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Abstract

Starting from the COMET methodology by001
Bosselut et al. (2019), generating common-002
sense knowledge directly from pre-trained lan-003
guage models has recently received significant004
attention. Surprisingly, up to now no material-005
ized resource of commonsense knowledge gen-006
erated this way is publicly available. This pa-007
per fills this gap, and uses the materialized re-008
sources to perform a detailed analysis of the009
potential of this approach in terms of precision010
and recall. Furthermore, we identify common011
problem cases, and outline use cases enabled012
by materialized resources. We posit that the013
availability of these resources is important for014
the advancement of the field, as it enables an015
off-the-shelf-use of the resulting knowledge,016
as well as further analyses on its strengths and017
weaknesses.018

1 Introduction019

Compiling comprehensive collections of common-020

sense knowledge (CSK) is an old dream of AI.021

Besides attempts at manual compilation (Liu and022

Singh, 2004; Lenat, 1995; Sap et al., 2018) and text023

extraction (Schubert, 2002; Tandon et al., 2014;024

Mishra et al., 2017; Romero et al., 2019; Nguyen025

et al., 2021a), commonsense knowledge compi-026

lation from pretrained language models (Bosse-027

lut et al., 2019; Hwang et al., 2021) has recently028

emerged. Pre-trained language models have shaken029

up NLP in general, and also shown promising per-030

formance in generating commonsense assertions,031

based on fine-tuning on existing corpora of com-032

monsense assertions.033

Despite the prominence of this approach (the034

seminal COMET paper (Bosselut et al., 2019) re-035

ceiving over 325 citations in just two years), to date,036

no resource containing commonsense knowledge037

compiled this way is publicly available. As compi-038

lation of such a resource is a non-trivial endeavour,039

this is a major impediment to research that aims040

to understand the potentials of the approach, or 041

intends to employ its outputs in downstream tasks. 042

This resource paper fills this gap. We fine-tune 043

the COMET pipeline on two established resources 044

of concept-centric CSK assertions, CONCEPTNET 045

(Speer et al., 2017) and ASCENT++ (Nguyen et al., 046

2021a), and execute the pipeline for 10K prominent 047

subjects. 048

Our contributions are: 049

1. The materialization of the COMET approach 050

for two language models (GPT2-XL, BART) 051

on two CSKBs (CONCEPTNET, ASCENT++); 052

2. Quantitative and qualitative evaluations of the 053

resulting resources in terms of precision, re- 054

call and error categories, showing that in terms 055

of recall, COMET outperforms crowdsourced 056

construction and is competitive with web text 057

extraction, while exhibiting moderate gaps in 058

terms of precision to both; 059

3. Illustrative use cases of the materialized re- 060

sources in statement aggregation, join queries, 061

and search. 062

The materialized resources can be down- 063

loaded at https://www.dropbox.com/s/ 064

wibimhbgire3jwc/comet.tar.gz?dl=0. A 065

web interface for browsing the resources will be 066

made publicly available (see a screenshot of the 067

interface in Figure 2). 068

2 Related work 069

Early approaches at CSK compilation relied on ex- 070

pert knowledge engineers (Lenat, 1995) or crowd- 071

sourcing (Liu and Singh, 2004), and the latter 072

approach has recently been revived (Sap et al., 073

2018). To overcome scalability limitations of man- 074

ual compilation, text extraction is a second pop- 075

ular paradigm. Following early attempts on lin- 076

guistic corpora (Mishra et al., 2017), increasingly 077
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approaches have targeted larger text corpora like078

Wikipedia, book scans, or web documents (Tandon079

et al., 2014; Romero et al., 2019; Nguyen et al.,080

2021a,b), to build CSK resources of wide coverage081

and quality.082

Recently, both approaches have been com-083

plemented by knowledge extraction from pre-084

trained language models: Language models like085

BERT (Devlin et al., 2019) or GPT (Radford et al.,086

2019; Brown et al., 2020) have seen millions of087

documents, and latently store associations among088

terms. Bosselut et al. (2019) proposed to tap this089

knowledge by supervised learning: The language090

models are fine-tuned on statements from existing091

knowledge resources, e.g., trained to predict the092

object Africa when given the subject-predicate pair093

elephant, AtLocation, based on the ConceptNet094

triple 〈elephant, AtLocation, Africa〉. After train-095

ing, they can be used to predict objects for unseen096

subject-predicate pairs, e.g., locations of wombats.097

The approach has gained significant attention,098

and variants of it are employed in a range of down-099

stream tasks, like commonsense question answer-100

ing (Bosselut and Choi, 2020), commonsense ex-101

planation (Wang et al., 2020), story generation102

(Guan et al., 2020), or video captioning (Fang et al.,103

2020).104

Yet, to date, no materialized knowledge re-105

source is available. The closest to this is106

a web interface hosted by the AllenAI insti-107

tute at https://mosaickg.apps.allenai.org/108

model_comet2020_entities. However, this visu-109

alizes only predictions for a single subject, making,110

e.g., aggregations or count impossible, and only111

shows top-5 predictions, and without scores.112

3 Methodology113

We follow the implementations in the offi-114

cial code repository1 of the COMET-ATOMIC20
20115

project (Hwang et al., 2021) to compute assertions,116

and decide on output thresholds.117

Training CSKBs. We use two established118

commonsense knowledge bases (CSKBs), CON-119

CEPTNET 5.7 (Speer et al., 2017) and AS-120

CENT++ (Nguyen et al., 2021a) as training re-121

sources, considering 13 CSK predicates from122

each of them: AtLocation, CapableOf, Causes,123

Desires, HasA, HasPrerequisite, HasProperty,124

1https://github.com/allenai/
comet-atomic-2020/

HasSubevent, MadeOf, MotivatedByGoal, PartOf, 125

UsedFor and ReceivesAction. 126

1. CONCEPTNET (Speer et al., 2017) is arguably 127

the most widely used CSKB, built by crowd- 128

sourcing. CONCEPTNET 5.7 is its lastest ver- 129

sion2, consisting of 21 million multilingual as- 130

sertions, spanning CSK as well as general lin- 131

guistic and taxonomic knowledge. We retain 132

English assertions only, resulting in 207,210 133

training assertions for the above-mentioned 134

predicates. 135

2. ASCENT++ (Nguyen et al., 2021a) is a project 136

aiming for automated CSK extraction from 137

large-scaled web contents based on open in- 138

formation extraction (OpenIE) and judicious 139

cleaning and ranking approaches. The AS- 140

CENT++ KB consists of 2 million English 141

CSK assertions for the 13 mentioned predi- 142

cates. 143

Language models. We consider two autoregres- 144

sive language models (LMs) that were also used 145

in the original COMET paper, GPT2-XL (Radford 146

et al., 2019) and BART (Lewis et al., 2020), 147

Materialization process. We query the fine- 148

tuned COMET models for 10,926 subjects in CON- 149

CEPTNET which have at least two assertions for the 150

13 CSK predicates. For each subject-predicate pair, 151

we use beam search to obtain completions, with 152

different configurations (see Table 1) for BART 153

and GPT2-XL, following the parameters speci- 154

fied in the published code repository and models. 155

We retain the top-10 completions for each subject- 156

predicate pair, with their beam scores (i.e., sum 157

of log softmax of all generated tokens) returned 158

by the generate function3 of the Transformers li- 159

brary (Wolf et al., 2020). 160

Output. The resulting resources, CONCEPTNET 161

(GPT2-XL, BART) and ASCENT++ (GPT2-XL, 162

BART), contain a total of 976,296 and 1,420,380 163

and 1,271,295 and 1,420,380 assertions after dedu- 164

plication, respectively, as well as their correspond- 165

ing beam scores. 166

2https://github.com/commonsense/
conceptnet5/wiki/Downloads

3https://huggingface.co/docs/
transformers/master/en/main_classes/
model#transformers.generation_utils.
GenerationMixin.generate
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Parameter GPT2-XL BART

num_beams 10 10
temperature 1.0 1.0
top_p 0.9 1.0
repetition_penalty 1.0 1.0
max_length 16 24
no_repeat_ngram_size 0 3
early_stopping True True
do_sample False False

Table 1: Configurations for beam-search decoders.

4 Analysis167

We perform three kind of analyses: (1) a quanti-168

tative evaluation of the intrinsic quality of the as-169

sertions, based on crowdsourcing, (2) a qualitative170

evaluation that outlines major strengths and weak-171

nesses, and (3) an illustration of use cases enabled172

by both resources.173

4.1 Quantitative evaluation174

The original paper (Bosselut et al., 2019) only eval-175

uated the top-1 triple per subject-predicate pair.176

Furthermore, it solely evaluated triples by plausi-177

bility, which is a necessary, but only partly a suffi-178

cient criterion for being considered commonsense179

(Chalier et al., 2020).180

In the following, we evaluate samples from the181

generated resources along two precision dimen-182

sions, typicality (top-100 assertions per subject)183

and saliency (top-10 assertions per subject). We184

also evaluate recall, by measuring the degree to185

which each resource covers the statements in a186

human-generated ground truth.187

Precision: Typicality and saliency. Follow-188

ing Romero et al. (2019); Nguyen et al. (2021a),189

we assess assertions in the CSK resources along190

two precision dimensions: typicality and saliency,191

which measure the degree of truth and the degree192

of relevance of assertions, respectively. We use193

the Amazon Mechanical Turk (AMT) platform to194

obtain human judgements. Each dimension is eval-195

uated based on a 4-point Likert scale and an option196

for no judgement if the annotator is not familiar197

with the concepts. Assertions are transformed into198

human-readable sentences using the templates in-199

troduced by Hwang et al. (2021). Each assign-200

ment is done by three different workers. Follow-201

ing Hwang et al. (2021), any CSK assertion that202

receives the two higher scores in the Likert scale203

is labelled as Typical or Salient, and the two lower204

scores as Untypical or Unsalient. The final judge-205

ments is based on majority vote. 206

In terms of sampling process, for typicality, we 207

draw 500 assertions from each resource when re- 208

stricting to top-100 assertions per subject. For 209

saliency, we pick 500 random samples from the 210

pool of top-10 assertions per subject. 211

Results are reported in the left part of Table 2. 212

We see a significant drop in the quality of asser- 213

tions in the LM-based generations compared to the 214

training resources. In terms of the neural mod- 215

els, for both training CSKBs, the BART mod- 216

els demonstrate better typicality than the GPT2- 217

XL ones. Assertions in BART-ASCENT++ also 218

have significantly better saliency than in GPT2-XL- 219

ASCENT++. Interestingly, BART-CONCEPTNET 220

is nearly on par with ASCENT++ on both metrics. 221

Recall. We reuse the CSLB dataset (Devereux 222

et al., 2014) that was processed by Nguyen et al. 223

(2021a) as ground truth for recall evaluation. The 224

CSLB dataset consists of 22.6K human-written 225

sentences about property norms of 638 concepts. 226

To account for minor reformulations, following 227

Nguyen et al. (2021a), we also use embedding- 228

based similarity to match ground-truth sentences 229

with statements in the CSK resources. We specifi- 230

cally rely on precomputed SentenceTransformers 231

embeddings (Reimers and Gurevych, 2019). We 232

also restrict all CSK resources to top-100 assertions 233

per subject. 234

The evaluation results are shown in the right 235

part of Table 2, where we report recall at similarity 236

thresholds 0.96, 0.98 and 1.0, as well as resource 237

size. We also plot the recall values at different top- 238

N assertions per subject in Figure 1 with similarity 239

threshold t = 0.98. As one can see, ASCENT++ 240

outperforms both COMET models trained on it even 241

though it is significantly smaller. We see opposite 242

results with the CONCEPTNET-based resources, 243

where the COMET models generate resources of 244

better coverage than its training data. Our presump- 245

tion is that the LMs profits more from manually 246

curated resources like CONCEPTNET, but hardly 247

add values to resources that were extracted from 248

the web, as LMs have not seen fundamentally dif- 249

ferent text. Furthermore, in contrast to precision, 250

GPT2-XL models have better results than BART 251

models in terms of recall, on both input CSKBs. 252

4.2 Qualitative observations 253

LMs have the strength to generate an open-ended 254

set of objects, even for subjects seen rarely or not 255
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Resource Typicality@100 Saliency@10 Recall@100 Size@100

Typical Untypical Salient Unsalient t=0.96 t=0.98 t=1.00 #triples

ASCENT++ 78.4 11.0 62.8 34.6 8.9 7.9 4.6 202,026
GPT2-XL-ASCENT++ 57.2 27.4 37.2 58.4 6.0 4.9 2.6 1,091,662

BART-ASCENT++ 69.8 17.4 50.6 42.6 2.6 1.9 1.0 1,092,600

CONCEPTNET 93.6 3.6 80.0 16.8 2.3 1.7 0.9 164,291
GPT2-XL-CONCEPTNET 66.6 21.4 63.8 32.6 9.0 7.3 3.8 967,343

BART-CONCEPTNET 72.6 17.0 63.4 33.4 5.3 3.7 1.0 1,092,600

Table 2: Intrinsic evaluation (Typicality, Saliency and Recall - %) and size of CSK resources.
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Figure 1: Resource recall in relation to resource size, at
similarity threshold t = 0.98.

at all in the training data. For example, while256

CONCEPTNET stores only one location for rab-257

bit: “a meadow”, both BART- and GPT2-XL-258

CONCEPTNET can generalize to other correct loca-259

tions, such as wilderness, zoo, cage, pet store, etc.260

In the recall evaluation, we pointed out that CON-261

CEPTNET, a manually-built CSK resource with262

relatively small size, considerably benefits from263

LMs generations as they improve the coverage of264

the resource substantially.265

However, as indicated in the precision evalua-266

tion, LM generations are generally of lower preci-267

sion than those in the training data. Common error268

categories we observe are:269

• Co-occurrence misreadings: LMs fre-270

quently predict values that merely frequently271

co-occur, e.g., 〈locomotive, atLocation, bus272

stop〉, 〈running, capableOf, put on shoes〉,273

〈war, desires, kill people〉, 〈supermarket, ca-274

pableOf, buy milk〉.275

• Subject-object-copying: LMs too often re-276

peat the given subject in predictions. For in-277

stance, 45 of 130 objects generated by BART-278

CONCEPTNET for the subject chicken also279

contain chicken, such as 〈chicken, CapableOf, 280

kill/eat/cook chicken〉 or 〈chicken, UsedFor, 281

feed chicken〉. 282

• Quantity confusion: LMs struggle to distin- 283

guish quantities. For example, GPT2-XL- 284

CONCEPTNET generates that bike has four 285

wheels (top-1 prediction), and then also two 286

wheels (rank 3), three wheels (rank 4) and 287

twelve wheels (rank 5). The weakness of deal- 288

ing with numbers is known as a common is- 289

sue of embeddings-based approaches (Berg- 290

Kirkpatrick and Spokoyny, 2020). 291

• Redundancy: Generated objects often over- 292

lap, bloating the output with redundan- 293

cies. Most common are repetitions of sin- 294

gular/plural nouns, e.g., the top-2 genera- 295

tions by BART-CONCEPTNET for doctor- 296

CapableOf : “visit patient” and “visit pa- 297

tients”. Redundancies also include para- 298

phrases, e.g., 〈doctor, CapableOf, visit pa- 299

tients / see patients〉; or 〈doctor, CapableOf, 300

prescribe medication / prescribe drug / pre- 301

scribe medicine〉 (GPT2-XL-ASCENT++ gen- 302

erations). Clustering might alleviate this issue 303

(Nguyen et al., 2021a). 304

4.3 Downstream use of materialized 305

resources 306

Beyond systematic evaluation, materialized re- 307

sources enable a wide set of downstream use cases, 308

for example context-enriched zero-shot question 309

answering (Petroni et al., 2020), or KB-based com- 310

monsense explanation (Wang et al., 2020). We ex- 311

emplarily illustrate four enabled types of basic anal- 312

yses, (1) frequency aggregation, (2) join queries, 313

(3) ranking and (4) text search. 314

Frequency aggregation. Materialized resources 315

enable to count frequencies. In Table 3, we demon- 316

strate the three most common objects for each 317

predicate in the GPT2-XL-CONCEPTNET resource. 318
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Interestingly, the third most common location of319

items in the KB is “sock drawer”, which is only320

ranked as the 190th most common location in CON-321

CEPTNET. Similarly, the top-3 objects for Capa-322

bleOf in the generated KB rarely occur the training323

data.324

Join queries. One level further, materialized325

knowledge enables the construction of join queries.326

For example, we can formulate conjunctive queries327

like:328

• Animals that eat themselves include chicken,329

flies, grasshopper, mice, penguin, worm.330

• The most frequent subevents of subevents are:331

breathe, swallow, hold breath, think, smile.332

• The most common parts of locations are:333

beaches, seeds, lot of trees, peel, more than334

one meaning.335

Ranking. Since statements in our materialized336

resources come with scores, it becomes possible337

to locally and globally rank assertions, or to com-338

pare statements pairwise. For example, in GPT2-339

XL-CONCEPTNET, the triple 〈librarian, AtLoca-340

tion, library〉, which is at rank 140, has a score341

of −0.048, which is much higher than that of342

〈elephant, CapableOf, climb tree〉 (score =−0.839,343

ranked 638,048 globally).344

Text search. Finally, we can use materialized re-345

sources for text search. For example, we can search346

in GPT2-XL-CONCEPTNET for all assertions that347

include the term “airplane”, finding expected348

matches like 〈airplane, AtLocation, airport〉 and349

〈flight attendant, CapableOf, travel on airplane〉,350

as well as surprising ones like 〈scrap paper, Used-351

For, making paper airplane〉 and 〈traveling, Has-352

Subevent, sleeping on airplane〉.353

5 Conclusion354

In this paper, we introduced four CSKBs computed355

using two COMET models (BART and GPT2-XL)356

trained on two different existing CSK resources357

(CONCEPTNET and ASCENT++). Our main find-358

ings are:359

1. The COMET methodology produces better re-360

sults on modest manually curated resources361

(CONCEPTNET) than on larger web-extracted362

resources (ASCENT++).363

Predicate Most common objects

AtLocation desk (3210), cabinet (2481), sock drawer (1771)

CapableOf branch out (963), branch off (747), taste good
(556)

Causes death (2504), tears (1290), happiness (1254)

Desires eat (949), have fun (816), sex (742)

HasA more than one meaning (1387), seeds (1316),
peel (1170)

HasPrerequisite metal (1965), plastic (1594), water (1423)

HasProperty good (2615), useful (2585), good for (1746)

HasSubevent breathe (1006), swallow (721), take off shoes
(658)

MadeOf plastic (1427), aluminum (1297), wood (905)

MotivatedByGoal have fun (994), enjoyment (493), succeed (444)

PartOf new testament (914), human experience (683), al-
abama (667)

ReceivesAction found in house (1110), eaten (800), found in hos-
pital (779)

UsedFor cooking (627), decoration (454), transport (448)

Table 3: Most common objects generated by GPT2-
XL-CONCEPTNET. Numbers in parentheses indicate
frequency of the corresponding objects.

2. COMET’s recall can significantly outper- 364

form that of modest manually curated ones 365

(CONCEPTNET), and reach that of large web- 366

extracted ones (ASCENT++). 367

3. In terms of precision, a significant gap re- 368

mains to manual curation, both in typicality 369

and saliency. To web extraction, a moderate 370

gap remains in terms of statement typicality. 371

We also identified common problems of the 372

COMET generations, such as co-occurrence mis- 373

readings, subject copying, and redundancies, which 374

may be subject of further research regarding post- 375

filtering and clustering. 376
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