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Abstract

Over the last century, risk scores have been the most popular form of predictive1

model used in healthcare and criminal justice. Risk scores are sparse linear models2

with integer coefficients; often these models can be memorized or placed on an3

index card. Typically, risk scores have been created either without data or by4

rounding logistic regression coefficients, but these methods do not reliably produce5

high-quality risk scores. Recent work used mathematical programming, which6

is computationally slow. We introduce an approach for efficiently producing a7

collection of high-quality risk scores learned from data. Our approach involves8

producing a pool of almost-optimal sparse continuous solutions, each with a9

different support set, using a beam-search algorithm. Each of these continuous10

solutions is transformed into a separate risk score through a “star search,” where a11

range of multipliers are considered before rounding the coefficients sequentially12

to maintain low logistic loss. Our algorithm returns all of these high-quality risk13

scores for the user to consider. This method completes within minutes and can be14

impactful in a broad variety of applications.15

1 Introduction16

Risk scores are sparse linear models with integer coefficients that predict risks. They are possibly17

the most popular form of predictive model for high stakes decisions through the last century and are18

the standard form of model used in criminal justice [3, 19] and medicine [17, 23, 29, 26, 31].19

Their history dates back to at least the criminal justice work of Burgess [7], where individu-20

als were assigned integer point scores between 0 and 21 based on their criminal history and21

demographics that determined their probability of “making good or of failing upon parole.”22

1. Oval Shape -2 points . . .
2. Irregular Shape 4 points + . . .
3. Circumscribed Margin -5 points + . . .
4. Spiculated Margin 2 points + . . .
5. Age � 60 3 points +

SCORE =

SCORE -7 -5 -4 -3 -2 -1
RISK 6.0% 10.6% 13.8% 17.9% 22.8% 28.6%

SCORE 0 1 2 3 4 � 5
RISK 35.2% 42.4% 50.0% 57.6% 64.8% 71.4%

Figure 1: Risk score on the mammo dataset [14], whose popula-
tion is biopsy patients. It predicts risk of malignancy of a breast
lesion. Risk score is from FasterRisk on a fold of a 5-CV split.

Other famous risk scores are ar-23

guably the most widely-used pre-24

dictive models in healthcare. These25

include the APGAR score [2], de-26

veloped in 1952 and given to new-27

borns, and the CHADS2 score [16],28

which estimates stroke risk for29

atrial fibrillation patients. Figure30

1 shows an example risk score,31

which estimates risk of a breast le-32

sion being malignant.33

Risk scores have the benefit of be-34

ing easily memorized; usually their35

names reveal the full model – for36

instance, the factors in CHADS237
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are past Chronic heart failure, Hypertension, Age�75 years, Diabetes, and past Stroke (where past38

stroke receives 2 points and the others each receive 1 point). For risk scores, counterfactuals are39

often trivial to compute, even without a calculator. Also, checking that the data and calculations are40

correct is easier with risk scores than with other approaches. In short, risk scores have been created41

by humans for a century to support a huge spectrum of applications, because humans find them easy42

to understand.43

Traditionally, risk scores have been created in two main ways: (1) without data, with expert knowledge44

only (and validated only afterwards on data), and (2) using a semi-manual process involving manual45

feature selection and rounding of logistic regression coefficients. That is, these approaches rely46

heavily on domain expertise and rely little on data. Unfortunately, the converse (relying on data) leads47

to computationally hard problems: optimizing risk scores over a global objective on data is NP-hard,48

because in order to produce integer-valued scores, the feasible region must be the integer lattice. There49

have been only a few approaches to design risk scores automatically [4, 5, 8, 9, 15, 27, 28, 33, 34, 35],50

but each of these has a flaw that limits its use in practice: the optimization-based approaches use51

mathematical programming solvers (which require a license) that are slow and scale poorly, and the52

other methods are randomized greedy algorithms, producing fast but much lower-quality solutions.53

We need an approach that exhibits the best of both worlds: speed fast enough to operate in a few54

minutes on a laptop and optimization and search capability as powerful as that of the mathematical55

programming tools. Our method, FasterRisk, lies at this intersection.56

One may wonder why simple rounding of `1-regularized logistic regression coefficients does not57

yield sufficiently good risk scores. Past works [32, 34] explain this as follows: the sheer amount of `158

regularization needed to get a very sparse solution leads to large biases and worse loss values, and59

rounding goes against the performance gradient. For example, consider a set of `1 coefficients found60

as [1.45, .87, .83, .47, .23, .15, ... ]. This model would be worse than its unregularized counterpart,61

because of the bias due to the large `1 term. Its rounded solution is [1,1,1,0,0,0,..], which leads to62

even worse loss. One could attempt instead to multiply by a constant and then round, but which63

constant? There are an infinite number of choices. And, even if some value of the multiplier led to64

minimal loss due to rounding, the bias from the `1 term still limits the quality of the solution.65

The algorithm presented here does not have these disadvantages. The steps are: (1) Fast subset search66

with `0 optimization (avoiding the bias from `1). This requires the solution of an NP-hard problem,67

but our fast subset selection algorithm is able to solve this quickly. We proceed from this accurate68

sparse continuous solution, preserving both sparseness and accuracy in the next steps. (2) Find a pool69

of diverse continuous sparse solutions that are almost as good as the solution found in (1) but with70

different support sets. (3) A “star ray” search, where we search for feasible integer-valued solutions71

along multipliers of each item in the pool from (2). By using multipliers, the search space resembles72

a ray of a star because it extends each coefficient in the pool outwards from the origin to search73

for solutions. To find integer solutions, we perform a local search (a form of sequential rounding).74

This method yields high performance solutions: we provide a theoretical upper bound on the loss75

difference between the continuous sparse solution and the rounded integer sparse solution.76

Through extensive experiments, we show that our proposed method is computationally fast and77

produces high-quality integer solutions. This work thus provides valuable and novel tools to create78

risk scores for professionals in many different fields, such as healthcare, finance, and criminal justice.79

2 Related Work80

Optimization-based approaches: Risk scores, which model P (y = 1|x), are different than threshold81

classifiers, which predict either y = 1 or y = �1 given x. Most work in the area of optimization of82

integer-valued sparse linear models focuses on classifiers, not risk scores [4, 5, 8, 27, 28, 32, 35, 37].83

This difference is important, because a classifier generally cannot be calibrated well for use in risk84

scoring: only its single decision point is optimized. Despite this, several works use the hinge loss85

to calibrate predictions [5, 8, 27]. All of these optimization-based algorithms use mathematical86

programming solvers (i.e., integer programming solvers), which tend to be slow and cannot be used87

on larger problems. However, they can handle both feature selection and integer constraints.88

To directly optimize risk scores, typically the logistic loss would be used. The RiskSLIM algorithm89

[34] optimizes the logistic loss regularized with `0 regularization, subject to integer constraints on the90

coefficients. RiskSLIM uses callbacks to a MIP solver, alternating between solving linear programs91
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and using branch-and-cut to divide and reduce the search space. The branch-and-cut procedure needs92

to keep track of unsolved nodes, whose number increases exponentially with the size of the feature93

space. Thus, RiskSLIM’s major challenge is scalability.94

Local search-based approaches: As discussed earlier, a natural way to produce a scoring system or95

risk score is by selecting features manually and rounding logistic regression coefficients or hinge-loss96

solutions to integers [9, 10, 34]. While rounding is fast, rounding errors discussed earlier can cause the97

solution quality to be much worse than that of the optimization-based approaches. Several works have98

proposed improvements over traditional rounding. In Randomized Rounding [9], each coefficient99

is rounded up or down randomly, based on its continuous coefficient value. However, randomized100

rounding does not seem to perform well in practice. Chevaleyre [9] also proposed Greedy Rounding,101

where coefficients are rounded sequentially. While this technique provides theoretical guarantees102

for greedy rounding for the hinge loss, we have identified a serious flaw in this argument, rendering103

the bounds incorrect (see Appendix B). The RiskSLIM paper [34] proposed SequentialRounding,104

which, at each iteration, chooses a coefficient to round up or down, making the best choice according105

to the regularized logistic loss. This gives better solutions than other types of rounding, because the106

coefficients are considered together through their performance on the loss function, not independently.107

A drawback of SequentialRounding is that it considers rounding up or down only to the nearest108

integer from the continuous solution. By considering multipliers, we consider a much larger space109

of possible solutions. The idea of multipliers (i.e., “scale and round”) is used for medical scoring110

systems [10], though, as far as we know, it has been used only with traditional rounding rather than111

SequentialRounding, which could easily lead to poor performance, and we have seen no previous112

work that studies how to perform scale-and-round in a systematic, computationally efficient way.113

While the general idea of scale-and-round seems simple, it is not: there are an infinite number of114

possible multipliers, and, for each one, a number of possible nearby integer coefficient vectors that is115

the size of a hypercube, expanding exponentially in the search space.116

Sampling Methods: The Bayesian method of Ertekin et al. [15] samples scoring systems, favoring117

those that are simpler and more accurate, according to a prior. “Pooling” [34] creates multiple models118

through sampling along the regularization path of ElasticNet. As discussed, when regularization is119

tuned high enough to induce sparse solutions, it results in substantial bias and low-quality solutions120

(see [32, 34] for numerous experiments on this point). Note that there is a literature on finding diverse121

solutions to optimization problems [1], but it only focuses on linear objective functions.122

Contributions: Our contributions include the three-step framework for producing risk scores, the123

beam-search based algorithm for logistic regression with bounded coefficients, the search algorithm124

to find pools of diverse high-quality continuous solutions, the star search technique using multipliers,125

and a theorem guaranteeing the quality of the star search results.126

Limitations: FasterRisk does not provide provably optimal solutions to an NP-hard problem, which127

is how it is able to perform in reasonable time for practitioner’s use. FasterRisk’s models should not128

be interpreted as causal. FasterRisk creates very sparse generalized additive models and thus has129

limited capacity. FasterRisk’s models inherit flaws from data it was trained on. FasterRisk is not yet130

customized to a given application, which can be done in future work.131

3 Methodology132

Define dataset D = {1,xi, yi}ni=1 (1 is a static feature corresponding to the intercept) and scaled133

dataset as 1
m ⇥D = { 1

m , 1
mxi, yi}ni=1. Our goal is to produce high-quality risk scores within a few134

minutes on a small personal computer. We start with an optimization problem similar to RiskSLIM’s135

[34], which minimizes the logistic loss subject to sparsity constraints and integer coefficients:136

min
w,w0

L(w, w0,D), where L(w, w0,D) =
Pn

i=1 log(1 + exp(�yi(xT
i w + w0))) (1)

such that kwk0  k and w 2 Zp, 8j 2 [1, .., p] wj 2 [�5, 5], w0 2 Z.
In practice, the range of these box constraints [�5, 5] is user-defined and can be different for each137

coefficient. (We use 5 for ease of exposition.) The kwk0 or integer constraints make the problem138

NP-hard, and this is a difficult mixed-integer nonlinear program. Transforming the original features139

to all possible dummy variables, as done in other methods [20], changes the model into a (flexible)140

generalized additive model; even when transformed into risk scores, they can still be as accurate as141

the best machine learning models [34, 36].142
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Algorithm 1 FasterRisk(D,k,C,B,✏,T ,Nm)! {(w+t, w+t
0 ,mt)}t

Input: dataset D (consisting of feature matrix X 2 Rn⇥p and labels y 2 Rn), sparsity constraint k,
coefficient constraint C = 5, beam search size B = 10, tolerance level ✏ = 0.3, number of attempts
T = 50, number of multipliers to try Nm = 20.
Output: a pool P of scoring systems {(wt, wt

0),m
t} where t is the index enumerating all found

scoring systems with kwtk0  k and kwtk1  C and mt is the corresponding multiplier.
1: Call Algorithm 2 SparseBeamLR(D, k, C,B) to find a high-quality solution (w⇤, w⇤

0) to the
sparse logistic regression problem with continuous coefficients satisfying a box constraint,
i.e., solve Problem (1). (Algorithm SparseBeamLR will call Algorithm ExpandSuppBy1 as a
subroutine, which grows the solution by beam search.)

2: Call Algorithm 5 CollectSparseDiversePool((w⇤, w⇤
0), ✏, T ), which solves Problem (4). Place

its output {(wt, wt
0)}t in pool P . P  P [ {(wt, wt

0)}t.
3: Send each member t in the pool P , which is (wt, wt

0), to Algorithm 3 StarRaySearch
(D, (wt, wt

0), C,Nm) to perform a line search among possible multiplier values and obtain
an integer solution (w+t, w+t

0 ) with multiplier mt. Algorithm 3 calls Algorithm 6 Auxiliary-
LossRounding which conducts the rounding step.
Return the collection of risk scores {(w+t, w+t

0 ,mt)}t. If desired, return only the best model
according to the logistic loss.

To make the solution space substantially larger than [�5,�4, ..., 4, 5]p, we use multipliers. The143

problem becomes:144

min
w,w0,m

L

✓
w, w0,

1

m
D
◆
, where L

✓
w, w0,

1

m
D
◆

=
nX

i=1

log

✓
1 + exp

✓
�yi

xT
i w + w0

m

◆◆
(2)

such that kwk0  k,w 2 Zp, 8j 2 [1, .., p] wj 2 [�5, 5], w0 2 Z, m > 0.

Note that the use of multipliers does not weaken the interpretability of the risk score: the user still145

sees integer risk scores comprised of values wj 2 {�5,�4, .., 4, 5}, w0 2 Z and points are computed146

from them. Only the risk conversion table is calculated differently, as P (Y = 1|x) = 1/(1+ e�f(x))147

where f(x) = 1
m (wTx+ w0).148

Our method proceeds in three steps, as outlined in Algorithm 1. In the first step, it approximately149

solves the following sparse logistic regression problem with a box constraint (but not integer150

constraints), detailed in Section 3.1 and Algorithm 2.151

(w⇤, w⇤
0) 2 argmin

w,w0

L(w, w0,D), kwk0  k,w 2 Rp, 8j 2 [1, ..., p], wj 2 [�5, 5], w0 2 R.

(3)
The algorithm gives an accurate and sparse real-valued solution (w⇤, w⇤

0).152

The second step produces many near-optimal sparse logistic regression solutions, again without153

integer constraints, detailed in Section 3.2 and Algorithm 5. Algorithm 5 uses (w⇤, w⇤
0) from the154

first step to find a set {(wt, wt
0)}t such that for all t and a given threshold ✏w:155

(wt, wt
0) obeys L(wt, wt

0,D)  L(w⇤, w⇤
0 ,D)⇥ (1 + ✏w) (4)

kwtk0  k, wt 2 Rp, 8j 2 [1, ..., p], wt
j 2 [�5, 5], wt

0 2 R.

After these steps, we have a pool of almost-optimal sparse logistic regression models. In the third156

step, for each coefficient vector in the pool, we compute a risk score. It is a feasible integer solution157

(w+t, w+t
0 ) to the following, which includes a positive multiplier mt > 0:158

L

✓
w+t, w+t

0 ,
1

mt
D
◆
 L(wt, wt

0,D) + ✏t, (5)

w+t 2 Zp, 8j 2 [1, ..., p], w+
j 2 [�5, 5], w0 2 Z,

where we derive a tight theoretical upper bound on ✏t. A detailed solution to (5) is shown in Algorithm159

6 in Appendix A. We do this for a large range of multipliers in Algorithm 3. This third step yields a160

large collection of risk scores, all of which are approximately as accurate as the best sparse logistic161

regression model that can be obtained. All steps in this process are fast and scalable.162
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Algorithm 2 SparseBeamLR(D,k,C,B)! (w, w0)

Input: dataset D, sparsity constraint k, coefficient constraint C, and beam search size B.
Output: a sparse continuous coefficient vector (w, w0) with kwk0 = k, kwk1  C.

1: Define N+ and N� as numbers of positive and negative labels, respectively.
2: w0  log(�N+/N�),w  0 .Initialize the intercept and coefficients.
3: F  ; .Initialize the collection of found supports as an empty set
4: (W,F) ExpandSuppBy1(D, (w, w0),F , B).
5: for t = 2, ..., k do .Beam search to expand the support
6: Wtmp  ;
7: for (w0, w0

0) 2W do .Each of these has support t� 1
8: (W 0,F) ExpandSuppBy1(D, (w0, w0

0),F , B). .Returns  B vectors with supp. t.
9: Wtmp  Wtmp [W 0

10: end for
11: Reset W to be the B solutions in Wtmp with the smallest logistic loss values.
12: end for
13: Pick (w, w0) from W with the smallest logistic loss.
14: Return (w, w0).

3.1 High-quality Sparse Continuous Solution163

There are many different approaches for sparse logistic regression, including `1 regularization [30],164

ElasticNet [38], `0 regularization [12, 20], orthogonal matching pursuit (OMP) [13, 21], but none165

of these approaches seem to be able to handle both the box constraints and the sparsity constraint166

in Problem 3, so we developed a new approach. This approach, in Algorithm 2, SparseBeamLR,167

uses beam search for best subset selection: each iteration contains several coordinate descent steps168

to determine whether a new variable should be added to the support, and it clips coefficients to169

the box [�5, 5] as it proceeds. Hence the algorithm is able to determine, before committing to the170

new variable, whether it is likely to decrease the loss while obeying the box constraints. This beam171

search algorithm for solving (3) implicitly uses the assumption that one of the best models of size k172

implicitly contains variables of one of the best models of size k � 1. This type of assumption has173

been studied in the sparse learning literature [13] (Theorem 5). However, we are not aware of other174

works applying box constraints or beam search for sparse logistic regression. In Appendix E, we175

show that our proposed method has higher solution qualities than the OMP method presented in [13].176

Algorithm 2 calls the ExpandSuppBy1 Algorithm, which has two major steps. The detailed algorithm177

can be found in Appendix A. For the first step, given a solution w, we perform optimization on each178

single coordinate j outside of the current support supp(w):179

d⇤j = argmin
d2[�5,5]

L(w + dej , w0,D) for 8j where wj = 0. (6)

We find d⇤j for each j through an iterative thresholding operation, which is done on all coordinates in180

parallel, iterating several (⇠ 10) times:181

for iteration i: dj  Threshold(j, dj ,w, w0,D) := min(max(cdj ,�5), 5), (7)

where cdj = dj � 1
lj
rjL(w + djej , w0,D), and lj is a Lipschitz constant on coordinate j. Impor-182

tantly, we can perform Equation 7 on all j where wj = 0 in parallel using matrix form.183

For the second step, after the parallel single coordinate optimization is done, we pick the top B184

indices (j’s) with the smallest logistic losses L(w + d⇤jej) and fine tune on the new support:185

wj
new, w0

j
new 2 argmin

a2[�5,5]p,b
L(a, b,D) with supp(a) = supp(w) [ {j}. (8)

This can be done again using a variant of Equation 7 iteratively on all the coordinates in the186

new support. We get B pairs of (wj
new, w0

j
new) through this ExpandSuppBy1 procedure, and the187

collection of these pairs form the set W 0 in Line 8 of Algorithm 2. The ExpandSuppBy1 method is188

computationally efficient because we are doing parallel single coordinate optimization. This gives189

the fine-tuning procedure a warm start.190
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3.2 Collect Sparse Diverse Pool191

We now collect the sparse diverse pool. In Section 3.1, our goal was to find a sparse model (w⇤, w⇤
0)192

with the smallest logistic loss. For high dimensional features or in the presence of highly correlated193

features, there could exist many sparse models with almost equally good performance [6]. Let us find194

those and turn them into risk scores. We first predefine a tolerance gap level ✏ (usually set to 0.3).195

Then, we delete a feature with index j� in the support supp(w⇤) and add a new feature with index196

j+. We select each new index to be j+ whose logistic loss is within the tolerance gap:197

Find all j+ s.t. min
a2[�5,5]

L(w⇤ � w⇤
j�ej� + aej+, w0,D)  L(w⇤, w⇤

0 ,D)(1 + ✏). (9)

We fine-tune the coefficients on each of the new supports and then save the new solution in our pool.198

Details can be found in Algorithm 5. Swapping one feature at a time is computationally efficient, and199

our experiments show it produces sufficiently diverse pools over many datasets.200

3.3 “Star” Search for Integer Solutions201

Algorithm 3 StarRaySearch(D, (w, w0), C,Nm) ! (w+, w+
0 ),m

Input: dataset D, a sparse continuous solution (w, w0), coefficient constraint C, and number of
multipliers to try Nm.
Output: a sparse integer solution (w+, w+

0 ) with kw+k1  C and multiplier m.
1: Define mmax  C/max|w| as discussed in Section 3.3. If mmax = 1, set mmin  0.5; if

mmax > 1, set mmin  1.
2: Pick Nm equally spaced multiplier values ml 2 [mmin,mmax] for l 2 [1, ..., Nm] and call this

set M = {ml}l.
3: Use each multiplier to scale the good continuous solution (w, w0), to obtain (mlw, mlw0),

which is a good continuous solution to the rescaled dataset 1
ml

D.
4: Send each rescaled solution (mlw, mlw0) and its rescaled dataset 1

ml
D to Algorithm 6

AuxiliaryLossRounding( 1
ml

D,mlw,mlw0) for rounding. It returns (w+l, w+l
0 ,ml), where

(w+l, w+l
0 ) is close to (mlw, mlw0), and where (w+l, w+l

0 ) on 1
ml

D has a small logistic loss.
5: Evaluate the logistic loss to pick the best multiplier l⇤ 2 argminl L(w

+l, w+l
0 , 1

mlD)

6: Return (w+l⇤ , w+l⇤

0 ) and ml⇤ .

The last challenge is how to get an integer solution from a continuous solution. To achieve this, we202

use a “star” search that searches along each “ray” of the star, extending each continuous solution203

outward from the origin using many values of a multiplier, as shown in Algorithm 3. The star search204

provides much more flexibility in finding a good integer solution than simple rounding. The largest205

multiplier mmax is set to 5/max(|w⇤|) which will take one of the coefficients to the boundary of the206

box constraint at 5. We set the smallest multiplier to be 1.0 and pick Nm (usually 20) equally spaced207

points from [mmin,mmax]. If mmax = 1, we set mmin = 0.5 to allow shrinkage of the coefficients.208

We scale the coefficients and datasets with each multiplier and round the coefficients to integers using209

the sequential rounding technique in Algorithm 6. For each continuous solution (each “ray” of the210

“star”), we report the integer solution and multiplier with the smallest logistic loss. This process yields211

our collection of risk scores. Note here that a standard line search along the multiplier would not212

work because the rounding error is highly non-convex.213

We briefly discuss how the sequential rounding technique works. Details of this method can be found214

in Appendix A. We initialize w+ = w. Then we round the fractional part of w+ one coordinate at a215

time. At each step, some of the w+
j ’s are integer-valued (so w+

j � wj is nonzero) and we pick the216

coordinate and rounding operation (either floor or ceil) based on which can minimize the following217

objective function, where we will round to an integer at coordinate r⇤:218

r⇤, v⇤ 2 argmin
r,v

nX

i=1

l2i

0

@xir(v � wr) +
X

j 6=r

xij(w
+
j � wj)

1

A
2

, (10)

subject to r 2 {j | w+
j /2 Z} and v 2 {bw+

r c, dw+
r e},
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Figure 2: Performance comparison. FasterRisk outperforms baselines due to larger hypothesis space.

where li is the Lipschitz constant restricted to the rounding interval1 and can be computed as219

li = 1/(1 + exp(yixT
i �i)) with �ij = bwjc if yixij > 0 and �ij = dwje otherwise. After we220

select r⇤ and find value v⇤, we update w+ through w+
r⇤ = v⇤. We repeat this process until w+ is221

on the integer lattice: w+ 2 Zp. The objective function in Equation 10 can be understood as an222

auxiliary upper bound of the logistic loss. Our algorithm provides an upper bound on the difference223

between the logistic losses of the continuous solution and the final rounded solution before we start224

the rounding algorithm (See Theorem 3.1). Additionally, during the sequential rounding procedure,225

we do not need to perform expensive operations such as logarithms or exponentials as required by the226

logistic loss function; the bound and auxiliary function require only sums of squares, not logarithms227

or exponentials. Its derivation and proof are in Appendix C.228

Theorem 3.1. Let w be the real-valued coefficients for the logistic regression model with objective229

function L(w) =
Pn

i=1 log(1 + exp(�yixT
i w)) (the intercept is incorporated). Let w+ be the230

integer-valued coefficients returned by the AuxiliaryLossRounding method. Furthermore, let uj =231

wj � bwjc. Let li = 1/(1 + exp(yixT
i �i)) with �ij = bwjc if yixij > 0 and �ij = dwje otherwise.232

Then, we have an upper bound on the difference between the loss L(w) and the loss L(w+):233

L(w+)� L(w) 

vuutn
nX

i=1

pX

j=1

(lixij)2uj(1� uj). (11)

Note. Our method has a higher prediction capacity than RiskSLIM: its search space is much larger.234

Compared to RiskSLIM, our use of the multiplier permits a number of solutions that grows exponen-235

tially in k as we increase the multiplier. To see this, consider that for each support of k features, since236

logistic loss is convex, it contains a hypersphere in coefficient space. The volume of that hypersphere237

is (as usual) V = ⇡k/2

�( k
2+1)

rk where r is the radius of the hypersphere. If we increase the multiplier to238

2, the grid becomes finer by a factor of 2, which is equivalent to increasing the radius by a factor of 2.239

Thus, the volume increases by a factor of 2k. In general, for maximum multiplier m, the search space240

is increased by a factor of mk over RiskSLIM.241

4 Experiments242

Our experiments focus on three questions: (1) How good is FasterRisk’s solution quality compared243

to baselines? (§4.1) (2) How fast is FasterRisk compared with the state-of-the-art? (§4.2) (3) How244

1The Lipschitz constant here is much smaller than the one in Section 3.1 due to the interval restriction.
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does each of our proposed technique, including sparse beam search, diverse pool, and multipliers,245

contribute to our solution quality? (see Appendix E)246

We compare with RiskSLIM (the current state-of-the-art), as well as algorithms Pooled-PLR-RD,247

Pooled-PLR-RSRD, Pooled-PRL-RDSP, Pooled-PLR-Rand and Pooled-PRL-RDP. These algorithms248

were all previously shown to be inferior to RiskSLIM [34]. These methods first find a pool of sparse249

continuous solutions using different regularizations of ElasticNet (hence the name “Pooled Penalized250

Logistic Regression” – Pooled-PLR) and then round the coefficients with different techniques. Details251

are in Appendix D.3. The best solution is chosen from this pool of integer solutions that obeys252

the sparsity and box constraints and has the smallest logistic loss. For each dataset, we perform253

5-fold cross validation and report training and test AUC. Details about datasets, experimental setup,254

evaluation metrics, loss values, and computing platform/environment can be found in Appendix D.255

More experimental results appear in Appendix E. Code from [9, 15, 27, 28] is not publicly available.256

4.1 Solution Quality257

We first evaluate FasterRisk’s solution quality. Figure 2 shows the training and test AUC on six258

datasets (results for training loss appear in Appendix E). FasterRisk (the red line) outperforms all259

baselines, consistently obtaining the highest AUC scores on both the training and test sets. Notably,260

our method obtains better results than RiskSLIM, which uses a mathematical solver and is the261

current state-of-the-art method for scoring systems. This superior performance is due to the use of262

multipliers, which increases the complexity of the hypothesis space. A more detailed comparison263

between FasterRisk and RiskSLIM appears in Figure 3.264

FasterRisk performs significantly better than the other baselines for two reasons. First, the continuous265

sparse solutions produced by ElasticNet are low quality for very sparse models. Second, it is difficult266

to obtain an exact model size by controlling `1 regularization. For example, Pooled-PLR-RD and267

Pooled-PLR-RDSP do not have results for model size 10 on the mammo datasets, because such a268

model size does not exist in the pooled solutions after rounding.269

Figure 3: Performance comparison between FasterRisk and RiskSLIM.

4.2 Runtime Comparison270

The major drawback of RiskSLIM is its limited scalability. Figure 4 shows that FasterRisk (red271

bars) is significantly faster than RiskSLIM (blue bars) in general. We ran these experiments with a272

900 second (15 minute) timeout. RiskSLIM finishes running on small datasets (mammo and breast273

cancer), but it times out on the larger datasets, timing out on models larger than 3 features for bank274

and spambase, larger than 4 features for adult, and larger than 7 features for mushroom. Thus, we see275

that FasterRisk is both faster and more accurate than RiskSLIM.276
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Figure 4: Runtime Comparison. Runtime (in seconds) versus model size for our method FasterRisk
(in red) and the RiskSLIM (in blue). The shaded blue bars indicate cases that timed out at 900
seconds. Breastcancer is small and takes approximately 2 seconds for both algorithms.

4.3 Example Scoring Systems277

The main benefit of risk scores is their interpretability. We place a few example risk scores in Table 1278

to allow the reader to judge for themselves. More risk scores examples can be found in Appendix F.

1. no high school diploma -4 points ...
2. high school diploma only -2 points + ...
3. age 22 to 29 -2 points + ...
4. any capital gains 3 points + ...
5. married 4 points + ...

SCORE =

SCORE <-4 -3 -2 -1 0
RISK <1.3% 2.4% 4.4% 7.8% 13.6%

SCORE 1 2 3 4 7
RISK 22.5% 35.0% 50.5% 65.0% 92.2%

(a) FasterRisk models for the adult dataset, predicting
salary> 50K.

1. odor=almond -5 points ...
2. odor=anise -5 points + ...
3. odor=none -5 points + ...
4. odor=foul 5 points + ...
5. gill size=broad -3 points + ...

SCORE =

SCORE -8 -5 -3 �2
RISK 1.62% 26.4% 73.6% >99.8%

(b) FasterRisk model for the mushroom dataset,
predicting whether a mushroom is poisonous.

Table 1: Example FasterRisk models

279

5 Conclusion280

FasterRisk produces a collection of high-quality risk scores within minutes. Its performance owes to281

three key ideas: a better algorithm for sparsity and box-constrained continuous models, using a pool282

of diverse solutions, and the use of the star search, which leverages multipliers and a new sequential283

rounding technique. FasterRisk is suitable for high-stakes decisions, and permits domain experts a284

collection of interpretable models to choose from.285
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