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ABSTRACT

Comparing learned representations is a challenging problem which has been ap-
proached in different ways. The CKA similarity metric, particularly it’s linear
variant, has recently become a popular approach and has been widely used to com-
pare representations of a network’s different layers, of similar networks trained
differently, or of models with different architectures trained on the same data.
CKA results have been used to make a wide variety of claims about similarity and
dissimilarity of these various representations. In this work we investigate several
weaknesses of the CKA similarity metric, demonstrating situations in which it
gives unexpected or unintuitive results. We then study approaches for modifying
representations to maintain functional behavior while changing the CKA value.
Indeed we illustrate in some cases the CKA value can be heavily manipulated
without substantial changes to the functional behaviour.

1 INTRODUCTION

In the last decade, increasingly complex deep learning models have taken over machine learning
and have helped us solve, with remarkable accuracy, a multitude of tasks across a wide array of
domains. Due to the size and flexibility of these models it has been particularly hard to study and
understand exactly how they solve the tasks we use them on. A helpful framework for thinking about
these models is that of representation learning, where we view artificial neural networks (ANNs)
as learning internal representations of the input data that are progressively more expressive in terms
of the input’s semantic information as we go deeper into the ANN layers. In practice, it is often of
interest to analyze and compare the representations of multiple ANNs, however, the typically high
dimensionality of ANN internal representation spaces makes this a fundamentally difficult task.

To address this problem, the machine learning community has tried finding meaningful ways to com-
pare ANN internal representations and various representation (dis)similarity measures have been
proposed. Recently, Centered Kernel Alignment (CKA) (Kornblith et al., 2019) was proposed and
shown to perform significantly better on representation similarity “sanity checks” than past methods
such as linear regression or CCA based methods (Raghu et al., 2017; Morcos et al., 2018). While
CKA can capture different notions of similarity between points in representation space by using
different kernel functions, it was empirically shown in the original paper that there are no real ben-
efits in using CKA with a non-linear kernel over it’s linear counterpart. As a result, linear CKA has
been the preferred representation similarity measure of the machine learning community in the past
three years and all other similarity measures have been, for all practical purposes, retired. CKA has
been utilized in a number of works to make conclusions regarding the similarity between different
models and their behaviours such as wide versus deep ANNs (Nguyen et al., 2021) and transformer
versus CNN based ANNs (Raghu et al., 2021). They have also been used to draw conclusions about
transfer learning (Neyshabur et al., 2020) and catastrophic forgetting (Ramasesh et al., 2021).

However, very recent work has questioned CKA’s supremacy as a representation similarity measure
by highlighting some of its shortcomings. In particular, Ding et al. (2021) demonstrated that CKA
lacks sensitivity to changes that affect functional behaviour being unable to detect removal of prin-
cipal components from the analyzed representations even when this removal significantly decreases
probing accuracy. Williams et al. (2021) discussed how CKA does not respect the triangle inequal-
ity, which makes it problematic to use CKA values as a similarity measure in downstream analysis
tasks. In this work, we further explore the inadequacies of linear CKA as a similarity measure in
deep learning and showcase scenarios in which it behaves in undesirable ways, giving either high
similarity measures in scenarios where the similarity should be low or the opposite. We also present
cases where the CKA value can be heavily manipulated to be either high or low without significant
changes to the functional behaviour of the underlying ANNs.
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Figure 1: A layer-wise comparison based on the
value of the CKA between a generalized, mem-
orized, and randomly populated network. This
comparison reveals that early layers of these net-
works achieve relatively high CKA values.
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Figure 2: The convolution filters within the first
two layers of a generalized, memorized, and a
randomly initialized network elucidates that the
features are (1) drastically different, and (2) not
equally useful despite the CKA results in Fig. 1

2 PROBLEM STATEMENT AND BACKGROUND ON CKA
Let X ∈ Rn×d1 denote a set of ANN internal representations, i.e. the neural activations of a specific
layer with d1 neurons in a network, in response to n ∈ N input examples. Let Y ∈ Rn×d2 be another
set of such representations generated by the same input examples but possibly at a different layer of
the same, or different, deep learning model. It is standard practice to center these representations
column-wise (feature or “neuron” wise) before analyzing them. We are interested in representation
similarity measures which try to capture a certain notion of similarity between X and Y . CKA is
one such similarity measure based on the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton
et al., 2005) that was presented as a means to evaluate independence between random variables in a
non-parametric way. In the linear case it takes the form:

HSIClin(X,Y ) =
1

(n− 1)2
tr(XX⊤Y Y ⊤) =

∥∥cov(X⊤, Y ⊤)
∥∥2
F

(1)

Where subscript F denotes the Frobenius norm of a matrix. Linear CKA can then be computed as:

CKAlin(X,Y ) =
HSIClin(X,Y )√

HSIClin(X,X)HSIClin(Y, Y )
(2)

Intuitively, HSIC computes the similarity structures of X and Y through the Gram matrices of
internal products (XX⊤ and Y Y ⊤) and then compares these similarity structures by computing
their alignment through the trace of XX⊤Y Y ⊤.

3 EXPERIMENTS AND RESULTS

3.1 CKA EARLY LAYER RESULTS

CKA values are often treated as a surrogate metric to measure the usefulness and similarity of a
network’s learned features when compared to another network (Ramasesh et al., 2021). In order to
analyze this common assumption, we compare the features of: (1) a network trained to generalize
on the CIFAR10 image classification task (Krizhevsky et al., 2009), (2) a network trained to “mem-
orize” the CIFAR10 images (i.e. permuted target labels), and (3) an untrained randomly initialized
network (for network architecture and training details see the Appendix). As show in Fig. 1, early
layers of these networks should have very similar representations given the high CKA values. Un-
der the previously presented assumption, one should therefore conclude that the learned features at
these layers are relatively similar and equally valuable. However this is not the case, we can see
in Fig. 2 that the convolution filters are drastically different across the three networks. Moreover,
Fig. 2 elucidates that considerably high CKA similarity values for early layers, does not necessarily
translate to more useful, or similar, captured features.

3.2 SENSITIVITY TO AFFINE TRANSFORMATIONS

We consider artificially generated representations X ∈ Rn×d to which we apply affine transforma-
tions to obtain Y ∈ Rn×d. We generate X by sampling 10K points from the 1K-dimensional unit
cube centered at the origin and 10K points from a similar cube centered at (1.1, 0, 0, . . . , 0) so the
points from the two cubes are linearly separable along the first dimension.
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Figure 3: Linear CKA value between the artificial representations X and either a) the translated
version Y as a function of the translation distance c or b) Y = XM with M being an invertible
matrix with elements sampled from N (µ, σ2) as a function of µ and σ. The mean and standard
deviation across 10 random instantiations of v the translation direction and M are shown. c) CKA
value between a CNN’s internal representations of the CIFAR10 training set and modified versions
where either a class is translated or a single point is translated as functions of the translation distance.

The first transformation we consider is translating the subset of representations sampled from the
second cube by c ∈ R in direction v ∈ Rd sampled from the the d-dimensional ball, we plot the CKA
values between X and Y as a function of c in Fig. 3a). This transformation entirely preserves the
topological structure of the representations as well as their local geometry since the points sampled
from each cube have not moved with respect to the other points sampled from the same cube and
the two cubes are still separated, only the distance between them has been changed. Despite these
multiple notions of “similarity” between X and Y being preserved, the CKA values quickly drop
below 0.2 even for relatively small translation distances.

The second transformation considered is a multiplication by a matrix M ∈ Rd×d whose elements
are sampled from a Gaussian with mean µ and standard deviation σ. We verify the invertibility of M
since it is not guaranteed and only keep invertible matrices. We show the CKA values between X
and the transformed Y in Fig. 3b). Since this is a invertible linear transformation we would expect
it to only modestly change the representations in X and the CKA value to be only slightly lower
than 1. However, we observe that even for small values of µ and σ, CKA drops to 0, which would
indicate that the two sets of representations are dissimilar and not linked by a simple transformation.

3.3 CONSTRUCTING A LOW CKA SIMILARITY

We further experiment with CKA’s sensitivity to translations but in a more realistic setting, while
preserving important semantic information. We consider the 9 layers CNN presented in Section
6.1 of Kornblith et al. (2019) trained on CIFAR10. When trained on classification tasks, ANNs
tend to learn increasingly complex representations of the input data that can be more or less linearly
separated into classes by the last layer of the network. With this in mind, we argue that a relevant way
in which two sets of representations can be “similar” in practice is if they are linearly separable by
the same hyperplanes in parameter space, the same linear classifier can then correctly classify both
sets of representations. Given X , the network’s internal representations of 10k training images at
the last layer before the output, we can create Y by translating examples corresponding to a certain
class in a way that does not affect the linear separability of the representations. We use an SVM
classifier to extract the hyperplanes in parameter space, which best separate the data (with approx.
91% success rate). We then translate a subset of the representations in a direction which will never
cross these hyperplanes. We plot the CKA values between X and Y according to the translation
distance in Fig. 3c). The CKA values quickly drop to 0, despite the existence of a linear classifier
that can classify both sets of representations into the correct classes with > 90% accuracy.

In Fig. 3c) we also examine linear CKA’s sensitivity to outliers. Plotted are the CKA values between
the set of training set representations and the same representations but with a single point being
translated far from its original location. While the translation distance needed to achieve low CKA
values is relatively high, the fact that the position of a single point out of tens of thousands can so
drastically influence the CKA value raises doubts about CKA’s effectiveness as a similarity metric.

3.4 OPTIMIZING CKA MAP

The CKA map, commonly used to analyze network architectures (Kornblith et al., 2019) and their
inter-layers similarities, is a matrix M , where M [i, j] is the CKA value between the activations of
layers i, and j of a network. We set to directly manipulate the CKA map of a trained network fθ∗ ,
by adding the desired CKA map to its optimization objective, while maintaining its original outputs
via distillation loss (Hinton et al., 2015).
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Figure 4: Original Map is the CKA map of a network trained on CIFAR10. We manipulate this
network to produce CKA maps which: (1) maximizes the CKA similarity between the 1st and last
layer, (2) maximizes the CKA similarity between all layers, and (3) minimizes the CKA similarity
between all layers. In cases (1) and (2), the network experiences only a slight loss in performance,
which counters previous findings by achieving a strong CKA similarity between early and late layers.
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Figure 5: The comical target CKA maps (first row) are used as the objective for the CKA map loss
in Eq. 3. The second row shows the CKA map produced by the network.

We further optimize fθ∗ over the training set (X,Y ) following the equation:

θ∗new = argmin
θ

(
Ldistill (fθ∗(X), fθ(X)) + λLmap

(
Mfθ(X),Mtarget

))
(3)

Where Lmap = ln cosh
(
Mfθ(X) −Mtarget

)
. Fig. 4 shows the CKA map of fθ∗ along with the

CKA map of three scenarios we investigated: (1) maximizing the CKA similarity between the 1st

and last layer, (2) maximizing the CKA similarity between all layers, and (3) minimizing the CKA
similarity between all layers (for network architecture and training details see Appendix). In cases
(1) and (2), the network performance is barely hindered by the manipulations of its CKA map.
This is surprising and contradictory to the previous findings (Kornblith et al., 2019; Raghu et al.,
2021) as it suggests that it is possible to achieve a strong CKA similarity between early and later
layers of a well-trained network. We further manipulated the CKA map of fθ∗ to produce a series
of comical CKA maps (Fig. 5). Although the network CKA maps seen in Fig. 5 closely resemble
their respective targets, it should be noted that we prioritized maintaining the network outputs, and
ultimately its accuracy by choosing small λ values in Eq. 3. Higher values of λ results in stronger
agreements between the target and network CKA maps at the cost of performance.

4 CONCLUSION

We continue a very recent line of research by showing situations in which linear CKA is inade-
quate as a representation similarity measure. Linear CKA attributes low similarity to sets of repre-
sentations that are directly linked by simple affine transformations preserving important functional
characteristics and it attributes high similarity to representations from very different networks. Fur-
thermore, we can manipulate CKA to give arbitrarily low/high values while preserving functional
behaviour. An important direction of improvement for our work is to theoretically study CKA’s
sensitivity to some of the used transformations. We hope our work inspires ML researchers to also
consider other similarity measures and potentially different data analysis and visualization algo-
rithms when studying neural network representations as opposed to relying solely on CKA to draw
conclusions. It would also be interesting to see whether or not results obtained using other methods
of analysis would support scientific conclusions already established using linear CKA.
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5 APPENDIX

5.1 NETWORK ARCHITECTURE

In Sec. 3.1 we use a 9 layer neural network; the first 8 of these layers are convolution layers and
the last layer is a fully connected layer used for classification. We use ReLU (Nair & Hinton, 2010)
throughout the network. The kernel size of every convolution layer is set to (3, 3) except the first
two convolution layers, which have (7, 7) kernels. All convolution layers follow a padding of 0
and a stride of 1. Number of kernels in each layer of the network, from the lower layers onward
follows: [16, 16, 32, 32, 32, 64, 64]. In this network, every convolution layer is followed by batch
normalization (Ioffe & Szegedy, 2015). The network we used in Sec. 3.4 is similar to the network
we just described, except the kernel size for all layers are set to (3, 3).

5.2 TRAINING DETAILS

The models in Sec. 3.1, both the generalized and memorized network, were trained for 100 epochs
using AdamW (Loshchilov & Hutter, 2017) optimizer with a learning rate (LR) of 1e-3 and a weight
decay of 5e-4. The LR is follows cosine LR scheduler (Loshchilov & Hutter, 2016) with an initial
LR stated earlier.

The training of the base model (original) model in Sec. 3.4 follows the same training procedure as
of the models from Sec. 3.1, except in this setting we train the model for 200 epochs, with an initial
LR of 0.01. All other models in Sec. 3.4 (with a target CKA map to optimize) are also trained with
similar training hyperparameters to that of the base model, except the followings: (1) these models
are only trained for 50 epochs. (2) the objective function includes a hyperparameter λ (see Eq. 3),
which we set to 100 for all models. (3) The cosine LR scheduler includes a warm-up step of 500
optimization steps. (4) the LR is set to 1e-3.
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