
Accelerated Training of Physics Informed Neural
Networks (PINNs) using Meshless Discretizations

Anonymous Author(s)
Affiliation
Address
email

Abstract

Physics-informed neural networks (PINNs) are neural networks trained by using1

physical laws in the form of partial differential equations (PDEs) as soft constraints.2

We present a new technique for the accelerated training of PINNs that combines3

modern scientific computing techniques with machine learning: discretely-trained4

PINNs (DT-PINNs). The repeated computation of the partial derivative terms in5

the PINN loss functions via automatic differentiation during training is known to6

be computationally expensive, especially for higher-order derivatives. DT-PINNs7

are trained by replacing these exact spatial derivatives with high-order accurate8

numerical discretizations computed using meshless radial basis function-finite9

differences (RBF-FD) and applied via sparse-matrix vector multiplication. While10

in principle any high-order discretization may be used, the use of RBF-FD allows11

for DT-PINNs to be trained even on point cloud samples placed on irregular12

domain geometries. Additionally, though traditional PINNs (vanilla-PINNs) are13

typically stored and trained in 32-bit floating-point (fp32) on the GPU, we show14

that for DT-PINNs, using fp64 on the GPU leads to significantly faster training15

times than fp32 vanilla-PINNs with comparable accuracy. We demonstrate the16

efficiency and accuracy of DT-PINNs via a series of experiments. First, we explore17

the effect of network depth on both numerical and automatic differentiation of a18

neural network with random weights and show that RBF-FD approximations of19

third-order accuracy and above are more efficient while being sufficiently accurate.20

We then compare the DT-PINNs to vanilla-PINNs on both linear and nonlinear21

Poisson equations and show that DT-PINNs achieve similar losses with 2-4x faster22

training times on a consumer GPU. Finally, we also demonstrate that similar23

results can be obtained for the PINN solution to the heat equation (a space-time24

problem) by discretizing the spatial derivatives using RBF-FD and using automatic25

differentiation for the temporal derivative. Our results show that fp64 DT-PINNs26

offer a superior cost-accuracy profile to fp32 vanilla-PINNs, opening the door to a27

new paradigm of leveraging scientific computing techniques to support machine28

learning.29

1 Introduction30

Partial differential equations (PDEs) provide a convenient framework to model a large number of31

phenomena across science and engineering. In real-world scenarios, PDEs are typically challenging32

or impossible to solve using analytical techniques, and must instead be approximately solved using33

a numerical method. A variety of numerical methods to solve these PDEs have been developed34

including but not limited to finite difference (FD) methods (19) (which work primarily on regular35

domains partitioned into Cartesian grids) and finite element (FE) methods (36) (which work on36

irregular domains but require partitioning the domain into multidimensional simplices). A modern37

class of numerical methods called meshless or meshfree methods generalize finite difference methods38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

in such a way as to remove the dependence on Cartesian grids, thereby allowing for the numerical39

solution of PDEs on point clouds. Of these, radial basis function-finite differences (RBF-FD) are40

among the most popular and widely-used (3; 5; 37; 8; 9; 1; 11; 12; 13; 10; 25; 26; 14; 33; 18), though41

a host of other such methods also exist. Much like FD or FE methods, these meshless methods can42

also approximate solutions to a desired order of accuracy.43

More recently, PDE solvers based on machine learning (ML) have begun to gain in popularity due to44

the inherent ability of ML techniques such as neural networks (NNs) to recover highly complicated45

functions from data specified at arbitrary locations (15; 20). We focus on a popular class of ML-based46

meshless methods called physics-informed neural networks (PINNs) (27). PINNs can be used both47

to discover/infer PDEs that govern a given data set, and as replacements for meshless numerical48

methods such as RBF-FD for directly approximating solutions to PDEs. Our focus in this work is49

on the latter problem, though our techniques extend straightforwardly to inferring PDEs as well.50

PINNs are typically multilayer feedforward deep NNs (DNNs) that are trained using PDEs and51

boundary conditions as soft constraints, leveraging automatic differentiation (autograd) for computing52

spatial and/or temporal derivatives appearing in the PDE terms. The original PINNs, often referred53

to as vanilla-PINNs, are challenging to train, at least partly because PDE-based constraints lead54

to complicated loss landscapes (17). These issues are somewhat ameliorated by using domain55

decomposition (X-PINNs) (16) or gradient-enhanced training (G-PINNs) (38). Other approaches for56

ameliorating these issues involve curriculum training or sequence-to-sequence learning (17). Many57

of these extensions can help improve training and test accuracy in addition to reducing training58

time. Much like other DNNs, PINNs are typically trained in 32-bit floating-point (i.e., fp32 or single59

precision).60

In this work, we introduce a new technique for accelerating the training of vanilla-PINNs. Our61

technique relies on two key features: (a) using RBF-FD to compute highly accurate (nevertheless62

approximate) spatial derivatives in place of autograd, and (b) training the DNN in fp64 rather than63

fp32. These new discretely-trained PINNs (DT-PINNs) can be trained significantly faster than fp3264

vanilla-PINNs on consumer desktop GPUs with no loss in accuracy or change in DNN architecture.65

The use of RBF-FD allows DT-PINNs to retain the meshless nature of vanilla-PINNs, thereby66

allowing for the solution of PDEs on irregular domains. As RBF-FD uses sparse-matrix vector67

multiplication (SpMV) to approximate the derivatives, DT-PINNs are also parallelizable on modern68

GPU architectures. It is important to note that DT-PINNs use autograd for the actual optimization of69

the PINN weights; only PDE derivatives are discretized using RBF-FD.70

The NN literature does contain efforts to replace automatic differentiation with numerical differentia-71

tion. For instance, recent work showed that FD approximations can be efficient for learning generative72

models via score matching (23). Another example is FD-Net, an NN architecture that involves learn-73

ing FD-like filters for faster prediction of PDEs (35). In the PINN literature, fractional-PINNs74

(F-PINNs) use numerical differentiation as autograd cannot compute fractional derivatives (22).75

Neverthless, to the best of our knowledge, ours is the first work on using meshless high-order accu-76

rate FD-like methods in conjunction with PINNs, allowing them to be trained without any loss in77

accuracy on irregular domains (just as autograd does). An alternative to replacing autograd would78

involve eliminating inefficiencies via Taylor-mode differentiation (4). However, we show that at least79

part of the speedups observed in DT-PINNs is because numerical differentiation results in training80

completing in fewer epochs than if autograd were to be used.81

To alleviate concerns about replacing autograd with RBF-FD, we first compare fp64 RBF-FD82

approximation of different orders of accuracy against fp32 autograd for DNNs with different depths83

and show the cost benefits of using higher-order accurate RBF-FD. Then, to illustrate the features84

of DT-PINNs, we focus for brevity on two purely spatial PDEs (the nonlinear and linear Poisson85

equations) and one space-time PDE (the heat equation). We use these settings to compare DT-86

PINNs and vanilla-PINNs for relative errors, timings, and speedups on a simple desktop GPU. We87

demonstrate through our experiments that DT-PINNs offer a superior cost-accuracy profile over88

vanilla-PINNs.89

The remainder of this paper is organized as follows. In Section 2, we review both vanilla-PINNs and90

RBF-FD. Next, in Section 3, we discuss how to train DT-PINNs to solve both the Poisson and heat91

equations. Then, in Section 4, we present experimental results comparing RBF-FD and autograd, and92

comparing DT-PINNs against vanilla-PINN on the Poisson and heat equations. We summarize our93

2

results and discuss possible future work in Section 5. Finally, the appendix contains code snippets94

and key implementation details.95

Notation: We use x to refer to spatial coordinates in d dimensions. On the other hand, a bolded96

quantity such as c or u indicates a vector with more than d elements (an array). Finally, the ∼ symbol97

on top of a quantity indicates that the quantity is an approximation.98

2 Review99

We now provide a brief mathematical review of both vanilla-PINNs and RBF-FD discretizations.100

Unless we note otherwise, all derivatives in this section are spatial or temporal. We focus on three101

prototypical PDEs: the nonlinear Poisson equation, the linear Poisson equation, and the heat equation.102

2.1 Physics-informed neural networks103

Let Ω ⊂ Rd be a domain with boundary given by ∂Ω; here, d is the spatial dimension. We will focus104

on the solution of the nonlinear Poisson equation on Ω using PINNs. Let x ∈ Rd, and let u : Rd → R105

be the solution to106

∆u(x) = eu(x) + f(x), x ∈ Ω, (1)
(αn(x) · ∇+ β)u(x) = g(x), x ∈ ∂Ω, (2)

where ∆ is the Laplacian in Rd, ∇ is the Rd gradient, n(x) is the unit outward normal vector on the107

boundary ∂Ω, f(x) and g(x) are known functions, and α, β ∈ R are known coefficients. If the eu(x)108

term is dropped from (1), we obtain the simpler linear Poisson equation:109

∆u(x) = f(x), x ∈ Ω. (3)

The vanilla-PINN technique for solving either Poisson problem involves approximating the unknown110

solution u(x) by a DNN ũ(x,w) (where w is a vector of unknown NN weights), so that ∥ũ(x,w)−111

u(x)∥ ≤ ϵ for some norm ∥.∥ and some tolerance ϵ. In the absence of existing solution data, this112

is accomplished by enforcing (3) and (2) as soft constraints on ũ(x) to find the weights w during113

training. Denote by X = {xk}Nk=1 the set of training points at which these constraints are enforced;114

in the context of PDEs, these are also called collocation points. For convenience, we divide X into115

two sets: Ni interior points in the set Xi and Nb boundary points in the set Xb; then, X = Xi ∪Xb,116

and N = Ni +Nb. Further, let B = αn(x) · ∇+ β. The vanilla-PINN training loss e(x,w) can then117

be written as:118

e(x,w) =
1

Ni

Ni∑
j=1

(
∆ũ(x,w)|x=xj

− eũ(xj) − f(xj)
)2

︸ ︷︷ ︸
PDE loss in interior

+
1

Nb

Nb∑
i=1

(
Bũ(x,w)|x=xi

− g(xi)
)2

︸ ︷︷ ︸
Boundary condition loss on boundary

,

(4)

where ∆ and the ∇ term in B are both applied through autograd. The tanh activation function is119

typically used, L-BFGS is used as the optimizer for finding the weights w, and training is typically120

done in fp32 (17). For the linear Poisson equation, one simply omits the eũ term from the loss above.121

For time-dependent PDEs, the PINN becomes a function of space and time ũ(x, t). We focus on the122

forced heat equation, given by123

∂u(x, t)

∂t
= ∆u(x, t) + f(x, t), x ∈ Ω, (5)

Bu(x, t) = g(x, t), x ∈ ∂Ω, (6)
u(x, 0) = u0(x), (7)

where (7) is an initial condition and u0(x) is some known function. While the ∆ term is handled124

via autograd, there are two options to handle temporal derivatives: in a continuous fashion or125

a time-discrete fashion. In the former, one samples the full space-time interval Ω × [0, T] with126

collocation/training points, and then uses autograd to compute all spatial and temporal derivatives.127

The loss terms are also augmented with the initial condition (7), which is enforced on the full space-128

time solution. In the time-discrete approach, one typically discretizes the time derivative using an129

appropriate scheme (such as a Runge-Kutta method), and then proceeds in a step by step fashion. We130

focus on the continuous approach in this work.131

3

2.2 Radial basis function-finite differences (RBF-FD)132

We now briefly review RBF-FD methods. Given some function f : Rd → R, the goal of any FD133

formula is to approximate the action of a linear operator L on that function (i.e., to approximate Lf)134

at some location x1. This is typically accomplished by using a weighted linear combination of f at135

x1 and its n− 1 nearest neighbors. Mathematically, this can be written as:136

Lf(x)|x=x1
≈

n∑
k=1

ckf(xk), (8)

where the real numbers ck are called FD weights, and the set of points x1, . . . , xn is called an FD137

stencil. In general, given a set of samples X = {xj}Nj=1, one can repeat the above procedure to find138

FD weights at every single point. These weights can be assembled into an N ×N differentiation139

matrix L so that Lf(x)|X ≈ L f(x)|X . If n << N , L will be a sparse matrix with at most n140

non-zero elements per row. If X lies on a Cartesian grid, the entries of L (i.e., the FD weights ck)141

are known in advance. However, if X is a more general point cloud, the weights ck are unknown,142

and standard FD (generated from polynomial interpolation) cannot be used to generate the entries143

of L; this follows from the Mairhuber-Curtis theorem (7). The RBF-FD method involves using an144

interpolatory combination of RBFs and polynomials instead. Without loss of generality, we describe145

the RBF-FD procedure for x1 and its n− 1 nearest neighbors. Let ϕ(r) = rm, where m is odd, be146

a radial kernel (a polyharmonic spline), and qj(x), j = 1, . . . ,
(
ℓ+d
d

)
be a basis for polynomials of147

total degree ℓ in d dimensions; we use tensor-product Legendre polynomials. The RBF-FD weights148

for the operator L at the point x1 are computed by solving the following dense (block) linear system149

on this stencil:150 [
A P
PT 0

] [
c
λ

]
=

[
La
Lq

]
, (9)

where151

Aij = ϕ (∥xi − xj∥) , i, j = 1, . . . , n, Pij = qj(xi), i = 1, . . . , n, j = 1, . . . ,

(
ℓ+ d

d

)
, (10)

La = Lϕ (∥x− xj∥)|x=x1
, Lq = Lqj(x)|x=x1

, j = 1, . . . ,

(
ℓ+ d

d

)
, (11)

where c is the (column) vector of n RBF-FD weights. The vector λ is a set of Lagrange multipliers152

enforcing the condition PT c = Lq, thereby ensuring that (a) the RBF-FD weights c can exactly153

differentiate all polynomials up to total degree ℓ; and that (b) the error in the RBF-FD approximation154

to L when applied to all other functions is O(hℓ+1−θ), where 0 ≤ h ≤ 1 is a measure of sample155

spacing in the stencil, and θ is the number of derivatives in the differential operator L (6). We set156

ℓ = p+ θ− 1 based on the desired order of convergence p so that the error is O(hp). We then set the157

stencil size to n = 2
(
ℓ+d
d

)
+ 1 as this ensures that the above linear system has a solution (2), and158

also set m = ℓ if ℓ is odd, and m = ℓ− 1 if ℓ is even (29). L becomes more dense for higher values159

of p and dimension d, as n = O(pd). When this procedure is repeated for each point in the set X ,160

the cost scales as O(N) for fixed n, with further speedups possible by computing multiple sets of161

weights using each stencil (28; 29; 31; 34; 32).162

Ghost points When tackling boundary conditions involving derivatives (such as in (2)) using RBF-163

FD, it is common to include a set of Nb ghost points outside the domain boundary ∂Ω into the set of164

samples to ensure that RBF-FD stencils at the boundary are less one-sided; this aids in numerical165

stability and accuracy. Ghost points allow us to also enforce the PDE at both the interior and boundary166

points. We therefore define and use the extended set X̃ = Xi ∪Xb ∪Xg, where Xg is the set of167

ghost points. For the remainder of this article, let the RBF-FD differentiation matrix for ∆ be L168

(dimensions (Ni +Nb)× (Ni + 2Nb)), and for B be B (dimensions Nb × (Ni + 2Nb)).169

3 Discretely-Trained PINNs (DT-PINNs)170

Having described both vanilla-PINNs and RBF-FD, we are now ready to describe DT-PINNs. In171

short, DT-PINNs are PINNs that are trained using the sparse differentiation matrices L and B in172

place of the autograd operations used to compute the Laplacian and boundary operators in the loss173

function (4) (and its heat equation equivalent). All operations are carried out in fp64.174

4

Poisson Equation Focusing first on the nonlinear Poisson equation (1), recall that ũ(x,w) is the175

PINN approximation to the true solution u(x). Let the evaluation of ũ(x,w) on the set X̃ be ũ, i.e.,176

ũ is obtained by evaluating ũ(x,w) at interior, boundary, and ghost points. Further define the vector177

e, which is the loss function evaluated at only the interior and boundary points, i.e., e = e(x,w)|X .178

Then, the DT-PINN loss function can be written as:179

e =
1

Ni +Nb
∥Lũ− exp(ũ)− f∥22︸ ︷︷ ︸

PDE loss in interior and on boundary

+
1

Nb
∥Bũ− g∥22︸ ︷︷ ︸

Boundary condition loss on boundary

, (12)

where L and B were defined previously, exp(ũ) is the element-wise exponential of the vector ũ, and180

f = f(x)|X , and g = g(x)|Xb
; here, f has dimension (Ni +Nb)× 1, and g has dimension Nb × 1.181

For efficiency, L and B can be precomputed using RBF-FD before the training process begins, and182

then simply multiplied with the vector ũ to obtain its numerical derivatives. The loss function (12)183

is then minimized over w as usual using autograd in conjunction with a suitable optimizer. For the184

linear Poisson equation (3), we simply drop the exp(ũ) term.185

Heat Equation When using DT-PINNs for the heat equation, we use a mixed training technique so186

that all temporal derivatives are discretized with autograd, and the spatial derivatives are discretized187

with RBF-FD. We carefully order the evaluations of the network so that L and B multiply the right188

quantities. Let ũ(x, t,w) be the PINN, and recall that we have Nt time steps over the interval [0, T];189

in addition, we also have the initial condition at time t = 0, making for a total of Nt + 1 steps.190

Define ũk = ũ|x=X̃,t=k△t, where △t is the timestep. This vector is the evaluation of ũ on all spatial191

locations (including ghost nodes) for the k-th time slice. This definition in turn allows us to define192

two vectors, ũ∆ and ũB as follows:193

ũ∆ =

Lũ0

Lũ1

...
LũNt

 , ũB =

Bũ0

Bũ1

...
BũNt

 . (13)

The vector ũ∆ has dimensions (Nt + 1)(Ni +Nb) × 1, and ũB has dimensions NtNb × 1. Next,194

we define the data vectors f and g as follows:195

f =

f0
f1
...

fNt

 , g =

g0

g1

...
gNt

 , (14)

where fk = f(x, t)|x=X,t=k△t, and gk = g(x, t)|x=Xb,t=k△t. Finally, we define two more vectors:196

u0 = u0(x)|X , the vector evaluating the initial condition on the set X (interior and boundary points);197

and ũt, the vector of evaluations of ∂ũ
∂t at spatial locations (interior and boundary) for each time slice:198

ũt =

(
∂ũ
∂t

)
0(

∂ũ
∂t

)
1

...(
∂ũ
∂t

)
Nt

 , (15)

where
(
∂ũ
∂t

)
k
= ∂ũ

∂t

∣∣
x=X,t=k△t

. This vector is computed using autograd. With these different vectors199

defined, we can finally write the DT-PINN loss vector e for the heat equation as200

e =
1

Ni +Nb
∥u0 − ũ|x=X,t=0 ∥

2
2︸ ︷︷ ︸

Initial condition

+
1

(Nt + 1)(Ni +Nb)
∥ũt − ũ∆ − f∥22︸ ︷︷ ︸

PDE loss in interior and on boundary

+
1

(Nt + 1)Nb
∥ũB − g∥22︸ ︷︷ ︸

Boundary condition loss on boundary

.

(16)

4 Results201

We now present experimental results comparing DT-PINN and vanilla-PINN performance on the202

linear Poisson equation (3), the nonlinear Poisson equation (1), and the forced heat equation (5).203

5

Setup All experiments were run for 5000 epochs on an NVIDIA GeForce RTX 2070. All results are204

reproducible with the consistent random seeds we used in the experiments. We used the L-BFGS205

optimizer with manually fine-tuned learning rates for both vanilla-PINNs and DT-PINNs. Both206

DT-PINNs and vanilla-PINNs used a constant NN depth of s = 4 layers with 50 nodes each across207

all runs. We use quasi-uniform collocation points generated using a node generator (30). For the208

Poisson experiments, we report errors on a test set of Ntest = 21748 points. For the heat equation,209

we report results directly at the collocation points for convenience. For all experiments, the spatial210

domain Ω is set to211

Ω = {x ∈ Rd | ∥x∥22 ≤ 1}. (17)

This corresponds to the unit disk in 2D, whose boundary is the unit circle ∥x∥22 = 1. In the time-212

dependent 2D heat equation experiment, the space-time domain is chosen to be Ω× [0, 1], i.e., the213

time domain runs from time t = 0 to time t = 1. The interval [0, 1] is evenly divided into 24 time214

steps so that Nt = 24 (excluding t = 0), and the time-step was set to △t = 1
24 . We measure all215

errors against a manufactured (specified) solution u, and specify f so that the solution holds true.216

The boundary condition term g is computed by applying the operator B to u; we use α = β = 1 for217

all tests. To compare DT-PINNs and vanilla-PINNs to the manufactured solutions u, we report the218

relative ℓ2 error219

eℓ2 =
∥ũ− u∥2
∥u∥2

, (18)

where u is the true solution vector, and ũ is either the DT-PINN or vanilla-PINN solution vector.220

4.1 Effect of neural network depth221

(a) (b)

Figure 1: Autograd properties as a function of network depth s. The figure shows (a) effect of neural
network depth s on the relative error (with respect to fp64 autograd) and (b) time taken for one
application of autograd on fp32 and fp64, compared to the time taken for SpMV using RBF-FD.

We first study the effect of PINN depth (fixing the number of nodes per layer) s on computing the222

Laplacian ∆ of the output with respect to the spatial variable x using either autograd or RBF-FD. We223

compute errors against fp64 autograd for fp32 autograd and for RBF-FD with p = 2, 3, 4, and 5. All224

errors were computed on N = 19638 quasi-uniform collocation points. The results are in shown in225

Figure 1a. We see fp32 autograd is the most accurate, and that increasing p increases the accuracy of226

RBF-FD by about two orders of magnitude. Only the p = 5 case appears to match fp32 autograd in227

accuracy, but errors are reasonably low for p = 3 and p = 4 also. In Figure 1b, we report the time228

taken for the same test. It is immediately clear that fp64 autograd is significantly more expensive229

than the fp32 variant, though both costs scale slowly with the network depth s. More importantly, the230

time taken for fp64 RBF-FD (for all orders) is both lower than both fp32 and fp64 autograd and is231

independent of the network depth s.232

6

(a) (b) (c)

Figure 2: fp64 DT-PINNs and fp32 vanilla-PINN results on the linear Poisson equation (3) for
different numbers of collocation points (N) and orders of accuracy (p). We show (a) the relative error
in the PINN solution; (b) the time taken to converge to lowest relative error; and (c) the speedup
attained by fp64 DT-PINNs relative to fp32 vanilla-PINN for those times.

4.2 Linear Poisson equation233

Next, we study the performance of fp64 DT-PINNs and fp32 vanilla-PINNs on the linear Poisson234

equation (3) on the domain (17). Letting x = [x1, x2], we specify the true solution u to be235

u(x) = u(x1, x2) = 1 + sin(πx1) cos(πx2), (19)

and enforce this by setting f = ∆u. We then solve for ũ as described in Section 3. The results of this236

experiment are shown in Figure 2. We present relative errors (Figure 2a), wall clock time (Figure237

2b), and speedup (Figure 2c). We do not present results for fp64 vanilla PINNs as they were almost238

identical to the fp32 vanilla-PINNs in terms of relative errors while being far slower. It is important239

to note that fp64 DT-PINNs were completely stored and trained in fp64, a format widely known to be240

significantly slower on the GPU than fp32.241

Figure 2a shows the relative errors for DT-PINNs as a function of the number of collocation points242

N . DT-PINNs for p = 3, 4, 5 produce similar relative errors to vanilla-PINN for the same value of N .243

In contrast, the DT-PINN using p = 2 is generally less accurate, showing that higher-order accuracy244

is needed to reach the same relative errors as fp32 vanilla-PINNs. Examining Figures 2b and 2c,245

we also see that all fp64 DT-PINNs (using RBF-FD) can be trained much more rapidly than fp32246

vanilla-PINNs. In fact, Figure 2c shows a maximum training speedup of 4x for DT-PINNs even if247

p = 2 is ignored. In general, fp64 DT-PINNs for p > 2 are trained much more quickly than248

vanilla-PINNs without a significant loss in accuracy. We also note that using fp32 DT-PINNs did249

not lead to greater speedups over the fp64 DT-PINNs (results not shown); in addition, fp32 DT-PINNs250

were not as accurate as their fp64 counterparts. The reason for the superior performance of fp64251

DT-PINNs becomes clearer when we examine the number of training epochs as a function of the252

number of collocation points N (Figure 3). Figures 3a and 3b both illustrate that both fp32 and fp64253

DT-PINNs reach their lowest relative errors in fewer epochs than both fp32 and fp64 vanilla-PINNs.254

This implies that the discrete losses are more easily minimized with respect to the NN weight vectors255

w. However, Figure 3b shows that fp64 DT-PINNs take fewer epochs to train as N is increased (while256

also achieving lower errors); in contrast, fp32 DT-PINNs exhibit no such behavior. We also attempted257

to train fp32 vanilla-PINNs using ghost points, but using ghost points offered no improvement (results258

not shown).259

4.3 Nonlinear Poisson equation260

Next, to understand the influence of nonlinearities in terms not including the differential operator,261

we test the performance of DT-PINNs on the nonlinear Poisson equation (1). To measure errors, we262

use the manufactured solution given by (19), and set f = ∆u− eu. The results are shown in Figure263

4; we omit p = 2 to make the trends in the higher-order methods clearer. First, Figure 4a shows264

7

(a) (b)

Figure 3: Number of training epochs to achieve the lowest relative error as a function of number of
collocation points N and order p for (a) fp32 DT-PINNs and (b) fp64 DT-PINNs.

(a) (b) (c)

Figure 4: fp64 DT-PINNs and fp32 vanilla-PINN results on the nonlinear Poisson equation (1) for
different numbers of collocation points (N) and orders of accuracy (p). We show (a) the relative error
in the PINN solution; (b) the time taken to converge to lowest relative error; and (c) the speedup
attained by fp64 DT-PINNs relative to fp32 vanilla-PINN for those times.

that despite some outliers, fp64 DT-PINNs achieve comparable relative errors to fp32 vanilla-PINNs.265

Further, Figure 4b shows that DT-PINNs are still trained faster than vanilla-PINNs. However, when266

comparing Figure 4c to Figure 2c (linear Poisson equation), we see that the average speedup is higher267

for the linear Poisson equation than the nonlinear one, though we still obtain reasonable speedups in268

the latter case. This highlights one of the potential limitations of DT-PINNs: they may not offer269

speedups over vanilla-PINNs if nonlinear terms not involving differential operators dominate270

training times.271

4.4 Heat equation272

Next, we compare fp64 DT-PINNs and fp32 vanilla-PINNs on the 2D heat equation. We specify the273

true solution u to be274

u(x, t) = u(x1, x2, t) = 1 + sin(πx1) cos(πx2) sin(πt), (20)

and specify f = ∂u
∂t −∆u so that the solution u satisfies the heat equation for all space-time. We275

compute the initial condition as u0(x, 0) = u(x1, x2, 0) = 1. We trained on N = 828 spatial276

collocation points over 25 time slices (including time t = 0) for a total of 20, 700 spacetime277

8

(a) (b)

Figure 5: fp64 DT-PINN and fp32 vanilla-PINN results on heat equation for all p on N = 828
spatial points and Nt = 24 time-steps. The figure shows (a) the relative error for fp64 DT-PINNs
as a function of approximation order p; and (b) the speedup attained by fp64 DT-PINNs over fp32
vanilla-PINNs as a function of p.

collocation points; we express all results as a function of p. These results are shown in Figure 5.278

First, Figure 5a shows similar results to the 2D Poisson equation, with p > 2 achieving relative errors279

similar to fp32 DT-PINNs. Figure 5b shows that we achieve 2-2.5x speedups over vanilla-PINNs. We280

observed in our experiments that the speedup appears to increase as a function of the number of time-281

steps Nt (results not shown). We conclude that DT-PINNs for p > 2 offer a superior cost-accuracy282

profile over vanilla-PINNs even in a time-dependent problem with mixed training.283

5 Summary and future work284

We presented a novel technique, DT-PINNs, that involves training PINNs by using RBF-FD for285

spatial derivatives, and using fp64 weights and training instead of fp32. This involved replacing286

all autograd operations (dense matrix-matrix multiplies) related to PDE loss terms with an SpMV287

operation. We showed that using an RBF-FD approximation order of p > 2 resulted in DT-PINNs288

that were comparable in accuracy to vanilla-PINNs while offering 2-4x speedups in training times289

for both the linear and nonlinear Poisson equations. For p = 2 (a second-order discretization), we290

achieved much higher speedups (20x or above for small training sets), but with a loss of accuracy for291

small N . We also showed that DT-PINNs trained in a mixed fashion (autograd for time, RBF-FD for292

space) also achieved comparable accuracy with a 2-2.5x speedup on the heat equation. DT-PINNs293

therefore constitute a new paradigm for scientific machine learning that allow practitioners to leverage294

existing sophisticated scientific computing techniques to accelerate ML training times.295

There are several possible extensions to our current work. It is likely that using DT-PINNs in296

conjunction with X-PINNs and G-PINNs will yield even greater speedups in training times. Further,297

DT-PINNs open the door to leveraging compute more efficiently. For instance, the SpMV operations298

could be parallelized using distributed memory systems in conjunction with GPUs, thereby allowing299

scaling to very large training sets; alternatively, the SpMV operation could be parallelized on300

many-core CPUs while other operations are conducted on the GPU. It may also be profitable to301

explore mixed-precision training of DT-PINNs using combinations of fp64, fp32, and even fp16302

in conjunction with RBF-FD. Finally, DT-PINNs can be viewed as vanilla-PINNs with partially303

linearized constraints; it may be profitable to explore other types of constraint linearization to304

accelerate training and simplify loss function landscapes.305

References306

[1] Barnett, G. A. (2015). A Robust RBF-FD Formulation based on Polyharmonic Splines and307

Polynomials. PhD thesis, University of Colorado Boulder.308

[2] Bayona, V., Flyer, N., Fornberg, B., and Barnett, G. A. (2017). On the role of polynomials in309

RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys., 332:257–273.310

9

[3] Bayona, V., Moscoso, M., Carretero, M., and Kindelan, M. (2010). RBF-FD formulas and311

convergence properties. J. Comput. Phys., 229(22):8281–8295.312

[4] Bettencourt, J., Johnson, M. J., and Duvenaud, D. (2019). Taylor-mode automatic differentiation313

for higher-order derivatives in jax.314

[5] Davydov, O. and Oanh, D. T. (2011). Adaptive meshless centres and RBF stencils for Poisson315

equation. J. Comput. Phys., 230(2):287–304.316

[6] Davydov, O. and Schaback, R. (2018). Minimal numerical differentiation formulas. Numerische317

Mathematik, 140(3):555–592.318

[7] Fasshauer, G. E. (2007). Meshfree Approximation Methods with MATLAB. Interdisciplinary319

Mathematical Sciences - Vol. 6. World Scientific Publishers, Singapore.320

[8] Flyer, N., Barnett, G. A., and Wicker, L. J. (2016a). Enhancing finite differences with radial basis321

functions: Experiments on the Navier-Stokes equations. J. Comput. Phys., 316:39–62.322

[9] Flyer, N., Fornberg, B., Bayona, V., and Barnett, G. A. (2016b). On the role of polynomials in323

RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys., 321:21–38.324

[10] Flyer, N., Lehto, E., Blaise, S., Wright, G. B., and St-Cyr, A. (2012). A guide to RBF-generated325

finite differences for nonlinear transport: shallow water simulations on a sphere. J. Comput. Phys.,326

231:4078–4095.327

[11] Flyer, N. and Wright, G. B. (2007). Transport schemes on a sphere using radial basis functions.328

J. Comput. Phys., 226:1059–1084.329

[12] Flyer, N. and Wright, G. B. (2009). A radial basis function method for the shallow water330

equations on a sphere. Proc. Roy. Soc. A, 465:1949–1976.331

[13] Fornberg, B. and Lehto, E. (2011). Stabilization of RBF-generated finite difference methods for332

convective PDEs. J. Comput. Phys., 230:2270–2285.333

[14] Fuselier, E. J. and Wright, G. B. (2013). A high-order kernel method for diffusion and reaction-334

diffusion equations on surfaces. J. Sci. Comput., 56(3):535–565.335

[15] Han, J., Jentzen, A., and E, W. (2018). Solving high-dimensional partial differential equations336

using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510.337

[16] Jagtap, A. D. and Karniadakis, G. E. (2020). Extended physics-informed neural networks338

(xpinns): A generalized space-time domain decomposition based deep learning framework for339

nonlinear partial differential equations. Communications in Computational Physics, 28(5):2002–340

2041.341

[17] Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and Mahoney, M. W. (2021). Characterizing342

possible failure modes in physics-informed neural networks. In Beygelzimer, A., Dauphin, Y.,343

Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems.344

[18] Lehto, E., Shankar, V., and Wright, G. B. (2017). A radial basis function (RBF) compact345

finite difference (FD) scheme for reaction-diffusion equations on surfaces. SIAM J. Sci. Comput.,346

39:A2129–A2151.347

[19] LeVeque, R. J. (2007). Finite difference methods for ordinary and partial differential equations:348

steady-state and time-dependent problems. SIAM.349

[20] Long, Z., Lu, Y., Ma, X., and Dong, B. (2017). Pde-net: Learning pdes from data.350

[21] Okuta, R., Unno, Y., Nishino, D., Hido, S., and Loomis, C. (2017). Cupy: A numpy-compatible351

library for nvidia gpu calculations. In Proceedings of Workshop on Machine Learning Systems352

(LearningSys) in The Thirty-first Annual Conference on Neural Information Processing Systems353

(NIPS).354

[22] Pang, G., Lu, L., and Karniadakis, G. E. (2019). fpinns: Fractional physics-informed neural355

networks. SIAM Journal on Scientific Computing, 41(4):A2603–A2626.356

10

[23] Pang, T., Xu, K., LI, C., Song, Y., Ermon, S., and Zhu, J. (2020). Efficient learning of generative357

models via finite-difference score matching. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,358

M., and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33, pages359

19175–19188. Curran Associates, Inc.360

[24] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,361

Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep362

learning library. Advances in neural information processing systems, 32.363

[25] Piret, C. (2012). The orthogonal gradients method: A radial basis functions method for solving364

partial differential equations on arbitrary surfaces. J. Comput. Phys., 231(20):4662–4675.365

[26] Piret, C. and Dunn, J. (2016). Fast RBF OGr for solving pdes on arbitrary surfaces. AIP366

Conference Proceedings, 1776(1).367

[27] Raissi, M., Perdikaris, P., and Karniadakis, G. (2019). Physics-informed neural networks: A368

deep learning framework for solving forward and inverse problems involving nonlinear partial369

differential equations. Journal of Computational Physics, 378:686–707.370

[28] Shankar, V. (2017). The overlapped radial basis function-finite difference (RBF-FD) method: A371

generalization of RBF-FD. J. Comput. Phys., 342:211–228.372

[29] Shankar, V. and Fogelson, A. L. (2018). Hyperviscosity-based stabilization for radial basis373

function-finite difference (rbf-fd) discretizations of advection– diffusion equations. J. Comput.374

Phys., 372:616 – 639.375

[30] Shankar, V., Kirby, R., and Fogelson, A. (2018a). Robust node generation for mesh-free376

discretizations on irregular domains and surfaces. SIAM Journal on Scientific Computing,377

40(4):A2584–A2608.378

[31] Shankar, V., Narayan, A., and Kirby, R. M. (2018b). Rbf-loi: Augmenting radial basis379

functions (rbfs) with least orthogonal interpolation (loi) for solving pdes on surfaces. Journal of380

Computational Physics, 373:722–735.381

[32] Shankar, V., Wright, G. B., and Fogelson, A. L. (2021). An efficient high-order meshless method382

for advection-diffusion equations on time-varying irregular domains. Journal of Computational383

Physics, 445:110633.384

[33] Shankar, V., Wright, G. B., Kirby, R. M., and Fogelson, A. L. (2014). A radial basis function385

(RBF)-finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces. J.386

Sci. Comput., 63(3):745–768.387

[34] Shankar, V., Wright, G. B., and Narayan, A. (2020). A robust hyperviscosity formulation for388

stable RBF-FD discretizations of Advection-Diffusion-Reaction equations on manifolds. SIAM389

Journal on Scientific Computing, 42(4):A2371–A2401.390

[35] Shi, Z., Gulgec, N. S., Berahas, A. S., Pakzad, S. N., and Takáč, M. (2020). Finite difference391

neural networks: Fast prediction of partial differential equations. In 2020 19th IEEE International392

Conference on Machine Learning and Applications (ICMLA), pages 130–135. IEEE.393

[36] Strang, G., Fix, G. J., and Griffin, D. (1974). An analysis of the finite-element method.394

[37] Wright, G. B. and Fornberg, B. (2006). Scattered node compact finite difference-type formulas395

generated from radial basis functions. J. Comput. Phys., 212(1):99–123.396

[38] Yu, J., Lu, L., Meng, X., and Karniadakis, G. E. (2022). Gradient-enhanced physics-informed397

neural networks for forward and inverse pde problems. Computer Methods in Applied Mechanics398

and Engineering, 393:114823.399

11

Checklist400

1. For all authors...401

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s402

contributions and scope? [Yes]403

(b) Did you describe the limitations of your work? [Yes]404

(c) Did you discuss any potential negative societal impacts of your work? [No] To the405

best of the authors’ knowledge, there are no negative societal impacts of our work406

including potential malicious or unintended uses, environmental impact, security, or407

privacy concerns.408

(d) Have you read the ethics review guidelines and ensured that your paper conforms to409

them? [Yes]410

2. If you are including theoretical results...411

(a) Did you state the full set of assumptions of all theoretical results? [N/A]412

(b) Did you include complete proofs of all theoretical results? [N/A]413

3. If you ran experiments...414

(a) Did you include the code, data, and instructions needed to reproduce the main experi-415

mental results (either in the supplemental material or as a URL)? [Yes]416

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they417

were chosen)? [Yes]418

(c) Did you report error bars (e.g., with respect to the random seed after running experi-419

ments multiple times)? [N/A] Reporting error bars over multiple random runs is not420

the norm in physics-informed neural network literature. Moreover, the authors did421

not have the range of compute required for adequate number of random runs at the422

time of writing. Nevertheless, since our examples are deterministic, all results can be423

reproduced if the same random seed is used.424

(d) Did you include the total amount of compute and the type of resources used (e.g., type425

of GPUs, internal cluster, or cloud provider)? [Yes]426

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...427

(a) If your work uses existing assets, did you cite the creators? [N/A]428

(b) Did you mention the license of the assets? [N/A]429

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]430

We release the datasets and codebase we used as part of the supplementary material.431

(d) Did you discuss whether and how consent was obtained from people whose data you’re432

using/curating? [N/A]433

(e) Did you discuss whether the data you are using/curating contains personally identifiable434

information or offensive content? [N/A]435

5. If you used crowdsourcing or conducted research with human subjects...436

(a) Did you include the full text of instructions given to participants and screenshots, if437

applicable? [N/A]438

(b) Did you describe any potential participant risks, with links to Institutional Review439

Board (IRB) approvals, if applicable? [N/A]440

(c) Did you include the estimated hourly wage paid to participants and the total amount441

spent on participant compensation? [N/A]442

A Appendix443

From a practical implementation standpoint, DT-PINNs differ from vanilla-PINNs in several ways444

beyond the replacement of autograd with differentiation matrices. We discuss some of the details of445

our implementation within the PyTorch framework (24).446

Efficient sparse matrix storage and operations on the GPU Since DT-PINNs replace all autograd447

computations in the loss function with an SpMV, we use the compressed sparse row (CSR) format for448

storing L and B; this ensures both ease of parallelization and compact storage. As of this writing,449

PyTorch support for SpMV operations in the CSR format on the GPU is limited and somewhat450

inefficient. To overcome this limitation, we used the CuPy library (21) for all SpMV operations. We451

also use the DLPack library to enable memory and context sharing between CuPy and PyTorch.452

12

Custom autograd implementation As of this writing, PyTorch is in general unable to apply autograd453

with respect to the weight vector w to loss terms involving CuPy CSR matrices. To overcome this454

issue, we wrote custom autograd classes in PyTorch. Consider the second term in (12), ∥Lũ− f∥22.455

According to the PyTorch API, a custom autograd class for handling this term must supply two456

methods: a forward method that tells PyTorch how to evaluate it, and a backward method that tells457

PyTorch how to compute the product (∇ũ (Lũ− f)) (∇wũ). As ∇ũ (Lũ− f) = LT , our custom458

PyTorch backward method can be expressed as a CuPy-based SpMV of LT and ∇wũ, the latter of459

which PyTorch automatically supplies; loss terms involving B are handled similarly. The forward460

method to evaluate the loss term is also an SpMV between L and ũ. The overall procedure is similar461

for the heat equation as well.462

Code listings We first show the CuPy custom autograd methods for the SpMV operations in the463

autograd term. The required imports are:464
465

1 import torch466

2 from torch.utils.dlpack import to_dlpack , from_dlpack467

3 import cupy468

4 from cupy.sparse import csr_matrix469470

The following Python class defines the forward and backward methods to connect the CuPy SpMV471

with the native PyTorch tensors.472
473

1 class Cupy_L(torch.autograd.Function):474

2 @staticmethod475

3 def forward(ctx , pinn_pred , sparse_mat):476

4 return from_dlpack(sparse_mat.dot(477

5 cupy.from_dlpack(to_dlpack(pinn_pred))478

6). toDlpack ())479

7480

8 @staticmethod481

9 def backward(ctx , grad_output):482

10 return from_dlpack(L_t.dot(483

11 cupy.from_dlpack(to_dlpack(grad_output))484

12). toDlpack ()), None485

13486

14 # class Cupy_B can be similarly defined487488

where L_t is the transpose of the L matrix:489
490

1 L_t = csr_matrix(self.L.transpose (), dtype=np.float64)491492

Each DT-PINN training step in linear Poisson can then be written as follows:493
494

1 # we use the L-BFGS optimizer provided by PyTorch495

2 def closure ():496

3 self.optimizer.zero_grad ()497

4 u_tilde = self.pinn_weights.forward(self.X_tilde)498

5499

6 pde_residual = L_mul(u_tilde , self.L) - self.f500

7 bdry_residual = B_mul(u_tilde , self.B) - self.g501

8502

9 pde_loss = torch.mean(torch.square(torch.flatten(pde_residual)))503

10 bdry_loss = torch.mean(torch.square(torch.flatten(bdry_residual)))504

11505

12 train_loss = interior_loss + boundary_loss506

13 train_loss.backward(retain_graph=True)507

14 return train_loss.item()508

15509

16 loss_value = self.optimizer.step(closure)510511

where self.X_tilde is X̃ and L_mul and B_mul are:512
513

1 L_mul = Cupy_L.apply514

2 B_mul = Cupy_B.apply515516

13

	Introduction
	Review
	Physics-informed neural networks
	Radial basis function-finite differences (RBF-FD)

	Discretely-Trained PINNs (DT-PINNs)
	Results
	Effect of neural network depth
	Linear Poisson equation
	Nonlinear Poisson equation
	Heat equation

	Summary and future work
	Appendix

