Under review as a conference paper at ICLR 2018

GO FOR A WALK AND ARRIVE AT THE ANSWER:
REASONING OVER PATHS IN KNOWLEDGE BASES
USING REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge bases (KB), both automatically and manually constructed, are often
incomplete — many valid facts can be inferred from the KB by synthesizing
existing information. A popular approach to KB completion is to infer new relations
by combinatory reasoning over the information found along other paths connecting
a pair of entities. Given the enormous size of KBs and the exponential number of
paths, previous path-based models have considered only the problem of predicting
a missing relation given two entities, or evaluating the truth of a proposed triple.
Additionally, these methods have traditionally used random paths between fixed
entity pairs or more recently learned to pick paths between them. We propose a
new algorithm, MINERVA, which addresses the much more difficult and practical
task of answering questions where the relation is known, but only one entity. Since
random walks are impractical in a setting with combinatorially many destinations
from a start node, we present a neural reinforcement learning approach which
learns how to navigate the graph conditioned on the input query to find predictive
paths. Empirically, this approach obtains state-of-the-art results on several datasets,
significantly outperforming prior methods.

1 INTRODUCTION

Automated reasoning, the ability of computing systems to make new inferences from observed
evidence, has been a long standing goal of artificial intelligence. We are interested in automated
reasoning on large knowledge bases (KB) with rich and diverse semantics (Suchanek et al., 2007}
Bollacker et al., |2008}; |Carlson et al.,|2010). KBs are highly incomplete (Min et al., 2013)), and facts
not directly stored in a KB can often be inferred from those that are, creating exciting opportunities
and challenges for automated reasoning. For example, consider the small knowledge graph in figure|T]
We can infer the (unobserved fact) home stadium of Colin Kaepernick from the following reasoning
path: Colin Kaepernick — PlaysinTeam — 49ers — TeamHomeStadium — Levi’s Stadium. Our goal
is to automatically learn such reasoning paths in KBs. We frame the learning problem as one of query
answering, that is to say, answering questions of the form (Colin Kaepernick, PlaysinLeague, ?).

From its early days, the focus of automated reasoning approaches has been to build systems which can
learn crisp symbolic logical rules (McCarthy, |1960; Nilsson, |1991)). Symbolic representations have
also been integrated with machine learning especially in statistical relational learning (Muggleton
et al.| [1992} |Getoor & Taskar, 2007} Kok & Domingos}, 2007; |[Lao et al., [2011), but due to poor
generalization performance, these approaches have largely been superceded by distributed vector
representations. Learning embedding of entities and relations using tensor factorization or neural
methods has been a popular approach (Nickel et al., 2011; Bordes et al., 2013; Socher et al., 2013;
inter alia), but these methods cannot capture chains of reasoning expressed by KB paths. Neural
multi-hop models (Neelakantan et al.,[2015; |Guu et al., 2015; [Toutanova et al., [2016) address the
aforementioned problems to some extent by operating on KB paths in vector space. However, these
models take as input a set of paths which are gathered by performing random walks independent of
the query relation. Additionally, models such as|Neelakantan et al.| (2015); |Das et al.|(2017) use the
same set of initially collected paths to answer a diverse set of query types (e.g. MarriedTo, Nationality,
Worksln etc.).

Under review as a conference paper at ICLR 2018

Locatedin : Figure 1: A small fragment of
a knowledge base represented

2 Teamkome ’, as a knowledge graph. Solid
2 Player | edges are observed and dashed
: Stadium?, edges are part of queries. Note
' how each query (e.g. Nation-

(AthletePlays .
AthletePlays Sports)” ality, PlaysInLeague, PLayer-

Sports

HasCity

R : HomeStadium) can be answered

_ by traversing the graph via “logi-

BorninCity cal” paths between entity ‘Colin
Playsin.eague Kaepernick’ and the correspond-

PIaysinLeague;*\ G{ lng answer.

This paper presents a method for efficiently searching the graph for answer-providing paths us-
ing reinforcement learning (RL) conditioned on the input question, eliminating any need for pre-
computed paths. Given a massive knowledge graph, we learn a policy, which, given the query
(entity,, relation, ?), starts from entity; and learns to walk to the answer node by choosing to take a
labeled relation edge at each step, conditioning on the query relation and entire path history. This
formulates the query-answering task as a reinforcement learning (RL) problem where the goal is to
take an optimal sequence of decisions (choices of relation edges) to maximize the expected reward
(reaching the correct answer node). We call the RL agent MINERVA for "Meandering In Networks of
Entities to Reach Verisimilar Answers.”

Our RL-based formulation has many desirable properties. First, MINERVA has the built-in flexibility
to take paths of variable length, which is important for answering harder questions that require
complex chains of reasoning (Shen et al., [2017). Secondly, MINERVA needs no pretraining and
trains on the knowledge graph from scratch with reinforcement learning; no other supervision or
fine-tuning is required representing a significant advance over prior applications of RL in NLP. Third,
our path-based approach is computationally efficient, since by searching in a small neighborhood
around the query entity it avoids ranking all entities in the KB as in prior work. Finally, the reasoning
paths found by our agent automatically form an interpretable provenance for its predictions.

The main contributions of the paper are: (a) We present agent MINERVA, which learns to do query
answering by walking on a knowledge graph conditioned on an input query, stopping when it reaches
the answer node. The agent is trained using reinforcement learning, specifically policy gradients (§ [2).
(b) We evaluate MINERVA on several benchmark datasets and compare favorably to Neural Theorem
Provers (NTP) (Rocktischel & Riedel,[2017) and Neural LP (Yang et al., 2017}, which do logical
rule learning in KBs, and also state-of-the-art embedding based methods such as DistMult (Yang
et al.| 2015)) and ComplEx (Trouillon et al.||2016). (c) We also extend MINERVA to handle partially
structured natural language queries and test it on the WikiMovies dataset (§ (Miller et al., 2016).

We also compare to DeepPath (Xiong et al., | 2017) which uses reinforcement learning to pick paths
between entity pairs. The main difference is that the state of their RL agent includes the answer entity
since it is designed for the simpler task of predicting if a fact is true or not. As such their method
cannot be applied directly to our more challenging query answering task where the second entity is
unknown and must be inferred. Nevertheless, MINERVA outperforms DeepPath on their benchmark
NELL-995 dataset when compared in their experimental setting (§ 4.I)).

2 TASK AND MODEL

We formally define the task of query answering in a KB. Let £ denote the set of entities and R be the
set of binary relations. Then a KB is a collection of facts stored as triplets (ej,r,e;) where e1,e; € €
and r € R. Query answering seeks to answer questions of the form (ej,r, ?), e.g. Toronto, locatedlIn,
?. We would also like to clearly point out the difference between query answering and the task of
fact prediction. Fact prediction involves predicting if a fact is true or not, e.g. (Toronto, locatedIn,
Canada)?. This task is easier than predicting the correct entity as the answer in query answering
since the latter require finding the answer entity among many possible entities.

Next we describe how we reduce the problem of query answering in a KB to a finite horizon sequential
decision making problem and solve it using reinforcement learning. We begin by representing the
environment as a deterministic Markov decision process on a knowledge graph G derived from

Under review as a conference paper at ICLR 2018

the KB (§2.1). Our RL agent is given an input query of the form (eiq,1q,?). Starting from vertex
corresponding to e, in the knowledge graph G, the agent learns to traverse the environment/graph to
mine the answer and stop when it determines the answer (§ 2.2)). The agent is trained using policy
gradient more specifically by REINFORCE (Williams|, [1992) with control variates (§ 2.3). Let us begin
by describing the environment.

2.1 ENVIRONMENT - STATES, ACTIONS, TRANSITIONS AND REWARDS

Our environment is a finite horizon, deterministic and partially observed Markov decision process
that lies on a knowledge graph derived from the KB. Recall that a KB is collection of facts stored as
triplets (ej,r,e,) where ej,e; € £ and r € R. From the KB, a knowledge graph G can be constructed
where the entities e|,e, are represented as the nodes and relation r as labeled edge between them.
Formally, a knowledge graph is a directed labeled multigraph G = (V,E, R), where V and E denote
the vertices and edges of the graph respectively. Note that V =& and E C V x R x V. Also, following
previous approaches (Bordes et al.| 2013} Neelakantan et al., |2015; Xiong et al.l|2017)), we add the
inverse relation of every edge, i.e. for an edge (ey,r,e2) € E, we add the edge (e;,r !,e;) to the
graph. (If the set of binary relations R does not contain the inverse relation r~!, it is added to R
as well.) On this graph we will now specify a deterministic partially observable Markov decision
process, which is a 5-tuple (S, 0, 4,8, R), each of which we elaborate below.

States. The state space S consists of all possible query-answers cartesian product with the set of
entities. Intuitively, we want a state to encode the query (e1q,rq), the answer (e2q), and a location
of exploration e (current node of the entity). Thus overall a state S € S is represented by S =
(er,e1q,Tq,€2q) and the state space consists of all valid combinations.

Observations. The complete state of the environment is not observable, but only its current location of
exploration and query can be observed but not the answer, i.e. only (e,eiq,Iq) is observed. Formally
the observation function O : § =V x V x R is defined as O(s = (e, €14,Tq,€2q)) = (€, €1q,1q)-

Actions. The set of possible actions .Ag from a state S = (e, e14,1q,€2q) consists of all outgoing edges
of the vertex e in G. Formally As = {(e(,r,v) € E : § = (e, €1q,1q,€2q)," € R,v € V}IU{(s,2,s)}.
Basically, this means an agent at each state has option to select which outgoing edge it wishes to take
having the knowledge of the label of the edge r and destination vertex v.

During implementation, we unroll the computation graph up to a fixed number of time steps T. We
augment each node with a special action called ‘NO_OP’ which goes from a node to itself. Some
questions are easier to answer and needs lesser steps of reasoning than others. This design decision
allows the agent to remain at a node for any number of time steps. This is especially helpful when
the agent has managed to reach a correct answer at a time step ¢ < T and can continue to stay at the
‘answer node’ for the rest of the time steps. Alternatively, we could have allowed the agent to take a
special ‘STOP’ action, but we found the current setup to work sufficiently well. As mentioned before,
we also add the inverse relation of a triple, i.e. for the triple (e1,7,e;), we add the triple (ep,7 !, e1)
to the graph. We found this important because this actually equips our agent to undo a potentially
wrong decision as it can retract back to the current node in the next step.

Transition. The environment evolves deterministically by just updating the state to the new vertex
pointed by the edge selected by the agent through its action. The query and answer remains the
same. Formally, the transition function is 8 : S x A — S defined by 8(S,A) = (v,e1q,1q,€2q), Where
S = (er,e1q,Iq,€2q) and A = (e, 1,v)).

Rewards. We only have a terminal reward of +1 if the current location is the correct answer at the
end and O otherwise. To elaborate, if S = (e, e ,Tg qu) is the final state, then we receive a reward
of +1 if e = eyq else 0.=, i.e. R(S7) =I{e; = eg(ﬁ}.

2.2 PoLICY NETWORK

To solve the finite horizon deterministic partially observable Markov decision process described
above, we aim to design a randomized history-dependent policy ®© = (dy,d,...,dr_1), where dy :
H; — P(As,) and history H; = (H;—1,A;—1, O;) is just the sequence of observations and actions taken.
We restrict ourselves to the function class expressed by long short-term memory network (LSTM)
(Hochreiter & Schmidhuber, |1997) for learning the randomized history-dependent policy.

Under review as a conference paper at ICLR 2018

An agent based on LSTM encodes the history H, as a continuous vector hy € R??. We also have

embedding matrix r € RI®I*? and e € RI€/* for the binary relations and entities respectively. The
history embedding for H; = (H;_1,A;_1,0;) is updated according to LSTM dynamics:

ht =LSTM (htfl, [atfl;OtD (1)

where a;_; € R? and oy € R? denote the vector representation for action/relation at time ¢ — 1
and observation/entity at time ¢ respectively and [;] denote vector concatenation. To elucidate,
a;_1 =r4,_,, i.e. the embedding of the relation corresponding to label of the edge the agent chose at
timet — 1 and oy = e, if O; = (et,elq,rq) i.e. the embedding of the entity corresponding to vertex
the agent is at time 7.

Based on the history embedding h¢, the policy network makes the decision to choose an action
from all available actions (As,) conditioned on the query relation. Recall that each possible action
represents an outgoing edge with information of the edge relation label / and destination vertex/entity
d. So embedding for each A € A, is [r1;eq], and stacking embeddings for all the outgoing edges
we obtain the matrix A¢. The network taking these as inputs is parameterized as a two-layer feed-
forward network with ReLU nonlinearity which takes in the current history representation h¢ and the
embedding for the query relation rq and outputs a probability distribution over the possible actions
from which a discrete action is sampled. In other words,

d; = softmax (A¢(W;ReLU (W1 [hg;0¢:14))))
A; ~ Categorical (dy)

Note that the nodes in G do not have a fixed ordering or number of edges coming out from them. The
size of matrix A¢ is |As, | X 2d, so the decision probabilities d; lies on simplex of size |Asg,|. Also the
procedure above is invariant to order in which edges are presented as desired and falls in purview of
neural networks designed to be permutation invariant |[Zaheer et al.| (2017). Finally, to summarise,
the parameters of the LSTM, the weights W;, W, the corresponding biases (not shown above for
brevity), and the embedding matrices form the parameters 0 of the policy network.

2.3 TRAINING

For the policy network (mg) described above, we want to find parameters 6 that maximizes the
expected reward:

J(0) = E(¢) rey)~DEAy . A7 ~mo[R(ST)[S1 = (e1,€1,7,€2)]

where we assume there is a true underlying distribution (e,r,e2) ~ D. To solve this optimization
problem, we employ REINFORCE (Williams}, [1992) as follows:

e The first expectation is replaced with empirical average over the training dataset.

e For the second expectation, we approximate by running multiple rollouts for each training
example. The number of rollouts is fixed and for all our experiments we set this number to 20.

e For variance reduction, a common strategy is to use an additive control variate baseline
(Hammersley, 2013} [Fishman| 2013 [Evans & Swartz, 2000). We use a moving average of
the cumulative discounted reward as the baseline. We tune the weight of this moving average
as a hyperparameter. Note that in our experiments we found that learnt baseline performed
similarly, but we finally settled for cumulative discounted reward as the baseline owing to its
simplicity.

e To encourage the policy to sample more diverse paths rather than sticking with a few, we add
an entropy regularization term to our cost function after multiplying it by a constant (). We
treat as a hyperparameter to control the exploration exploitation trade-off.

Experimental Details We choose the relation and embedding dimension size as 200. The action
embedding is formed by concatenating the entity and relation embedding. We use a 3 layer LSTM
with dimension size of 400. The hidden layer size of MLP (weights W1 and W>) is set to 400. We
use Adam (Kingma & Bal 2014} with the default parameters in REINFORCE for the update. The
best hyperparameter values can be found in appendix.

Under review as a conference paper at ICLR 2018

Dataset #entities #relations #facts #queries #degree
avg. median

COUNTRIES 272 2 1158 24 4.35 4.0
UMLS 135 49 5,216 661 38.63 28
KINSHIP 104 26 10686 1074 82.15 82
WN18RR 40,945 15 86,835 3134 2.19 2
NELL-995 75,492 200 154,213 3992 4.07 1
FB15K-237 14,505 237 272,115 20,466 19.74 14
WikiMovies 43,230 9 196,453 9952 6.65 4

Table 1: Statistics of various datasets used in experiments.

Corpus Metric Model
NeuralLP ComplEx NTP NTP-A MINERVA
S1 - 99.37+0.4 90.83+154 100.0+0.0 100.0+0.0
COUNTRIES S2 AUC-PR - 87.95+2.8 87.4+11.7 93.04+0.4 91+0.01
S3 - 48.44+6.3 56.68+17.6 77.26+17.0 93+0.01
HITS@1 - 0.47 0.47 0.51 0.53
UMLS HITS@3 - 0.63 0.60 0.64 0.67
HITS@10 0.70 0.80 0.79 0.81 0.81
HITS@1 - 0.34 0.24 0.39 0.46
KINSHIP HITS@3 - 0.49 0.40 0.47 0.62
HITS@10 0.73 0.74 0.60 0.71 0.76

Table 2: Performance on COUNTRIES, UMLS and KINSHIP datasets. Our model consistently out-
performs baselines across datasets and can learn complex logical rules as seen e.g. in results of
COUNTRIES(S3). NEURAL LP only report HITS @ 10 scores on two datasets.

3 DATA

We test our model on the following query answering datasets. (a) COUNTRIES (Bouchard et al., [2015),
(b) Alyawarra kinship (KINSHIP), (c) Unified Medical Language Systems (UMLS) (Kok & Domingos),
2007) (d) WN18RR (Dettmers et al., 2017), (e) NELL-995, (f) FB15k-237 (g) WikiMovies (Miller
et al.,[2016)). We also test on a synthetic grid world dataset released by Yang et al.[(2017) to test the
ability of the model to learn rules of long length.

The COUNTRIES dataset is carefully designed to explicitly test the logical rule learning and reasoning
capabilities of link prediction models. The dataset has 3 tasks (S1-3 in table [2) each requiring
reasoning steps of increasing length and difficulty (see Rocktaschel & Riedel (2017) for more details
about the tasks). We also test our model on existing large and challenging KG datasets ((d) - (f)).
WN18RR is created from the original WORDNET18 dataset by removing test triples which can be
answered trivially, making the datasets more realistic and challenging. Additionally, we test our
model on a question answering dataset - WikiMovies (Miller et al., 2016) where the query is in
natural language but the answers can be found in an accompanying KB. Table[T|report the various
statistics of the datasets.

4 EXPERIMENTS

4.1 KNOWLEDGE GRAPH QUERY ANSWERING

This section describes the experimental results on the various knowledge graph query answering
datasets. During inference, we do beam search with a beam width of 40 and rank entities by the
probability of the trajectory the model took to reach the entity.

COUNTRIES, KINSHIP, UMLS. We first test MINERVA on the COUNTRIES dataset which is explicitly
designed to test the ability of models to learn logical rules. It contains countries, regions and
subregions as entities. The queries are of the form LocatedIn(c, ?) and the answer is a region. For
example, LocatedIn(Egypt, ?) with the answer as Africa. Our experimental settings and scores are
directly comparable to NTP and ComplEx (Trouillon et al.l[2016). NTP-A is a NTP model trained

Under review as a conference paper at ICLR 2018

Task DeepPath MINERVA 1.0 S — ;
athleteplaysinleague 0.960 0.970 0.9 jl: S~ ® - o |
worksfor 0.711 0.825 ' .
organizationhiredperson 0.742 0.851 > 0.8} S 1
athleteplayssport 0.957 0.985 © 071 ‘m i
teamplayssport 0.738 0.846 2 AN
personborninlocation 0.795 0.793 2 0.6 \ 1
athletehomestadium 0.890 0.895 0.5||® ® MINERVA AN
organizationheadquarteredincity 0.790 0.946 B # Neural LP |
athleteplaysforteam 0.750 0.824 0.41L . . L
2-4 4-6 6-8 8-10

Table 3: MAP scores for different query relations on Path length

the NELL-995 dataset. Note that in this comparison,

MINERVA refers to only a single learnt model for all query Figure 2: Grid world experiment:

relations which is competitive with individual DeepPath We significantly outperform Neu-

models trained separately for each query relation. ralLP for longer path lengths.

with an additional objective function of ComplEx. We also compare MINERVA against Neural LP
(Yang et al.,|2017) on the UMLS and KINSHIP datasets.

The evaluation metric we report is HITS @k - which is the percentage of correct entities ranked in
top-k. For the COUNTRIES dataset, we report the area under the precision-recall curve for comparing
with the baselines. Following the design of the COUNTRIES dataset, for task S1 and S2, we set the
maximum path length 7 = 2 and for S3, we set 7 = 3.

Table 2]shows that MINERVA outperforms all the baseline models except on the task S2 of COUNTRIES,
where the ensemble model NTP-A outperforms it, albeit with a higher variance across runs. Our
gains are much more prominent in task S3, which is the hardest among all the tasks. We similarly
outperform NeuralLP on the UMLS and KINSHIP datasets.

NELL-995 We also compare MINERVA to DeepPath. For a fair comparison, we only rank the answer
entities against the negative examples in the dataset used in their experiment{] and report the mean
average precision (MAP) scores for each query relation. DeepPath feeds the paths its agent gathers
as input features to the path ranking algorithm (PRA) (Lao et al|2011)), which trains a per-relation
classifier. But unlike them, we train one model which learns for all query relations. If our agent is not
able to reach the correct entity or one of the negative entities, the corresponding query gets a score of
negative infinity. As show in table [5] we outperform them or achieve comparable performance for all
the query relations For this experiment, we set the maximum length 7 = 3.

Query Answering on NELL-995: Since the task of query answering is more challenging than
fact prediction, we also test MINERVA for query answering on NELL-995 where the target entity
is unknown. Since there are no published baselines on this task, we compare to a highly tuned
implementation of DistMult (which achieves very high performance on other datasets). DistMult
achieves a HITS @ 10 performance of 79.504. In comparison MINERVA achieves a score of 80.99.
Moreover, MINERVA is more efficient at inference time since it does not have to compare against all
the 75K entities in the dataset. The wall-clock inference time on the test set of NELL-995 for a GPU
implementation of DistMult is 115s whereas that of MINERVA is 35s.

WN18RR Next we test MINERVA on another large KB

. . Model HITS@1 HITS@3 HITS@10
dataset — WN18RR. On this dataset, we compare with —=. & 0306 0360 0411
three recently proposed latent factorization model — (a) pigeMult 0.389 0.439 0.491
ConvE (Dettmers et al.,[2017), (b) DistMult (Yang etal, complEx 0.411 0.458 0.507
2015), (c) ComplEx (Trouillon et al.; 2016). We report ~ MINERVA 0.413 0.456 0.513

HITS at various k and we compare favorably with the
state-of-the-art results of ComplEx in all settings (table
H). For this experiment, we also set the maximum length 7" = 3.

Table 4: Performance on WN18RR

FB15k-237 We test MINERVA on yet another popular KB dataset FB15K-237. The baselines
are the same as before, however our implementation of DistMult gave a score of 56.8 HITS@ 10

'We are grateful to Xiong et al.| (2017) for releasing the negative examples used in their experiments.

Under review as a conference paper at ICLR 2018

5 Kinship NELL-995 FB15k-237
L 100 3x10
3 10
el .
£ 6x10"
8 2x10° \ 104 103
-1

24x10 102
g3x107!
@ 10!
2 103
C2x107! 10°

P PR 10! 102 10° 100 100 102 10° 100 102 10° 10%

S V. & S

o qu N \)é@ 4
& S &

Figure 4: Count of number of unique path types of length 3 which
occur more than ‘x’ times in various datasets. In Kinship and NELL-
995, there are more than 103 path types which occur more than
103 times, however for FB15k-237, we see a sharp decrease as ‘x’
becomes higher, suggesting that path types do not repeat often.

Figure 3: Network avg. clus-
ter coefficient of various
datasets

which, to our knowledge, is the highest score reported on this dataseﬂThe performance of ConvE
and ComplEx are taken from Dettmers et al.| (2017). Even though MINERVA performs compa-
rably to ConvE and ComplEXx, the results are significantly behind the performance of DistMult.

Model HITS@10
. . . ConvE 0.458
Upon delving more into the structure of knowledge graph derived from D?srg/lult 0.568
FB15K-237, we found few interesting characteristics of the dataset. Asa CcomplEx 0419
prelude, we would like to describe a long existing concept in graph theory MINERVA 0.456

— clustering coefficient (Holland & Leinhardt, 1971} Watts & Strogatz, |1998)).
Clustering coefficient (1) of a graph measures whether groups of nodes form Table 5: Performance
‘tightly knit’ communities - i.e. whether groups of nodes tend to cluster " FB15K-237
together. A high t implies the presence of higher number of densely connected groups of nodes. For
instance, if we consider three nodes A, B and C, a high T means with high probability whenever three
nodes are connected as A — B — C, it implies nodes A — C are also connected forming a triangle.
Intuitively, MINERVA can use such closed shapes to learn paths such as (A — B — C) to predict the
answer of the query, i.e. the third node (C). The clustering coefficient also extends from triangles to
cliques of arbitrary size (Watts & Strogatz, [1998). Figure [3| plots T for various datasets. We find that
FB15k-237 has the least clustering coefficient (0.19) among all datasets. This means that the dataset
has sparse neighborhoods and hence MINERVA finds it difficult to learn logical rules. We also check
the frequency of occurrence of various unique paths (types). We define a path type as the sequence
of relations (ignoring the entities) in a path. Intuitively, a predictive path which generalizes across
queries will occur many number of times in the graph. Figure {] shows the plot. As we can see, the
characteristics of FB15k-237 is quite different from other datasets. Path types do not repeat that often,
making it hard for MINERVA to learn paths which generalizes. We also provide further analysis of the
types of various query relations in FB15k-237 below.

Analysis of query relations of FB15k-237: Next we analyzed the type of query relations on the
FB15k-237 dataset. Following Bordes et al.|(2013)), we categorized the query relations into (M)any to
1,1toMor 1 to 1 relations. An example of a M to 1 relation would be ‘/people/profession’ (What is the
profession of person ‘X’?). An example of 1 to M relation would be /music/instrument/instrumentalists
(“Who plays the music instrument X?”) or ‘/people/ethnicity/people’ (“Who are people with ethnicity
X?"). From a query answering point of view, the answer to these questions is a list of entities.
However, during evaluation time, the model is evaluated based on whether it is able to predict the one
target entity which is in the query triple. Also, since MINERVA outputs the end points of the paths as
target entities, it is sometimes possible that the particular target entity of the triple does not have a
path from the source entity (however there are paths to other ‘correct’ answer entities). Table[§](in
appendix) shows few other examples of relations belonging to different classes.

Following Bordes et al.| (2013), we classify a relation as 1-to-M if the ratio of cardinality of tail to head
entities is greater than 1.5 and as M-to-1 if it is lesser than 0.67. In the validation set of FB15k-237,
54% of the queries are 1-to-M, whereas only 26% are M-to-1. Contrasting it with NELL-995, 27% are
1-to-M and 36% are M-to-1 or UMLS or KINSHIP where only 18% and 32% of the relations are 1-to-M.
Table[9] (in appendix) shows few relations from FB15k-237 dataset which have high tail-to-head ratio.
The average ratio for 1-TO-M relations in FB15k-237 is 13.39 (substantially higher than 1.5).

ZWe are aware of the high variance of DistMult scores reported on FB15k-237 by several papers, but to
ensure fairness we report the high scores our in-house implementation achieved.

Under review as a conference paper at ICLR 2018

Coaches
Team
p=0.898

WorksFor?

v
Basketball

AthletePlaysSport?

3
&

Louis
Armstrong
Dirg,
'Cte,
By 0 %
ps
Ze.19

Normal Normal
McLeod McLeod

Who directed the movie “Pennies from Heaven”? Who starred in the movie “Pennies from Heaven”?

S¥o
o5 Ky
B

Pennies
From
Heaven

Pennies
From
Heaven

Orrscroy

Figure 5: Based on the query relation our agent assigns different probabilities to different actions.
The dashed edges in the top row denote query relation. Examples in the bottom row are from the
WikiMovies dataset and hence the questions are partially structured.

4.2 GRID WORLD PATH FINDING

As we empirically find and also noted by previous work (Rocktidschel & Riedel, 2017; Das et al.,
2017} [Yang et al.| [2017), often the reasoning chains required to answer queries in KB is not too long
(restricted to 3 or 4 hops). To test if our model can learn long reasoning paths, we test our model on
a synthetic 16-by-16 grid world dataset created by |Yang et al.|(2017), where the task is to navigate
to a particular cell (answer entity) starting from a random cell (start entity) by following a set of
directions (query relation). The KB consists of atomic triples of the form ((2,1), North, (1,1)) — entity
(1,1) is north of entity (2,1). The queries consists of a sequence of directions (e.g. North, SouthWest,
East). The queries are classified into classes based on the path lengths. Figure 2 shows the accuracy
on varying path lengths. Compared to Neural LP, MINERVA is much more robust for queries which
require longer path lengths showing a very little degrade in performance for even the longest path
length in the dataset.

4.3 PARTIALLY STRUCTURED QUERIES

Queries in KB datasets are structured in the form of triples. ~Model Accuracy
However, this is unsatisfactory since for most real applica- ~Memory Network 783
tions, the queries appear in natural language. As a firststep QA system 93.5
in this direction, we extend MINERVA to take in “partially =~ Key-Value Memory Network 93.9
structured” queries. We use the WikiMovies dataset (Millef =~ Neural LP 94.6
et al., 2016) which contains questions in natural language _MINERVA 96.7

albeit generated by templates created by human annotators.
An example question from the dataset is “Which is a film
written by Herb Freed?”. WikiMovies also has an accompanying KB which can be used to answer all
the questions.

Table 6: Performance on WikiMovies

We link the entity occurring in the question to the KB via simple string matching. To form the vector
representation of the query relation, we design a simple question encoder which computes the average
of the embeddings of the question words. The word embeddings are learned from scratch and we do
not use any pretrained embeddings. We compare our results with those reported in|Yang et al.| (2017)
(table [6). We got the best result using T = 1, suggesting that WikiMovies is not the best testbed for
multihop reasoning, but this experiment is a promising first step towards the realistic setup of having
textual queries and knowledge bases.

5 ANALYSIS

Effectiveness of Remembering Path History. MINERVA encodes the history of decisions it has
taken in the past using LSTMs. To test the importance of remembering the sequence of decisions,

Under review as a conference paper at ICLR 2018

(i) Can learn general rules:

(S1) LocatedIn(X, Y) < LocatedIn(X, Z) & LocatedIn(Z, Y)
(S2) LocatedIn(X, Y) < NeighborOf(X, Z) & LocatedIn(Z, Y)
(S3) LocatedIn(X, Y) < NeighborOf(X, Z) & NeighborOf(Z, W) & LocatedIn(W, Y)

(i) Can learn shorter path: Richard F. Velky WorksFor,

PersonLeadsO: N i
Richard F. Velky e, Schaghticokes M Schaghticokes M Schaghticokes

. WorksFor
(iii) Can recover from mistakes: Donald Graham ——— 19

OrgTerminatedPerson OrgTerminatedPerson ™! OrgHiredPerson
_— _—

Donald Graham TNT Post Donald Graham Wash Post

Table 7: A few example of paths found by MINERVA on the COUNTRIES and NELL. MINERVA can
learn general rules as required by the COUNTRIES dataset (example (i)). It can learn shorter paths if
necessary (example (ii)) and has the ability to correct a previously taken decision (example (iii))

we did an ablation study in which the agent chose the next action based on only local information
i.e. current entity and query and did not have access to the history h;. For the KINSHIP dataset, we
observe a 27% points decrease in HITS@1 (0.184 v/s 0.46) and 13% decrease in HITS@10 (0.63
v/s 0.76). For grid-world, it is also not surprising that we see a big drop in performance. The final
accuracy is 0.23 for path lengths 2-4 and 0.04 for lengths 8-10. For NELL, the performance dropped
from 0.576 to 0.564 and for FB15k-237 the HITS @ 10 performance dropped from 0.456 to 0.408.

NO-OP and Inverse Relations. At each step, MINERVA can choose to take a NO-OP edge and
remain at the same node. This gives the agent the flexibility of taking paths of variable lengths.
Some questions are easier to answer than others and require lesser steps of reasoning and if the agent
reaches the answer early, it can choose to remain there. Example (i) in table [/|shows such an example.
Similarly inverse relation gives the agent the ability to recover from a potentially wrong decision it
has taken before. Example (ii) shows such an example, where the agent took a incorrect decision at
the first step but was able to revert the decision because of the presence of inverted edges.

Query based Decision Making. At each step before making a decision, our agent conditions on the
query relation. Figure [5|shows examples, where based on the query relation, the probabilities are
peaked on different actions. For example, when the query relation is WorksFor, MINERVA assigns
a much higher probability of taking the edge CoachesTeam than AthletePlaysinLeague. We also
see similar behavior on the WikiMovies dataset where the query consists of words instead of fixed
schema relation.

Inference Time. MINERVA is efficient at inference time since it has to essentially search for answer
entities in its local neighborhood, whereas previous methods rank all the entities in the dataset. For
instance, on the test dataset of WN18RR, the wall clock running time of MINERVA is 63 seconds
whereas that of a GPU implementation of DistMult is 211 seconds (with the maximum batch size).

6 RELATED WORK

Learning vector representations of entities and relations using tensor factorization (Nickel et al.|
20115 2012} Bordes et al. 2013} |Riedel et al.| |2013; Nickel et al., 2014} [Yang et al.| 2015) or
neural methods (Socher et al., 2013 [Toutanova et al., 20155 | Verga et al.,|2016) has been a popular
approach to reasoning with a knowledge base. However, these methods cannot capture more complex
reasoning patterns such as those found by following inference paths in KBs. Multi-hop link prediction
approaches (Lao et al.,[2011; Neelakantan et al., 2015} |Guu et al., 2015} |[Toutanova et al.,|2016} |Das
et al., 2017) address the problems above, but the reasoning paths that they operate on are gathered by
performing random walks independent of the type of query relation. [Lao et al.| (201 1)) further filters

Under review as a conference paper at ICLR 2018

paths from the set of sampled paths based on the restriction that the path must end at one of the target
entities in the training set and are within a maximum length. These constraints make them query
dependent but they are heuristic in nature. Our approach eliminates any necessity to pre-compute
paths and learns to efficiently search the graph conditioned on the input query relation.

Inductive Logic Programming (ILP) (Muggleton et al.,|1992) aims to learn general purpose predicate
rules from examples and background knowledge. Early work in ILP such as FOIL (Quinlan, |1990),
PROGOL (Muggleton, |1995) are either rule-based or require negative examples which is often hard
to find in KBs (by design, KBs store true facts). Statistical relational learning methods (Getoor
& Taskar, 2007; Kok & Domingos) 2007; Schoenmackers et al., [2010) along with probabilistic
logic (Richardson & Domingos, 2006} |Broecheler et al.,|2010; |Wang et al., 2013)) combine machine
learning and logic but these approaches operate on symbols rather than vectors and hence do not
enjoy the generalization properties of embedding based approaches.

Neural Theorem Provers (NTP) (Rocktaschel & Riedel, 2017) and Neural LP (Yang et al., [2017)
are two recent methods in learning logical rules that can be trained end-to-end with gradient based
learning. NTPs are constructed by Prolog’s backward chaining inference method. It operates on
vectors rather than symbols, thereby providing a success score for each proof path. However, since a
score can be computed between any two vectors, the computation graph becomes quite large because
of such soft-matching during substitution step of backward chaining. For tractability, it resides to
heuristics such as only keeping the top-K scoring proof paths, but it loses any guarantee of computing
exact gradients. Also the efficacy of NTPs has yet to be shown on large KBs. Neural LP introduces
a differential rule learning system using operators defined in TensorLog (Cohen| 2016) and has a
LSTM based controller and a differentiable memory component (Graves et al., 2014; |Sukhbaatar
et al., [2015) and the rule scores are calculated via attention. Even though, differentiable memory
allows the network to be trained end to end, it necessitates accessing the entire memory which can be
computationally expensive. RL approaches which can make hard selection of memory (Zaremba &
Sutskever, 2015) are computationally attractive. MINERVA uses a similar hard selection of relation
edges to walk on the graph. More importantly, MINERVA outperforms both these methods on their
respective benchmark datasets.

DeepPath (Xiong et al.,|2017) uses RL based approaches to find paths in KBs. However, the state of
their MDP requires the target entity to be known in advance and hence their path finding strategy
is dependent on knowing the answer entity. MINERVA does not need any knowledge of the target
entity and instead learns to find the answer entity among all entities. DeepPath, additionally feeds
its gathered paths to Path Ranking Algorithm (Lao et al.,|2011), whereas MINERVA is a complete
system trained to do query answering. DeepPath also uses fixed pretrained embeddings for its entity
and relations. Lastly, on comparing MINERVA with DeepPath in their experimental setting on the
NELL dataset, we match their performance or outperform them. MINERVA is also similar to methods
for learning to search for structured prediction (Collins & Roark, [2004; |Daumé III & Marcu, |[2005;
Daumé III et al.,|2009; Ross et al., 201 1; |Chang et al., 2015). These methods are based on imitating a
reference policy (oracle) which make near-optimal decision at every step. In our problem setting, it
is unclear what a good reference policy would be. For example, a shortest path oracle between two
entities would be bad, since the answer providing path should depend on the query relation.

7 CONCLUSION

We explored a new way of automated reasoning on large knowledge bases in which we use the
knowledge graphs representation of the knowledge base and train an agent to walk to the answer node
conditioned on the input query. We achieve state-of-the-art results on multiple benchmark knowledge
base completion tasks and we also show that our model is robust and can learn long chains-of-
reasoning. Moreover it needs no pretraining or initial supervision. Future research directions include
applying more sophisticated RL techniques and working directly on textual queries and documents.

10

Under review as a conference paper at ICLR 2018

REFERENCES

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: A collabora-
tively created graph database for structuring human knowledge. In /ICDM, 2008.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, 2013.

Guillaume Bouchard, Sameer Singh, and Theo Trouillon. On approximate reasoning capabilities of
low-rank vector spaces. AAAI Spring Symposium, 2015.

Matthias Broecheler, Lilyana Mihalkova, and Lise Getoor. Probabilistic similarity logic. In UAI,
2010.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka, Jr., and Tom M.
Mitchell. Toward an Architecture for Never-ending Language Learning. In AAAI, 2010.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daume, and John Langford. Learning
to search better than your teacher. In ICML, 2015.

William Cohen. Tensorlog: A differentiable deductive database. arXiv:1605.06523,2016.
Michael Collins and Brian Roark. Incremental parsing with the perceptron algorithm. In ACL, 2004.

Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. Chains of reasoning
over entities, relations, and text using recurrent neural networks. In EACL, 2017.

Hal Daumé III and Daniel Marcu. Learning as search optimization: Approximate large margin
methods for structured prediction. In ICML, 2005.

Hal Daumé 1III, John Langford, and Daniel Marcu. Search-based structured prediction. Machine
learning, 2009.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. arXiv:1707.01476, 2017.

Michael Evans and Timothy Swartz. Approximating integrals via Monte Carlo and deterministic
methods. OUP Oxford, 2000.

George Fishman. Monte Carlo: concepts, algorithms, and applications. Springer Science & Business
Media, 2013.

Lise Getoor and Ben Taskar. Introduction to statistical relational learning. MIT press, 2007.
Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv:1410.5401, 2014.

Kelvin Guu, John Miller, and Percy Liang. Traversing knowledge graphs in vector space. In EMNLP,
2015.

John Hammersley. Monte carlo methods. Springer Science & Business Media, 2013.
Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 1997.

Paul W Holland and Samuel Leinhardt. Transitivity in structural models of small groups. Comparative
Group Studies, 1971.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

Stanley Kok and Pedro Domingos. Statistical predicate invention. In ICML, 2007.

Ni Lao, Tom Mitchell, and William Cohen. Random walk inference and learning in a large scale
knowledge base. In EMNLP, 2011.

John McCarthy. Programs with common sense. RLE and MIT Computation Center, 1960.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason
Weston. Key-value memory networks for directly reading documents. EMNLP, 2016.

11

Under review as a conference paper at ICLR 2018

Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David Gondek. Distant supervision for
relation extraction with an incomplete knowledge base. In HLT-NAACL, 2013.

Stephen Muggleton. Inverse entailment and progol. New generation computing, 1995.

Stephen Muggleton, Ramon Otero, and Alireza Tamaddoni-Nezhad. Inductive logic programming.
Springer, 1992.

Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Compositional vector space models
for knowledge base completion. In ACL, 2015.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning
on multi-relational data. In ICML, 2011.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago: scalable machine
learning for linked data. In WWW, 2012.

Maximilian Nickel, Xueyan Jiang, and Volker Tresp. Reducing the rank in relational factorization
models by including observable patterns. In NIPS, 2014.

Nils J Nilsson. Logic and artificial intelligence. Artificial intelligence, 1991.
J Ross Quinlan. Learning logical definitions from relations. Machine learning, 1990.
Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 2006.

Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. Relation extraction with
matrix factorization and universal schemas. In NAACL, 2013.

Tim Rocktéschel and Sebastian Riedel. End-to-end differentiable proving. In NIPS, 2017.

Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In AISTATS, 2011.

Stefan Schoenmackers, Oren Etzioni, Daniel Weld, and Jesse Davis. Learning first-order horn clauses
from web text. In EMNLP, 2010.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. Reasonet: Learning to stop reading in
machine comprehension. In KDD, 2017.

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural tensor
networks for knowledge base completion. In NIPS, 2013.

Fabian Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic knowledge. In
WWW, 2007.

Sainbayar Sukhbaatar, Jason Weston, and Rob Fergus. End-to-end memory networks. In NIPS, 2015.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In EMNLP, 2015.

Kristina Toutanova, Victoria Lin, Wen-tau Yih, Hoifung Poon, and Chris Quirk. Compositional
learning of embeddings for relation paths in knowledge base and text. In ACL, 2016.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In ICML, 2016.

Patrick Verga, David Belanger, Emma Strubell, Benjamin Roth, and Andrew McCallum. Multilingual
relation extraction using compositional universal schema. In NAACL, 2016.

William Yang Wang, Kathryn Mazaitis, and William W Cohen. Programming with personalized
pagerank: a locally groundable first-order probabilistic logic. In CIKM, 2013.

Duncan J Watts and Steven H Strogatz. Collective dynamics of small-worldnetworks. nature, 1998.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 1992.

12

Under review as a conference paper at ICLR 2018

Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath: A reinforcement learning method
for knowledge graph reasoning. In EMNLP, 2017.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In ICLR, 2015.

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for knowledge
base reasoning. In NIPS, 2017.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and
Alexander Smola. Deep sets. In NIPS, 2017.

Wojciech Zaremba and Ilya Sutskever. Reinforcement learning neural turing machines.
arXiv:1505.00521, 2015.

13

Under review as a conference paper at ICLR 2018

(H)Mto1

team plays sport .
A PTYE SO, American Football

USA

Los Angeles Rams
The Walking Dead

country of origin
—>

(i) 1 to M
CEO job position in organization Merck & Co
.. f death
Traffic collision ——- < Albert Camus
instrument played by musician Greg Graffin

Harmonica

Table 8: Few example facts belonging to m to 1, 1 to m relations in FB15k-237

Relation tail/head
/people/marriage _union_type/unions_of_this_type./people/marriage/location_of_ceremony 129.75
/organization/role/leaders./organization/leadership/organization 65.15
/location/country/second_level_divisions 49.18
/user/ktrueman/default_domain/international_organization/member _states 36.5
/base/marchmadness/ncaa_basketball_tournament/seeds./base/marchmadness/ncaa_tournament_seed/team | 33.6

Table 9: Few example 1-to-M relations from FB15k-237 with high cardinality ratio of tail to head.

8 APPENDIX

8.1 HYPERPARAMETERS

In our experiments, we tune our model over two hyper parameters, viz., § which is the entropy
regularization constant and A which is the moving average constant for the REINFORCE baseline.
The table[I0]lists the best hyper parameters for all the datasets.

Dataset B A Path Length
UMLS 00510 2
KINSHIP 0051005 |2
Countries S1 0.01 | 0.1 2
Countries S2 002|002 |2
Countries S3 001 | 001 |3
WNI18RR 00510053
NELL-995 005100213
FB15K-237 0.02 100513
WIKIMOVIES | 0.15 | 0 1

Table 10: Best hyper parameters

14

	Introduction
	Task and Model
	Environment - States, Actions, Transitions and Rewards
	Policy Network
	Training

	Data
	Experiments
	Knowledge Graph Query Answering
	Grid World Path Finding
	Partially Structured Queries

	Analysis
	Related Work
	Conclusion
	Appendix
	Hyperparameters

