∈Kn

p(~s′, ~yn |Θ)
. (3)

where δ(~s ∈ Kn) is 1 if Kn contains the hidden state ~s, zero otherwise. If the set Kn contains all
states with significant posterior mass, then (3) approximates expectations w.r.t. full posteriors very
well. By inserting truncated distributions as variational distribution of the free-energy (2), it can be
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shown (Lücke, 2016) that the free-energy takes a very compact simplified form given by:

F(K,Θ) =
∑
n

log (
∑
~s∈Kn

p (~yn, ~s | Θ)), where K = (K1, . . . ,KN ). (4)

As the variational parameters of the variational distribution (3) are now given by populations of
hidden states, a variational E-step now consists of finding for each data point n the population Kn

that maximizes
∑

~s∈Kn p (~yn, ~s | Θ).

3 EVOLUTIONARY OPTIMIZATION

For the generative models considered here, each latent state ~s takes the form of a bit vector. Hence,
each population Kn is a collection of bit vectors. Because of the specific form (4), the free-energy is
increased in the variational E-step if and only if we replace and individual ~s in population K(n)

by a
new individual ~snew so far not in K(n)

such that:

p(~snew, ~yn |Θ) > p(~s, ~yn |Θ) . (5)

More generally, this means that the free energy is maximized in the variational E-step if we find
for each n those S individuals with the largest joints p(~s, ~yn |Θ), where p(~s, ~yn |Θ) is given by the
respective generative model (compare Lücke, 2016; Forster & Lücke, 2017, for formal derivations).

Full maximization of the free-energy is often a computationally much harder problem than increas-
ing the free-energy; and in practice an increase is usually sufficient to finally approximately max-
imize the likelihood. As we increase the free-energy by applying (5) we can choose any fitness
function F (~s; ~yn,Θ) for an evolutionary optimization which fulfils the property:

F (~snew; ~yn,Θ) > F (~s; ~yn,Θ) ⇔ p(~snew, ~yn |Θ) > p(~s, ~yn |Θ) . (6)

Any mutations selected such that the fitness F (~s; ~yn,Θ) increases will result in provably increased
free-energies. Together with M-step optimizations of model parameters, the resulting variational
EM algorithm will monotonously increase the free-energy. The freedom in choosing a fitness func-
tion satisfying (6) leaves us free to pick a form that enables an efficient parent selection proce-
dure. More concretely (while acknowledging that other choices are possible) we define the fitness
F (~snew; ~yn,Θ) to be:

F (~s) = F (~s; ~yn,Θ) = l̃ogP(~s; ~yn,Θ)− 2 min
s

(l̃ogP(~s; ~yn,Θ)) (7)

where l̃ogP is defined as the logarithm of the joint probability where summands that do not depend
on the state ~s have been elided. l̃ogP is usually more efficiently computable than the joint probabili-
ties and has better numerical stability, while being a monotonously increasing function of the joints
when the data-point ~yn is considered fixed. As we will want to sample states proportionally to their
fitness, an offset is applied to l̃ogP to make sure F always takes positive values. As previously men-
tioned, other choices of F are possible as long as 6 holds. From now on we will drop the argument
~yn or index n (while keeping in mind that an optimization is performed for each data point ~yn).

Our applied EAs then seek to optimize F (~s) for a population of individualK (we also drop the index
n here). More concretely, given the current population K of unique individuals ~s, the EA iteratively
seeks a new set K′ with higher overall fitness. For our models, ~s are bit-vectors of length H , and
we usually require that populations K′ and K to have the same size as is customary for truncated
approximations (e.g. Lücke & Eggert, 2010; Shelton et al., 2017). Our example algorithm includes
three common genetic operators, discussed in more detail below: parent selection, generation of
children by single-point crossover and stochastic mutation of the children. We repeat this process
over Ng generations in which subsequent iterations use the output of previous iterations as input
population.

Parent Selection. This step selects Np parents from the population K. Ideally, the selection proce-
dure should be balanced between exploitation of parents with high fitness (which will more likely
produce children with high fitness) and exploration of mutations of poor performing parents (which
might eventually produce children with high fitness while increasing population diversity). Diver-
sity is crucial, as K is a set of unique individuals and therefore the improvement of the overall
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Figure 1: Components of the genetic algorithm.

fitness of the population depends on generating different children with high fitness. In our numerical
experiments we explored both fitness-proportional selection of parents (a classic strategy in which
the probability of an individual being selected as a parent is proportional to its fitness) and random
uniform selection of parents.

Crossover. During the crossover step, random pairs of parents are selected; then each pair is as-
signed a number c from 1 to H − 1 with uniform probability (this is the single crossover point);
finally the parents swap the last H − c bits to produce the offspring. We denote Nc the number of
children generated in this way. The crossover step can be skipped, making the EA more lightweight
but decreasing variety in the offspring.

Mutation. Finally, each of theNc children undergoes one or more random bitflips to further increase
offspring diversity. In our experiments we compare results of random uniform selection of the bits
to flip with a more refined sparsity-driven bitflip algorithm. This latter bitflip schemes assignes
to 0’s and 1’s different probabilities of being flipped in order to produce children with a sparsity
compatible with the one learned by the model. In case the crossover step is skipped, a different
bitflip mutation is performed on Nc identical copies of each parent.

A full run of the evolutionary algorithm therefore produces NgNcNp children (or new states ~s∗).
Finally we compute the union set of the original population K with all children and select the S
fittest individuals of the union as the new population K′.
The EEM Algorithm. We now have all elements required to formulate a learning algorithm with
EAs as its integral part. Alg. 1 summarizes the essential computational steps. Note that this E-step

Algorithm 1: Evolutionary Expectation Maximization (EEM)

choose initial model parameters Θ and initial sets K(n)

repeat
for each data-point n do

candidates = {}
for g = 0 to Ng do

parents = select parents
children = mutation(crossover(parents))
candidates = candidates ∪ children

K(n)

= select best(K(n) ∪ candidates)

update Θ using M-steps with (3) and K(n)

until F has increased sufficiently

can be trivially parallelized over data-points. Finally, it is worth pointing out that algorithm 1, by
construction, never decreases the free-energy.
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Figure 2: A small Noisy-OR
model. Each observable yd
is conditionally dependent
on all sh. The generative
process first samples each
sh from a Bernoulli distribu-
tion; then each yd is sampled
from a Bernoulli distribution
of parameter Nd(~s), gener-
ating a data-point.

4 THE GENERATIVE MODELS

We will use the EA formulated above as integral part of an unsupervised learning algorithm. The
objective of the learning algorithm is the optimization of the log-likelihood 1. D denotes the number
of observed variables, H the number of hidden units, and N the number of data points.

4.1 THE NOISY-OR GENERATIVE MODEL

Noisy-OR is a highly non-linear bipartite model with all-to-all connectivity among hidden and ob-
servable variables. All variables take binary values. The model assumes a Bernoulli prior distribu-
tion on the hidden variables, which are then combined via the actual noisy-OR rule.

p (~s | Θ) =
∏
h

πsh
h (1− πh)1−sh (8)

p (~y | ~s,Θ) =
∏
d

Nd(~s)yd(1−Nd(~s))1−yd (9)

Nd(~s) := 1−
∏
h

(1−Wdhsh) (10)

In the context of the Noisy-OR model, Θ = {~π, ~W}, where

• ~π is the set of values πh ∈ [0, 1] representing the prior activation probabilities for the hidden
variables sh.

• ~W is a D×H matrix of values Wdh ∈ [0, 1] representing the probability that the latent sh
activates the observable yd.

Section A of the appendix contains the explicit forms of the free energies and the M-step update
rules for noisy-OR.

4.2 BINARY SPARSE CODING

As a second model and one for continous data, we consider Binary Sparse Coding (BSC; Henniges
et al., 2010). BSC differs from standard Sparse Coding in its use of binary latent variables. The
latents are assumed to follow a univariate Bernoulli distribution which uses the same activation
probability for each hidden unit. The combination of the latents is described by a linear superposition
rule. Given the latents, the observables are independently and identically drawn from a Gaussian
distribution.

p (~s | Θ) =

H∏
h=1

πsh (1− π)
1−sh (11)

p (~y | ~s,Θ) =

D∏
d=1

N (yd;

H∑
h=1

Wdhsh, σ
2) (12)

The parameters of the model are Θ = (π,W, σ2), where W is a D × H matrix whose columns
contain the weights associated with each hidden unit sh and where σ2 determines the variance of
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the Gaussian. M-step update rules for BSC can be derived in close-form by optimizing the free
energy (2) wrt. all model parameters (compare, e.g., Henniges et al., 2010). We report the final
expressions in appendix B.

5 NUMERICAL EXPERIMENTS

We describe numerical experiments performed to test the applicability and scalability of EEM.
Throughout the section, the different evolutionary algorithms are named by indicating which parent
selection procedure was used (“fitparents” for fitness-proportional selection, “randparents” for ran-
dom uniform selection) and which bitflip algorithm (“sparseflips” or “randflips”). We add “cross”
to the name of the EA when crossover was employed.

5.1 ARTIFICIAL DATA

First we investigate EMM using artificial data where the ground-truth components are known. We
use the bars test as a standard setup for such purposes (?Hoyer, 2003; Lücke & Sahani, 2008). In the
standard setup, Hgen/2 non-overlapping vertical and Hgen/2 non-overlapping horizontal bars act
as components on D = Hgen ×Hgen pixel images. N images are then generated by first selecting
each bar with probability πgen. The bars are then superimposed according to the noisy-OR model
(non-linear superposition) or according to the BSC model. In the case of BSC Gaussian noise is
then added.

5.1.1 NOISY-OR

Let us start with the standard bars test which uses a non-linear superposition (?) of 16 different
bars (Spratling, 1999; Lücke & Sahani, 2008), and a standard average crowdedness of two bars per
images (πgen = 2

Hgen ). We apply EEM for noisy-OR using different configurations of the EA. We
use H = 16 generative fields. As a performance metric we here employ reliability (compare, e.g.,
?Lücke & Sahani, 2008), i.e., the fraction of runs whose learned free energies are above a certain
minimum threshold and which learn the full dictionary of bars as well as the correct values for the
prior probabilities π.

fitparents-cross-randflips

fitparents-cross-sparseflips

randparents-cross-sparseflips

randparents-randflips

fitparents-sparseflips
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Figure 3: Reliability for the listed EAs over 10 runs of EEM for noisy-OR on 8x8 bars images. In
this figure, black bars indicate both priors and bars were recovered correctly, grey bars indicate bars
were recovered but not priors. For all runs H = 16, N = 104, Ng = 2, Np = 8, Nc = 7, S = 120.
Each run performed 100 iterations.

Figure 3 shows reliabilities over 10 different runs for each of the EAs. On 8x8 images the more
exploitative nature of “fitparents-sparseflips” is advantageous over the simpler and more explorative
“randparents-randflips”. Note that this is not necessarily true for lower dimensionalities or otherwise
easier-to-explore state spaces, in which also a naive random search might quickly find high-fitness
individuals. In this test the addition of crossover reduces the probability of finding all bars and leads
to an overestimation of the sparsity π ∗H .

After the initial verification on a standard bars test, we now make the component extraction problem
more difficult by increasing overlap among the bars. A highly non-linear generative model such as
noisy-OR is a good candidate to model occlusion effects in images. Figure 4 shows the results of
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training noisy-OR with EEM on a bars data-set in which the latent causes have sensible overlaps.
The test parameters were chosen to be equal to those in (Lücke & Sahani, 2008, Fig. 9). After
applying EEM with noisy-OR (H = 32) to N = 400 images with 16 strongly overlapping bars, we
observed that all Hgen = 16 bars were recovered in 13 of 25 runs, which is competitive especially
when keeping in mind that no additional assumptions (e.g., compared to other models applied to this
test) are used by EEM for noisy-OR.

Figure 4:

5.1.2 BSC

Like for the non-linear generative model, we first evaluate EEM for the linear BSC model on a
bars test. For BSC, the bars are superimposed linearly (?Henniges et al., 2010), which makes the
problem easier. As a consequence, standard bars test were solved with very high reliability using
EEM for BSC even if merely random bitflips were used for the EA. In order to make the task more
challenging, we therefore (A) increased the dimensionality of the data to D = 10× 10 bars images,
(B) increased the number of components to Hgen = 20, and (C) increased the average number of
bars per data point from two (the standard setting) to five. We employed N = 5, 000 training data
points and tested the same five different configuarions of the EA as were evaluated for noisy-OR. We
set the number of hidden units to H = Hgen = 20 and used |Kn| = 120 variational states. Per data
point and per iteration, in total 112 new states (Np = 8, Nc = 7, Ng = 2) were sampled to vary Kn.
Per configuration of the EA, we performed 20 independent runs. The results of the experiment are
depicted in Fig. 5.1.2. We observe that a basic approach such as random uniform selection of parents
and random uniform bitflips for the EA works well. However, more sophisticated EAs improve
performance. For instance, combining bitflips with crossover and selecting parents proportionally
to their fitness shows to be very benefical. The results also show that sparseness-driven bitflips
lead generally to very poor performance, even if crossover or fitness-proportional selection of the
parents is included. This effect may be explained with the initialization of Kn. The initial states are
drawn from a Bernoulli distribution with parameter 1

H which makes it more difficult for sparseness-
driven EAs to explore and find solutions with higher crowdedness. Fig. 8 in appendix C pedicts the
averaged free energy values for this experiment.

5.2 NATURAL IMAGE PATCHES

Next, we verify the approach on natural data. We use patches of natural images, which are known to
have a multi-component structure, which are well investigated, and for which typically models with
high-dimensional latent spaces are applied. The image patches are obtained by pre-processing the
Van Hateren image database (van Hateren & van der Schaaf, 1998).

5.2.1 NOISY-OR

First we consider raw images patches, i.e., images without substantial pre-processing which directly
reflect light intensities. Such image patches were generated by extracting random square subsections
of a single 255x255 image of overlapping grass wires. We removed the brightest 1% pixels from the
data-set, scaled each data-point to have gray-scale values in the range [0, 1] and then created data
points with binary entries by repeatedly choosing a random gray-scale image and sampling binary
pixels from a Bernoulli distribution with parameter equal to the gray-scale value of the original pixel
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Figure 5: Results of the experiment with artifical data (10x10 bars) for the BSC model. Reliability
was measured based on 20 independent runs performed seperately for each EA.

(cfr. figure 6). Note that components in such light-intensity images can be expected to superimpose
non-linearly because of occlusion, which motivates the application of a non-linear generative model
such as noisy-OR. We employ the “fitparents-sparseflips” evolutionary algorithm that was shown to
perform best on artificial data (3). Parameters were H = 100, S = 120, Ng = 2, Np = 8, Nc = 7.
Figure 6 shows the generative fields learned over 200 iterations. EEM allows learning of generative
fields resembling curved edges, in line with expectations and with the results obtained in (Lücke &
Sahani, 2008).

Figure 6:

5.2.2 BSC

Next we consider pre-processed image patches using common whitening approaches as they are
customary for sparse coding approaches (Olshausen & Field, 1997). We use N = 100, 000 patches
of size D = 16 × 16, randomly picked from the whole data set. The highest 2 % of the amplitudes
were clamped to compensate for light reflections and patches without significant structure were
excluded for learning. ZCA whitening (Bell & Sejnowski, 1997) was applied retaining 95 % of the
variance. We trained the BSC model for 4,000 iterations using the “fitparents-cross-sparseflips” EA
and employing H = 300 hidden units and |Kn| = 200 variational states. Per data point and per
iteration, in total 360 new states (Np = 10, Nc = 9, Ng = 4) were sampled to vary Kn. The
results of the experiment are depicted in Fig. 7. The generative fields that are learned take the form
of Gabor functions with different locations and different orientations. This is a typical outcome
when sparse coding algorithms are applied to images. On average more than five units are activated
per data point showing that the learned code makes use of the generative model’s multiple causes
structure.

6 DISCUSSION

The training of generative models is a very intensively studied branch of Machine Learning. If
EM is applied for training, most non-elementary models require approximations. For this reason,
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Figure 7: Results on training the BSC model on natural images using the fitparents-cross-sparseflips
EA. A 60 of the 300 generative fields obtained through training (see Appendix for all fields).
B Evolution of the free energy per data point over iterations. C Evolution of the expected num-
ber of active hidden units per data point over iterations. D Evolution of the standard deviation over
iterations.

sophisticated and mathematically grounded approaches such as sampling or variational EM have
been developed in order to derive sufficiently precise and efficient learning algorithms.

Evolutionary algorithms (EAs) have also been applied in conjunction with EM. Pernkopf &
Bouchaffra (2005), for instance, have used EAs for clustering with Gaussian mixture models
(GMMs). However, the GMM parameters are updated by their approach relatively convention-
ally using EM, while EAs are used to select the best GMM models for the clustering problem
(using a min. description length criterion). Such a use of EAs is similar to DNN optimization where
EAs optimize DNN hyperparameters in an outer optimization loop (Stanley & Miikkulainen, 2002;
Loshchilov & Hutter, 2016; Real et al., 2017; Suganuma et al., 2017, etc), while the DNNs them-
selves are optimized using standard error-minimization algorithms. Still other approaches have used
EAs to directly optimize, e.g., a clustering objective. But in these cases EAs replace EM approaches
for optimization (compare Hruschka et al., 2009). In contrast to all such previous applications, we
have here shown that EAs and EM can be combined directly and intimately: Alg. 1 defines EAs as
an integral part of EM, and as such EAs address the key optimization problem arising in the training
of generative models.

We see the main contribution of our study in the establishment of this close theoretical link between
EAs and EM. This novel link will make it possible to leverage an extensive body of knowledge and
experience from the community of evolutionary approaches for learning algorithms. Our numerical
experiments are a proof of concept which shows that EAs are indeed able to train generative models
with large hidden spaces and local optima. For this purpose we used very basic EAs with elementary
selection, mutation, cross-over operators.

EAs more specialized to the specific optimization problems arising in the training of generative
models have great potentials in future improvements of accuracy and scalability, we believe. In
our experiments, we have only just started to exploit the abilities of EAs for learning algorithms.
Still, our results represent, to the knowledge of the authors, the first examples of noisy-OR or sparse
coding models trained with EAs (although both models have been studied very extensively before).
Most importantly, we have pointed out a novel mathematically grounded way how EAs can be used
for generative models with binary latents in general. The approach here established is, moreover,
not only very generically formulated using the models’ joint probabilities but it is also very straight-
forward to apply.
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D. Forster and J. Lücke. Truncated variational EM for semi-supervised Neural Simpletrons. In
IJCNN, pp. 3769–3776, 2017.

M. Henniges, G. Puertas, J. Bornschein, J. Eggert, and J. Lücke. Binary sparse coding. In Proceed-
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APPENDIX

A: NOISY-OR

The truncated free energy assumes the following form for Noisy-OR:

FNOR(K,Θ) = N
∑
h

log (1− πh) +
∑
n

log
∑

~s∈K(n)

exp F̃

F̃(~s,Θ) :=
∑
h

sh log

(
πh

1− πh

)
+
∑
d

ynd log

(
1∏

h(1−Wdhsh)
− 1

)
+
∑
h

log(1−Wdhsh)

The M-step equations for noisy-OR are obtained by taking derivatives of the free energy, equating
them to zero and solving the resulting set of equations. We report the results here for completeness:

πnew
h =

1

N

∑
n

〈sh〉qn (13)

Wnew
dh = 1 +

∑
n(ynd − 1) 〈Ddh(~s)〉qn∑

n 〈Cdh(~s)〉qn
(14)

where

Ddh(~s) :=
W̃dh(~s)sh

Nd(~s)(1−Nd(~s))

Cdh(~s) := W̃dh(~s)Ddh(~s)

W̃dh(~s) :=
∏
h′ 6=h

(1−Wdh′sh′)

(15)

The update rule for ~π is quite straightforward. The update equations for the weights Wdh, on the
other hand, do not allow a closed form solution (i.e. no exact M-step equation can be derived). The
rule presented here, instead, expresses each Wnew

dh as a function of all current ~W ; this is a fixed-
point equation whose fixed point would be the exact solution of the maximization step. Rather than
solving the equation numerically at each step of the learning algorithm, we exploit the fact that in
practice one single evaluation of 15 is enough to (noisily, not optimally) move towards convergence.
Since TV-EM is guaranteed to never decrease F , drops of the free-energy during training can only
be ascribed to this fixed-point equation; this provides a simple mechanism to check and possibly
correct for misbehaviors of 15 if needed.

B: M-STEP UPDATE RULES FOR BSC

The free energy for BSC follows from inserting (11) and (12) into (2). Update rules can be obtained
by optimizing the resulting expression seperately for the model parameters π, σ2 and W (compare,
e.g., Henniges et al., 2010). For the sake of completeness, we show the result here:

π =
1

N

N∑
n=1

H∑
h=1

〈sh〉qn (16)

σ2 =
1

ND

N∑
n=1

〈
|| ~y (n) −W~s ||2

〉
qn

(17)
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W =

(
N∑

n=1

~y (n) 〈~s〉Tqn

)(
N∑

n′=1

〈
~s~sT

〉
qn′

)−1
(18)

Exact EM can be obtained by setting qn to the exact posterior p(~s | ~y (n),Θ). As this quickly be-
comes computational intractable with higher latent dimensionality, we approximate exact posteriors
by truncated variational distributions (3). For BSC, the truncated free energy (4) takes the form

F(K,Θ) = −ND
2

log
(
2πσ2

)
+NH log (1− π)+

∑
n

log

∑
~s∈Kn

exp
(˜log p(~y(n), ~s|Θ)

) (19)

where ˜log p(~y,~s|Θ) = − 1

2σ2
(~y −W~s)T (~y −W~s) + |~s| log

(
π

1− π

)
(20)

C: FURTHER EXPERIMENTAL RESULTS FOR BSC
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Figure 8: Results of the experiment with artifical data (10x10 bars) for the BSC model. Depicted
is the evolution of the free energy for different EAs averaged over 20 independent runs. Dots and
vertical errorbars show the mean and the standard deviation, respectively.

Figure 9: Full dictionary learned from natural images by the BSC model trained with the “fitparents-
cross-sparseflips” EA. Depicted is the dictionary at iteration 4,000. The generative fields are ordered
according to their activation, starting with most active fields.
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D: SPARSITY-DRIVEN BITFLIPS

When performing sparsity-driven bitflips, we flip each bit of a particular child ~s∗ with probability
p0 if it is 0, with probability p1 otherwise. We call pbf the average probability of flipping any bit in
~s∗. We impose the following constraints on p0 and p1:

• p1 = αp0 for some constant α
• the average number of on bits after mutation is set at s̃

which yield the following expressions for p0 and p1:

alpha =
(H − |~s|) · ((Hpbf )− (s̃− |~s|))

(s̃− |~s|+Hpbf )|~s|

p0 =
Hpbf

H + (α− 1)|~s|
p1 = α · p0

Trivially, random uniform bitflips correspond to the case p0 = p1 = pbf .

E: RELIABILITY OF EEM FOR NOISY-OR ON OVERLAPPING BARS

With respect to the tests shown in figure 4 and discussed in section 5.1.1, it is worth to spend a
few more words on comparisons with the other algorithms shown (Lücke & Sahani, 2008, Fig. 9).
Quantitative comparison to NMF approaches, neural nets (DI ?), and MCA (Lücke & Sahani, 2008)
shows that EMM for noisy-OR performs well but there are also approaches with higher reliability.
Of all the approaches which recover more than 15 bars on average, most require additional assump-
tions. E.g., all NMF approaches, non-negative sparse coding (?) and R-MCA2 require constraints on
weights and/or latent activations. Only MCA3 does not require constraints and presumably neither
DI. DI is a neural network approach, which makes the used assumptions difficult to infer. MCA3

is a generative model with a max-non-linearity as superposition model. For learning it explores all
sparse combinations with up to 3 components. Applied with H = 32 latents, it hence evaluates
more than 60000 states per data point per iteration for learning. For comparison, EEM for noisy-OR
evaluates on the order of S = 100 states per data point per iteration.
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