Under review as a conference paper at ICLR 2022 “From Cells to Societies” Workshop

HYPERNCA: GROWING DEVELOPMENTAL NET-
WORKS WITH NEURAL CELLULAR AUTOMATA

Anonymous authors
Paper under double-blind review

ABSTRACT

In contrast to deep reinforcement learning agents, biological neural networks are
grown through a self-organized developmental process. Here we propose a new
hypernetwork approach to grow artificial neural networks based on neural cellular
automata (NCA). Inspired by self-organising systems and information-theoretic
approaches to developmental biology, we show that our HyperNCA method can
grow neural networks capable of solving standard reinforcement learning tasks.
Finally, we explore how the same approach can be used to build developmental
metamorphosis networks capable of transforming their weights to solve variations
of the initial RL task.

1 INTRODUCTION

Reinforcement learning agents are predominantly trained either with policy gradient methods
(Arulkumaran et al.l 2017) or evolved with evolutionary strategies (Salimans et al., |2017) or ge-
netic algorithms (Such et al., 2017; |Ris1 & Stanley, 2019)). In both of these approaches, the neural
network weights are directly optimised, meaning that the search space is the weight space. An
alternative approach to finding optimal policies are the so-called indirect encodings |Stanley et al.
(2019); Stanley & Miikkulainen| (2003)). Indirect encoding methods introduce an intermediate step
into the agent training process which decouples the optimisation space from the policy weight space:
instead of directly searching for optimal policy weights, we optimise a model whose output is the
policy weights.

A well known example of indirect encoding found in nature is the genotype-phenotype relation
between DNA sequences and the proteins they encode. For instance, we know that the information
needed to grow a fully-functioning human brain must be contained in the human genome. However,
DNA does not encode the final position of every neuron or the presence of every synapse. We know
this simply because a back-of-the-envelope calculation shows that the amount of information in the
human DNA sequence — approximately 1 gigabyte — would not be sufficient to explicitly encode the
10*° synapses present in the human brain. In other words, your brain adjacency matrix is nowhere
to be found in your DNA (Zador, 2019).

Unlike RL agents, animals grow their neural circuitry through a developmental process in which
neurons determine their synaptic connections solely based on local interactions. In biological sys-
tem, the growth of the nervous system, as any other tissue, is governed by gene regulatory networks:
a single set of rules encoded in the cells DNA which, depending on the cells state, will produce
different developmental outcomes.

The fundamental insight acting as the foundation of this paper is the connection between the notion
of computational irreducibility and biological developmental processes. Some dynamical systems
—notably chaotic ones, but not only— may have the interesting co-occurrence of two properties:
being deterministic and unpredictable simultaneously. In order to determine the state after n steps
of such a system, one must evolve the system for n steps according to its dynamical equation; in
other words, there does not exist an analytical expression describing the state of the system for any
step n. Such systems are said to be computationally irreducible (Zwirn & Delahaye, 2011). It is
conjectured that the developmental process of biological systems is computationally irreducible: the
only way to resolve the final configuration of the neural circuitry of the brain is to let unfold the
genetic information present in the DNA, a process named algorithmic growth (Hiesinger, [2021).
The advantage of algorithmic growth consists in not requiring to explicitly codify each of the details

Under review as a conference paper at ICLR 2022 “From Cells to Societies” Workshop

about the final configuration of the system, instead, a small amount of information encoding the
growth process is capable of giving rise to much bigger system purely through the self-organised
local interactions of it dynamics.

Cellular automata (CA) are a family of computational models able to exhibit computational irre-
ducibility (Wolfram), [2002) and which display complex dynamical patterns emerging exclusively
from the local interaction of simple rules. Recently, neural cellular automata (NCA) which replace
the update rule of the CA by a neural network have gained popularity due to their potential to being
trained using modern deep learning tools.

Inspired by the ideas of algorithmic growth and computational irreducibility, we aim to grow neural
networks using neural cellular automata to solve reinforcement learning tasks. We introduce Hyper-
NCAs, NCAs acting as hypernetworks, and show that they are capable of producing policy networks
with a significantly bigger number of parameters able to solve modern reinforcement learning tasks
such as a discrete action environment (e.g. Lunar Lander) and a quadrupedal robot locomotion task.
Unlike existing hypernetwork approaches (Ha et al., 2016; [Stanley et al., 2009; |Carvelli et al.,|2020),
our proposed indirect-encoding relies on the developmental process guiding the emergence of the
final policy network. Finally, we propose the notion of metamorphosis networks: a NCA-based
approach to morph neural networks such that the network information is preserved and re-used. We
demonstrate how metamorphosis networks can be used to morph the weights of a policy network in
order to adapt to differently damaged morphologies.

The goal of this work is not to reach the ever-elusive state-of-the-art at any given RL tasks, but
rather, to introduce a new kind of indirect-encoding that puts forward the value of self-organisation
and algorithmic growth to generate neural policies for reinforcement learning agents.

2 RELATED WORK

Indirect encodings. Indirect encodings are inspired by the biological process of mapping a geno-
type to a phenotype and have been primarily studied in the context of neuroevolution (Floreano
et al., 2008) (i.e. evolving artificial neural networks) but more recently were also optimized through
gradient-descent based approaches (Ha et al.l 2016). Even before the success of deep RL, these
methods have been successful in solving challenging car navigation tasks from pixels alone (Koutnik
et al.l [2013).

A highly influential indirect encoding is HyperNEAT (Stanley et al.,|2009). HyperNEAT employs an
indirect encoding called compositional pattern producing networks (CPPNs) that abstracts away the
process of growth and instead describes the connectivity of a neural network through a function of
its geometry. An approach building on this idea, called HyperNetworks (Ha et al.,|2016), has more
recently shown that networks generating the weights of another network can also be trained end-to-
end through gradient descent. Hypernetworks have been shown to be able to generate competitive
CNNSs (Zhmoginov et al.,2022) and RNNs in a variety of tasks while using a smaller set of trainable
parameters. However, while both HyperNEAT and Hypernetworks are indirect encodings that have
been applied to reinforcement learning problems (Stanley et al., [2009; (Carvelli et al., 2020), they
do not rely on the process of development over time, which is hypothesised to be an important
ingredient of biological systems (Hiesinger, [2021).

Neural cellular automata (NCA). Cellular automata are a class of computational models whose
outcomes emerge from the local interactions of simple rules. Introduced by [Neumann et al.| (1966)
as a part of his quest to build a self-replicating machine or universal constructor, a CA consist
of a lattice of computing cells which iteratively update their states based exclusively on their own
state and the states of their local neighbours. On a classical CA, each cell’s state is represented
by an integer and adjacent cells are considered neighbours. Critically, the update rule of a cellular
automaton is identical for all the cells.

Waulff & Hertz|(1992) showed that a recurrent single-layer neural networks could be trained with the
delta-rule algorithm to approximate the dynamical patterns generated by chaotic one-dimensional
CA. While Wulff and Hertz work was the first one to combine neural networks with cellular au-
tomata, they limited themselves to top-down study of classical CA’s dynamics with a neural network
rather than replacing the CA rule by a neural neural network and studying their bottom-up emerging
properties. [Tavares et al.| (2006) proposed a Neuro-Cellular Automata model which replaces the

Under review as a conference paper at ICLR 2022 “From Cells to Societies” Workshop

symbolic if-then rules of classical CA by a neural network and represents the states by real numbers
rather than integers. However, similarly to |Wulff & Hertz| (1992), they limited themselves to show-
ing that a small feedfoward NCA with only 8 neurons trained through backprop could reproduce
one-dimensional CA patterns such as the Turing complete Rule 110.|Gilpin|(2018)) formulated NCA
as a convolutional network architecture and showed that they could model complex dynamical CA
patterns such as Conway’s Game of Life. Critically, by formulating a NCA as a convolutional neural
network, Gilpin enabled NCA to be easily trainable through backpropation exploiting the modern
deep learning toolkit.

Mordvintsev et al.| (2020) demonstrated how NCA can work as robust models of morphogenesis,
i.e. the process by which single stem cells grow into fully-formed organisms. They represent the
lattice space as a 16-dimensional grid with the first 3 channels representing the visible colours,
one channel representing the living state of the cell, and the remaining hidden channels representing
undefined quantities that the NCA can exploit to encode information. Their neural rule encompasses
a convolutional architecture with Sobel filters as kernels which compute spatial gradients of the cells
states, before feeding the resulting activations to feed-forward layers whose output determine the
new state of each cell. Our work builds upon this architecture, and similarly to previous work by
Sudhakaran et al.[(2021)), allowing the convolutional layers to be trained along with the rest of the
network parameters.

Because of their emergent nature, CA and NCA are capable of generating complex dynamical pat-
terns with few model parameters as shown by recent work (Kaiser & Sutskever, | 2015; |Mordvintsev
et al.| [2020; Ruiz et al.,[2020; [Sudhakaran et al.| [2021)).

3 HYPER NEURAL CELLULAR AUTOMATA

Policy network RL Environment

n steps

Policy Developmental Growth Policy Evaluation

Figure 1: Hyper Neural Cellular Automata (HyperNCA). During the Developmental Growth
phase (left), an initial random seed is updated for a finite number of steps using a 3D Neural Cel-
lular Automata (NCA). The seed can have a single or several channels, here a single channel is
represented. Policy evaluation (right): Once development is concluded, the first channel of the
grown pattern is mapped to the weight matrix of a policy network which is evaluated on a reinforce-
ment learning task —in this example safely landing the spacecraft on the ground. The size of the
seed is chosen such that it matches the size of the RL agent observation space while non-matching
values of the last layer are simply zeroed-out. The number of hidden layers of the policy can be
arbitrarily chosen using a bigger seed, in the shown example the seed/policy has 20 layers.

Our Hypernetwork Neural Cellular Automata (HyperNCA) consists of a neural cellular automata
(NCA) which operates on a high-dimensional substrate whose values are interpreted as the weights
of another network. Based on previous work (Mordvintsev et al.,2020; Sudhakaran et al.|[2021)), we
design a NCA using a convolutional architecture which operates on a 3-dimensional substrate where
each of the three dimensions has /N channels, resulting in a substrate of dimension 3N. The NCA
consist of 3D convolutions followed by a dense layer. The convolutions have kernel size 3, hence
preserving the locality of the cellular automata transition rule 7.

B N N L

Under review as a conference paper at ICLR 2022 “From Cells to Societies” Workshop

In order to generate a network we proceed as follows: 1. We randomly initialise a substrate sampling
from random uniform distribution. 2. The NCA is applied to the substrate for a finite number of
steps. 3. The values of one of the channels of the substrate are interpreted as the weights of a policy
network P. 4. The resulting policy P is evaluated in a reinforcement learning task 7. 5. The
resulting fitness of P in task 7 guides the evolution of the NCA weights. The substrate has shape L
x C x W x W, where L is the number of layers of the policy network, C' is the number of channels of
convolutional layers of the NCA, and W is the size of the observation space of the task. This generic
approach enables us to grow networks of any size —in depth and width— by simply adjusting the
shape of the substrate. The algorithmic description of the approach is provided in Algorithm|[I}

Algorithm 1: HyperNCA: Growing neural networks with Neural Cellular Automata & CMAES

Input: Reinforcement learning task 7, NCA model, number of developmental steps 9,
training hyper-parameters (2, fitness function F.
Output: Optimal agent policy weights W.
Sample random substrate seed S from an uniform distribution 2/(—1, 1) ;
while Fitness F < target fitness do
while generation < generations limit do
Generate a population of NCA using CMA-ES sampler;
for NCA in NCA population do // Parallelized across CPU cores
Let NCA update the initial seed for J steps;
The grown values of the first channel are interpreted as the weights of the agent
policy W;
The grown policy is evaluated on the RL task 7T;
end
if mean population fitness F < early-stopping threshold € () then
| break;
end
Use population fitness values to update CMA-ES sampler’s distribution mean and
covariance matrix;

end
Save solution and mean solution with highest fitness;

end

4 EXPERIMENTS AND RESULTS

4.1 OPTIMISATION DETAILS

We use CMA-ES (Covariance Matrix Adaptation Evolution Strategy) (Hansen & Ostermeier,|1996),
a black-box population-based optimisation algorithm to train the HyperNCA. Evolutionary strate-
gies (ES) algorithms have been shown to be capable of finding performing solutions for reinforce-
ment learning tasks, both through directly optimising the policy weights Salimans2017Mar and with
encodings of the policy through local learning rules (Najarro & Risi,|[2020). Black-box methods such
as CMA-ES have the advantage of not requiring to compute gradients and being easily paralleliz-
able. Experimentes are run on a single machine with a AMD Ryzen Threadripper 3990X CPU with
64 cores. We choose a population size of 64, such that we can run one generation in parallel, —each
core running an evaluation of the environment—, and adopt an initial variance of 0.1. Finally, we
employ an early stopping method to discard and reset unpromising training runs.

All the code necessary to train the HyperNCA as well as the trained models will soon be made
openly available.

4.2 HYPERNETWORK BASELINE

As a baseline, we evaluate a Linear Hypernetwork, similar to the one presented in[Ha et al.| (2016).
The smallest hypernetwork is composed of a set of linear embeddings and a single linear weight
generating matrix. The number of trainable parameters can be calculated by (N % Eg;y, + Egim * M,
where N equals the number of embeddings and M = num_target_params/N. Typically, each

Under review as a conference paper at ICLR 2022 “From Cells to Societies” Workshop

embedding in the hypernetwork corresponds to a layer in the target network. However, because
the target networks are small (288 and 1792 parameters), we opt to include many embeddings and
concatenate the weight generator outputs to create the final parameter vector, to ensure a smaller
hypernetwork.

4.3 RESULTS

First, we demonstrate that our method allows to generate policy networks capable of solving tasks
with both continuous and discrete action spaces: a simulated 3D quadruped whose goal is to learn
to walk as far as possible along one direction and Atari’s Lunar Lander, a discrete task whose goal
is to smoothly land on a procedurally generated terrain.

[——— YRR

Figure 2: Left: Quadruped environment AntBulletEnv-v0. Right: Discrete task LunarLander-v2.

Continuous 3D locomotion RL task This task consists of a robot simulated using the Bullet physics
engine (Coumans & Bai| [2016); the quadruped has 13 rigid links, including four legs and a torso,
along with 8 actuated joints (Duan et al., [2016). It is modeled after the ant robot in the MuJoCo
simulator and constitutes a common benchmark in RL (Finn et al., 2017). The robot has an input
size of 28, comprising the positional and velocity information of the agent and an action space of
8 dimensions, controlling the motion of each of the 8 joints. The fitness of the quadruped agent
depends on the distance travelled during a period of 1, 000 time-steps along a fixed axis. We made
the environment deterministic by instantiating the robot on the same initial position at each episode.

We follow the method described in Algorithm|[T]to grow a feed forward policy network consisting of
three layers with [28, 28, 8] neurons respectively, no bias and hyperbolic tangent as activation func-
tion. This policy network therefore has 1, 792 weight parameters. By contrast, the HyperNCA used
to grow the policy has 314 trainable parameters, roughly 5.7 times less parameters than the result-
ing policy network. The grown network yields a reward of 1,192 meters walked.Obtaining SoTA
performance on these environments is out of the scope of this paper, hence neither the evolutionary
CMA-ES hyperparameters nor the HyperNCA architecture have been optimised.

In comparison, the small baseline hypernetwork has 704 parameters and achieves a lower score of
898 =+ 43 fitness over 100 trials. We also evaluated a large hypernetwork with 5, 280 parameters
using ES (Salimans et al.l 2017). Interestingly, here the network achieves a fitness > 1,400, which
demonstrates that the hypernetwork can in fact perform well with a large enough number of param-
eters but is challenged to compress the weights to the same extend than the NCA. Future work will
have to investigate these results closer to draw definite conclusions.

Figure [3] shows an example of the developmental steps for a policy network created by an evolved
HyperNCA. The weight pattern quickly self-organizes into a particular global structure after which
it appears to be mostly fine-tuned for the remaining developmental steps.

Growing deeper policy networks In order to demonstrate the flexibility and potential of our ap-
proach, we evolve a deeper policy consisting of 30 hidden layers and 22, 960 parameters which is
generated by a HyperNCA with 548 trainable parameters, that is, a phenotype ~ 40 times bigger
than its genotype. The resulting policy reaches a fitness reward of 1, 075. While such a big policy is
not necessary to solve the quadruped task, this result demonstrates that the developmental compres-

Under review as a conference paper at ICLR 2022 “From Cells to Societies” Workshop

Developmental step 0 Developmental step 20

—t>

Figure 3: Quadruped policy networks at three developmental steps: initial random step, after 10 and
after 20 developmental steps. Below each layer, the connections are visualised as weight matrices.

sion exhibited by the HyperNCA can encode high-dimensional phenotype. Crucially, this enables
the optimisation algorithm to operate on a much smaller parameter space, allowing us to rely upon
optimisation techniques —like covariance-based approaches— that would struggle with memory
issues in higher dimensions.

Discrete RL task Lunar lander is an single-player Atari game where the player’s goal is to smoothly
land the lander on a procedurally generated terrain. There are four discrete actions available: do
nothing, fire engine towards the left, fire engine vertically and fire engine towards the right. There are
8 states: the 2D position coordinates of the lander, its linear velocities, its angle, its angular velocity,
and two booleans representing whether each leg is in contact with the ground or not
(2016)). Reward for moving from the top of the screen to the landing pad and coming to rest is
about 100-140 points. If the lander moves away from the landing pad, it loses reward. If the lander
crashes, it receives an additional —100 points. If it comes to rest, it receives an additional 4100
points. Each leg with ground contact is +10 points. Firing the main engine is —0.3 points each
frame. Firing the side engines —0.03 points each frame. The task is considered solved if the player
attains 200+ reward over 100 evaluations.

To solve this task, we grow a five-layers feedforward policy with [8, 8, 8, 8, 3] nodes per layer respec-
tively, no bias and hyperbolic tangent as activation function. The resulting policy has 288 parameters
and is generated by a HyperNCA with 226 trainable parameters, that is HyperNCA genotype with
roughly 24% less parameters than the resulting policy phenotype. The policy is grown for 20 devel-
opmental steps and yields a reward of 252 £ 63 evaluated over one hundred runs, therefore solving
the task according to the pre-establish criterion of 200 points. Similarly to the previous task, the hy-
perparameters have not been optimised. For comparison, in this domain the baseline hypernetwork
has 252 trainable parameters and achieves 264 + 28 fitness over 100 trials.

4.4 METAMORPHOSIS NEURAL NETWORKS

Metamorphosis is a developmental phenomena by which an organism experiences substantial
changes in its morphology during post-embryonic life —a biological process first appeared in ptery-
gote insects 400 million years ago 2020). We draw inspiration from this biological phenom-
ena to build metamorphosis networks: an extension of our HyperNCA approach to morph policy
networks in order make the agent capable of solving different tasks. We demonstrate our approach
with the quadruped RL task described in the previous section.

The approach is akin to the one we use to grow policy networks, however, rather than evaluating
on a single quadruped morphology, we create a set of three morphologies variations: the standard
Ant quadruped M1 and two damaged morphologies M2 and M3 with partially mutilated legs. Con-
sequently, we use a NCA to develop functional weights out of the initial seed for 10 developmental
steps and use the resulting policy to control an agent solving the first morphology M1, subsequently,
we let the same NCA further developed the grown weights for 20 developmental steps and evaluate
the result network on the second morphology M2, same procedure for the third morphology: the
weights develop for another 20 steps and use the resulting network to solve morphology M3.

Under review as a conference paper at ICLR 2022 “From Cells to Societies” Workshop

The resulting policy networks yield 1,329, 1,343 and 1,266 rewards (distance walked) on each
morphology respectively. The evolved NCA has 1,480 trainable parameters, while each of the
policy it develops has 1, 792 parameters. Notice that it is a single NCA model that give rise to the
three final policy networks.

In order to demonstrate that the policy weights are indeed morphing (i.e. the model is not using the
same weights to solve all three morphologies), we show in Fig. [the relative changes in the weights
between each policy as the continuous weight trajectories represented in 3-dimensional PCA space.

M1

M3

Base morphology M1
=== Damaged morphology M2
= Damaged morphology M3

-
. Step‘SO’ Pl

N Step 50

-2.5
.
.

.
75 Step 10'

M2 Lo %2 10 60
.
.

Figure 4: Low-dimensional representation of the policy weights at each developmental step. The
steps pointed by each of the morphologies M1, M2 and M3 represent the weights used by the agents
during evaluation. M1 is the standard Mujoco Ant morphology, M2 has one front leg and back leg
mutilated and M3 has the two front legs mutilated. The dimensionality reduction is computed with
PCA. The initial seed is represented with a star symbol .

Finally, we evaluate each of the policies on the inappropriate morphologies and show in Table [T]that
the NCA-guided metamorphosis process has indeed a positive impact on the policies performance
on each morphology reward.

H M1 M2 M3 H

Policy M1 1,329 827 747
Policy M2 21 1,343 916
Policy M3 13 1,140 1,266

Table 1: Rewards obtained from cross evaluation of the three policies grown by the same Hyper-
NCA at three developmental steps on each of the three morphologies M1, M2 and M3. The reward
value represent the distance walked by the quadruped from its initial position. The values in the
diagonal (shown in bold) correspond to the rewards the policies were grown to perform well on, i.e.
policy M1 was evaluated on morphology M1 at developmental step 10, policy M2 was evaluated
on morphology M2 at developmental step 30 and policy M3 was evaluated on M3 at step 50. The
diagonal values are the rewards obtained by each quadruped morphology at their corresponding de-
velopmental steps. The values outside of the diagonal are the rewards obtained when evaluating the
policies at the developmental steps which do not match the morphologies at that step; this produce
a decrease in the obtained reward demonstrating that the policy weights are significantly morphing.

Under review as a conference paper at ICLR 2022 “From Cells to Societies” Workshop

5 DISCUSSION AND FUTURE WORK

Our HyperNCA approach is able to solve the tested RL tasks, reaching a comparable performance
to other indirect encoding methods. Since it has to undergo a developmental process, our model
yet seems currently harder to optimise, although more experiments are necessary to confirm this
hypothesis. To optimize these highly dynamical and self-organizing systems, more open-ended
search methods such as quality diversity (QD) (Pugh et al., 2016) or intrinsically-motivated learning
approaches (Baranes & Oudeyer, |2013) could be of particular interest. These methods might be
more suited to navigate the likely highly deceptive fitness landscapes of self-organizing systems.

The goal of this paper is not necessarily to reach SotA in one RL benchmark, but rather to propose
a novel developmental framework to grow a neural network, through local interactions. Contrasting
to the previous literature on hypernetworks and indirect encodings, our encoding follows a develop-
mental process, inspired from biological growth and self-organisation. While currently not outper-
forming direct encoding approaches, research in neuroscience suggests that this type of “genomic
bottleneck” (Zador, 2019) has an important regularizing constraint, allowing animals to general-
ize better to new situations. Promising results suggest that artificial agents can also benefit from
such a compression for better generalization (Pedersen & Risil, [2021)) and the HyperNCA approach
presented in this paper could be a promising method to study this question in more detail.

Future important work includes extending the approach to more complex tasks and environments,
which might more clearly benefit from the HyperNCA’s ability to grow deep policy networks. Addi-
tionally, we are particularly excited to further investigate the metamorphic promises of such devel-
opmental encoding. For example, the changes in an organism’s form in biological metamorphosis
are often striking (e.g. a caterpillar turning into a butterfly). Could a HyperNCA facilitate similar
radical changes in the morphologies and nervous systems of artificial robots?

REFERENCES

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep rein-
forcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26-38, 2017.

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrinsically mo-
tivated goal exploration in robots. Robotics and Autonomous Systems, 61(1):49-73, 2013.

Xavier Belles. Insect Metamorphosis: From Natural History to Regulation of Development and
Evolution. Academic Pr, 1 edition, 2020. ISBN 0128130202; 9780128130209.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAl Gym. arXiv, Jun 2016. URL https://arxiv.org/abs/
1606.01540v1.

Christian Carvelli, Djordje Grbic, and Sebastian Risi. Evolving hypernetworks for game-playing
agents. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Compan-
ion, pp. 71-72, 2020.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking Deep
Reinforcement Learning for Continuous Control. arXiv, Apr 2016. URL https://arxiv.
org/abs/1604.06778v3.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adap-
tation of Deep Networks. In International Conference on Machine Learning, pp. 1126-1135.
PMLR, Jul 2017. URL https://proceedings.mlr.press/v70/finnl7a.html.

Dario Floreano, Peter Diirr, and Claudio Mattiussi. Neuroevolution: from architectures to learning.
Evolutionary Intelligence, 1(1):47-62, 2008.

William Gilpin. Cellular automata as convolutional neural networks. arXiv, Sep 2018. URL
https://arxiv.org/abs/1809.02942.

https://arxiv.org/abs/1606.01540v1
https://arxiv.org/abs/1606.01540v1
http://pybullet.org
https://arxiv.org/abs/1604.06778v3
https://arxiv.org/abs/1604.06778v3
https://proceedings.mlr.press/v70/finn17a.html
https://arxiv.org/abs/1809.02942

Under review as a conference paper at ICLR 2022 “From Cells to Societies” Workshop

David Ha, Andrew Dai, and Quoc V. Le. HyperNetworks. arXiv, Sep 2016. URL https://
arxiv.org/abs/1609.09106v4.

N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution strate-
gies: the covariance matrix adaptation. In Proceedings of IEEE International Conference on
Evolutionary Computation, pp. 312-317. IEEE, May 1996. ISBN 978-0-7803-2902. URL
https://ieeexplore.ieee.org/document/542381.

Peter Robin Hiesinger. The Self-Assembling Brain. Princeton University Press, Princeton, NJ, USA,
Apr 2021. ISBN 978-0-69118122-6. URL https://press.princeton.edu/books/
hardcover/9780691181226/the-self-assembling-brainl

Lukasz Kaiser and Ilya Sutskever. Neural GPUs Learn Algorithms. arXiv, Nov 2015. URL https:
//arxiv.org/abs/1511.08228v3.

Jan Koutnik, Giuseppe Cuccu, Jiirgen Schmidhuber, and Faustino Gomez. Evolving large-scale
neural networks for vision-based reinforcement learning. In Proceedings of the 15th annual con-
ference on Genetic and evolutionary computation, pp. 1061-1068, 2013.

Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael Levin. Growing neural
cellular automata. Distill, 2020. doi: 10.23915/distill.00023. URL https://distill.pub/
2020/growing-cal

Elias Najarro and Sebastian Risi. Meta-Learning through Hebbian Plasticity in Random Networks.
arXiv, Jul 2020. URL https://arxiv.org/abs/2007.02686v4.

Janos Neumann, Arthur W Burks, et al. Theory of self-reproducing automata, volume 1102024.
University of Illinois press Urbana, 1966.

Joachim Winther Pedersen and Sebastian Risi. Evolving and merging hebbian learning rules: in-
creasing generalization by decreasing the number of rules. In Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 892-900, 2021.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new frontier for evolu-
tionary computation. Frontiers in Robotics and Al, 3:40, 2016.

Sebastian Risi and Kenneth O Stanley. Deep neuroevolution of recurrent and discrete world models.
In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 456462, 2019.

Alejandro Hernandez Ruiz, Armand Vilalta, and Francesc Moreno-Noguer. Neural Cellular Au-
tomata Manifold. arXiv, Jun 2020. URL https://arxiv.org/abs/2006.12155v3.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution Strategies as
a Scalable Alternative to Reinforcement Learning. arXiv, Mar 2017. URL https://arxiv.
org/abs/1703.03864v2.

Kenneth O Stanley and Risto Miikkulainen. A taxonomy for artificial embryogeny. Artificial life, 9
(2):93-130, 2003.

Kenneth O Stanley, David B D’ Ambrosio, and Jason Gauci. A hypercube-based encoding for evolv-
ing large-scale neural networks. Artificial life, 15(2):185-212, 2009.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1(1):24-35, 2019.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and
Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

Shyam Sudhakaran, Djordje Grbic, Siyan Li, Adam Katona, Elias Najarro, Claire Glanois, and
Sebastian Risi. Growing 3D Artefacts and Functional Machines with Neural Cellular Automata.
arXiv, Mar 2021. URL https://arxiv.org/abs/2103.08737v2.

Jorge Tavares, Cornelia Kreutzer, and Anna Fedor. Neuro-cellular automata: Connecting cellular
automata, neural networks and evolution. 2006.

https://arxiv.org/abs/1609.09106v4
https://arxiv.org/abs/1609.09106v4
https://ieeexplore.ieee.org/document/542381
https://press.princeton.edu/books/hardcover/9780691181226/the-self-assembling-brain
https://press.princeton.edu/books/hardcover/9780691181226/the-self-assembling-brain
https://arxiv.org/abs/1511.08228v3
https://arxiv.org/abs/1511.08228v3
https://distill.pub/2020/growing-ca
https://distill.pub/2020/growing-ca
https://arxiv.org/abs/2007.02686v4
https://arxiv.org/abs/2006.12155v3
https://arxiv.org/abs/1703.03864v2
https://arxiv.org/abs/1703.03864v2
https://arxiv.org/abs/2103.08737v2

Under review as a conference paper at ICLR 2022 “From Cells to Societies” Workshop

Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002. ISBN 978-1-57955008-0.

N Wulff and J A Hertz. Learning cellular automaton dynamics with neural networks. Advances in
Neural Information Processing Systems, 5:631-638, 1992.

Anthony M Zador. A critique of pure learning and what artificial neural networks can learn from
animal brains. Nature communications, 10(1):1-7, 2019.

Andrey Zhmoginov, Mark Sandler, and Max Vladymyrov. Hypertransformer: Model generation for
supervised and semi-supervised few-shot learning, 2022.

Herve Zwirn and Jean-Paul Delahaye. Unpredictability and Computational Irreducibility. arXiv,
Nov 2011. URL https://arxiv.org/abs/1111.4121v2.

10

https://arxiv.org/abs/1111.4121v2

	Introduction
	Related work
	Hyper Neural Cellular Automata
	Experiments and results
	Optimisation details
	Hypernetwork baseline
	Results
	Metamorphosis neural networks

	Discussion and Future work

