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ABSTRACT

This paper reports the empirical exploration of a novel approach to encode words
using compressing inspired techniques for use on convolutional neural networks
at character-level. This approach reduces drastically the number of parameters to
be optimized using deep learning, resulting in competitive classification accuracy
values in only a fraction of the time spent by characters level convolutional neural
networks, enabling training in simpler hardware.

1 INTRODUCTION

Documents classification is one of the key tasks addressed in the context of natural language pro-
cessing (Sebastiani, 2002). It implies associating a document —or a text fragment, for that matter—
to a category or label relying on their content. This is an important and daily need of modern life.
Everyday, we manipulate documents organizing them into folders, seeking to group characteristics,
ideas and subjects for future references. Such organization makes possible to relate other people’s
thoughts and experiences for feed the development of our own ideas. With the increasing availabil-
ity of texts, especially through the Internet, the need for artificial intelligence tools for automate
this function is increasing very fast. Spam detectors, sentiment analysis, news archiving are all
technologies based on text classifiers.

Work on document classification encompasses a broad range of approaches to (see (Sebastiani, 2002;
Aggarwal & Zhai, 2012; Hotho et al., 2005; Kosala & Blockeel, 2000)). An important portion of
those approaches rely on a representation that handles words as the atomic element of text. Con-
sequently, those models carry out their analysis through statistics of words occurrence (Zhang &
LeCun, 2015). However, the variability of words and structures belonging to a language makes this
task difficult. That is why, such models have superior quality mainly in specific domains, where the
vocabulary can be restricted to a relatively small number of words, possibly chosen by a special-
ist. Furthermore, such modeling becomes specific to a language, causing the replication process in
another language to be carried out from scratch (Zhang & LeCun, 2015).

In recent years, we have experienced a revolution in the machine learning with the advent of deep
learning methodologies (Goodfellow et al., 2016). The development of convolutional neural net-
works (CNNs) (LeCun et al., 1998) coupled with the popularization of parallel computing libraries
(e. g. Theano (Bergstra et al., 2010), Tensorflow (Abadi et al., 2015), Keras (Chollet et al., 2015),
etc.) that simplify general-purpose computing on graphics processing units (GPGPU) (Mittal &
Vetter, 2015) has been successful in tackling image classification problem (Krizhevsky et al., 2012)
quickly becoming the state of the art of the field.

It was therefore natural that the deep learning principles were to be extended to the document clas-
sification domain. Some existing methods have been updated but the clear majority are still based
on the tokenization of words and the inference of their statistics. Bag of Words (BOW) (Johnson &
Zhang, 2014) and word2vec (Mikolov et al., 2013) are some of the most popular strategies.

The replication of image classification success in the documents domain suffers, among other rea-
sons, by the difficulty of representing one word as a vector. Using the one hot encoding technique
(Harris & Harris, 2012), where the vector of the term position is 1 and all other 0, would generate
a representation of thousands or even millions of coordinates, making its use impractical both in
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terms of memory needed to store this vector, as time required to compute its optimization. Another
problem is that typing errors or simple declensions of words in test data could not be codified if they
are unseen on train data.

In an groundbreaking paper, Zhang & LeCun (2015) suggested an approach that consider the char-
acter as the atomic level, reducing the vocabulary of symbols to only 69 characters and allowing the
use of one hot encoding. They considered each of the 1014 characters of a text represented by the
line of a matrix where the column referring to the character of the vocabulary is 1 and all the others
0. With this representation on hand, they applied a model with deep convolutional neural networks
and obtained results competitive with other techniques, and in some cases the state of the art.

Building upon the work of Zhang & LeCun (2015), we suggest a novel approach to word representa-
tion that encode a word as a sequence of chars in a vector with size order of some hundreds, using the
knowledge of character frequency imbalance, and inspired by traditional compression techniques.
This procedure made possible to represent larger portions of texts, perform the training in shorter
times and applying simpler hardware, preserving the ability to codify any word, even unseen ones.

2 PRELIMINARIES

The success in using Convolutional Neural Networks (CNNs) (LeCun et al., 1998) in image classi-
fication (Krizhevsky et al., 2012) flourish the development of many libraries (Chetlur et al., 2014;
Chollet et al., 2015; Bergstra et al., 2010) , techniques and hardware. The effort to use Neural Convo-
lution Networks for text classification tasks is justified by the possibility of appropriating these tools
for obtaining better results and more robust algorithms, facilitating the use of the same approach for
several applications.

There are two usual approaches to use CNN with text: Bag of Words (BOW) (Johnson & Zhang,
2014) and word2vec (Mikolov et al., 2013).

In Bag of Words and some of its variants, for representing each word in a vocabulary of size n, a
digit 1 is placed in the correspondent position of that word in a 1 × N vector, all others positions
remaining with digit 0. Since natural languages usually have a large vocabulary, a limited subset of
the vocabulary must be used in order to make viable to perform the necessary computations in terms
of memory requirements. The chosen subset of the vocabulary must be representative of the texts.
Therefore, in practical problems a great deal of attention is devoted to this matter. In particular, it is
common to involve an application domain specialist or use some kind of word frequency statistic or
relevance metric, where the most frequent and rare words are excluded.

In word2vec approach, each word is represented in a embedding of fixed size, representing its co-
occurrence in a large corpus of text in the same language of the texts of interest. It is possible to use
only pretrained vectors or readjust the representation with new words.The main problem with both
strategies is that it does not allows to represent words that are not in the training dataset.

Establishing the character as the basic unit of word formation provides a better opportunity to be
robust to typos, acceptance of neologisms, equations and chemical formulas, abbreviations and id-
iosyncrasies of written language on the internet, such as emoticons, slang and dialects of the online
world. Assuming the word as a base item, much of this ability is lost, especially when models
assumes that text producers uses a formal language.

The article by Zhang & LeCun (2015) was a great innovation in this regard. The results obtained by
them suggest that language can be treated as a sequence of signals, like any other (Zhang & LeCun,
2015). However, the training times and the dimension of the matrices to be computed are still
obstacles to the most effective use of the method. Searching for a way to reduce these training time
remaining with the flexibility and power of character level convolutional to classify text, we found
a way to better encode the text. Our approach , with competitive accuracy, achieve a significant
reduction on time execution from hours to min and from days to hours, by epoch.

To achieve this performance in execution, our approach consisted of two elements:

• Obtaining a shorter representation: At first we tough of using some form of encoding
each character, and use the same approach of Zhang & LeCun (2015) but we realize that
using a variable length encoding for each word could be more efficient. To do this we need
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a way to encode each char, generating distinct concatenated code for representing each
word and that words with the same prefix was near each other, specially to respond well to
declensions.

• Obtaining a sparse representation: To take full advantage of libraries of tensor multiplica-
tions like NVidia CuDNN (Chetlur et al., 2014), we need a representation that was sparse,
so our code should be composed of many 0 and a few 1.

Though Huffman encoding (Huffman, 1952) is the short possible, it does not generate unique rep-
resentations once we concatenate char codes to form a word. We investigate encodings of Brisaboa
et al. (2003) and found promising alternatives. Our approach is based on Tagged Huffman (Silva de
Moura et al., 2000), where a pair of 0 digits is the signal and the digit 1 is the tag of begin and end
code, the only difference is that for our approach, we need a shorter version to reduce the size of in-
put matrix, so we choose to use only one digit 0 instead of two for each char, marking the beginning
and the end of each char code with a digit 1 the same way. As in the Silva de Moura et al. (2000)
approach, the coding we employ has the following advantages (Brisaboa et al., 2003):

1. No character code is a prefix of another, that is, the match is one-to-one.

2. It allows direct search, that is, to search for a word in a codified document, just encode the
word and use traditional methods of comparing strings with the encoded document.

3. This encoding approach is a compression technique, so it also allows saving already en-
coded text documents permanently using a binary system, requiring less storage space.

These advantages become attractive especially if the goal is to extract knowledge about files in a
repository to perform various classifications on different dimensions with the same files.

A possible advantage of this encoding over others strategies that use a word as atomic representation
of text is better respond to unseen words on training data, once that the network at least have some
prefix to guess the meaning of the word, the same way we humans do. This is especially interesting
in languages where there are a lot of declensions like Portuguese, Spanish, Italian, French, Russian,
German, Arabic and Turkish, for example.

The coding procedure is not restricted to any size of vocabulary, the only problem is that less frequent
characters will generate bigger codes, consequently, bigger encoding matrix . If your database have
a lot of them, you could use a higher word code size.

Our main contribution is demonstrate that such approach reduce the dimensionality of the encoding
matrix, substantially reduce optimization time and allow the use of devices with lower computational
power, remaining with competitive accuracy.

3 COMPRESSED ENCODING FOR CNN-BASED TEXT CLASSIFICATION

3.1 ENCODING PROCEDURE

In all of ours experiments, we used the following procedure to encode words:

• Obtaining a character frequency rank: We read the text database and count the frequency
of each character, generating a list sorted by frequency of occurrence. Then we create a
rank with only the relative positions of the characters. For a given language, this rank is
quite stable since only the order of the rank is used. This means that if all documents
are in the same idiom, this procedure can be replaced by a list with the characters rank of
frequency for that language.

• Creating a mapping from character to compress code: To encode each character, we insert
the digit 0 in the same amount of the rank position of the character, between a 1 digit to
signal the begin and another 1 digit to signal the end of code. Table 1 have some examples
of encoded characters.
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Table 1: Example of coding using English language ranking of characters. Characters shown are the
ones used in the subsequent examples.

CHARACTER FREQ. RANK COMPRESSED ENCODING
0 11

e 1 101
a 2 1001
t 3 10001
i 4 100001
s 5 1000001
n 7 100000001
r 8 1000000001
d 10 100000000001
h 11 1000000000001
c 12 10000000000001
g 17 1000000000000000001
...

...
...

n ′1′ + n× ′0′ + ′1′

To encode each word, we just concatenate the codes of each character. As an example, we provide
in Table 2 some examples of plain text words and their corresponding encoding.

Table 2: Example of coding using English language ranking of characters. Prefix common to more
than an word are underscored
TEXT ENCODED TEXT
science 10000011000000000000110000110110000000110000000000001101
scientist 10000011000000000000110000110110000000110001100001100000110001
art 1001100000000110001
artist 1001100000000110001100001100000110001
tl;dr 100011000000000110000000000000000000000000000011000000000011000000001
u2 1000000000000001100000000000000000000000000000001
ea 1011000000000000000000000000000000000000000000000000000000000011001

Given a document, we consider that it is composed of words, being those any set of characters limited
by the space character. This means ‘word’ could be math equations, web addresses, LATEX code,
computer programming commands, etc. In Table 2 we can see that this encoding could represent
words with the same prefix in vectors that have same initial coordinates. Slangs like tl;dr : too long,
did not read and u2 : you too as well mathematical expressions like ea could be manipulated. In the
matrix representation of the document, each row represents a properly encoded word.

The code for each word is then embedded on a matrix of number of words × code size with
its first symbol in column 1. Columns that were not occupied are padded with 0, larger codes are
represented up to the chosen limit. Unoccupied lines are filled with 0 and larger documents are
represented only up to the chosen maximum number of words, ignoring the last remaining ones. As
an example, we represent a document in an 8x65 matrix in Figure 1:
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Figure 1: Matrix encoding of sentence ‘Research is an art and a science’. Text is encoded one word
per row. Each word is underscored for easy identification.

10000000011011000001101100110000000011000000000000110000000000010
10000110000010000000000000000000000000000000000000000000000000000
10011000000010000000000000000000000000000000000000000000000000000
10011000000001100010000000000000000000000000000000000000000000000
10011000000011000000000010000000000000000000000000000000000000000
10010000000000000000000000000000000000000000000000000000000000000
10000011000000000000110000110110000000110000000000001101000000000
00000000000000000000000000000000000000000000000000000000000000000

We used 8x65 (520 elements) to encode the text with a certain amount of slack. At the very least, we
would need 7x64 (448 elements). The approach of Zhang & LeCun (2015) would employ at least
69x32 (2208) elements to represent the same sentence.

In our experiments, 256 coordinates were enough to represent 99.5 of the words from one of the
databases studied. In all datasets studied in this paper, we choose 128 as a limit of words to represent
a document, encoding each text in a 128x256 matrix.

4 EXPERIMENTAL STUDY

4.1 DATASETS

The databases used were the same as those cited in an article by Zhang et al. (2015), where there
is an extensive description of them. We shared a link 1 where the reader could download it. In this
article, we will only summarize the main descriptions

• Ag news: categorized news articles from more than 2000 news sources. Four classes
(World, Sports, Business, SciTech). Dataset contains 120k train samples and 7.6k test
samples equally distributed (Zhang et al., 2015).

• Sogou news: categorized news articles originally in Chinese. Zhang et al. (2015) applied
a pypinyin package combined with jieba Chinese segmentation system to produce Pinyin
– a phonetic romanization of Chinese. Five classes (sports, finance, entertainment, auto-
mobile and technology). Dataset contains 450k train samples and 60k test samples equally
distributed (Zhang et al., 2015).

• DBpedia: title and abstract from Wikipedia articles available in DBpedia crowd-sourced
community (Lehmann et al., 2015). Fourteen 14 nonoverlapping classes from DBpedia
2014 Dataset contains 560k train samples and 70k test samples equally distributed (Zhang
et al., 2015).

• Yelp full: sentiment analysis from the Yelp Dataset Challenge in 20152. Five classes rep-
resenting the number of stars a user has given. Dataset contains 560k train samples and
38k test samples equally distributed. (Zhang et al., 2015).

• Yelp full: sentiment analysis from the Yelp Dataset Challenge in 20153. Rating of 1 and 2
stars are represented as Bad and 4 and 5 as Good. Dataset contains 560k train samples and
50k test samples equally distributed. (Zhang et al., 2015).

• Yahoo answers: questions and their answers from Yahoo Answers. Ten classes (Society &
Culture, Science & Mathematics, Health, Education & Reference, Computers & Internet,
Sports, Business & Finance, Entertainment & Music, Family & Relationships, Politics
& Government). Each sample contains question title, question content and best answer.
Dataset contains 1400k train samples and 60k test samples (Zhang et al., 2015).

1https://drive.google.com/open?id=1o5CNT0UHuFfHBxC-Mz4ImFpN2-Lcllmx
2https://www.yelp.com/dataset/challenge
3https://www.yelp.com/dataset/challenge
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Figure 2: Network architecture
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• Amazon full: sentiment analysis from Amazon review dataset from the Stanford Net-
work Analysis Project (SNAP) (McAuley & Leskovec, 2013). Five classes representing
the number of stars a user has given. Dataset contains 3000k train samples and 650k test
samples.(Zhang et al., 2015).

• Amazon polarity: sentiment analysis from Amazon review dataset from the Stanford Net-
work Analysis Project (SNAP) (McAuley & Leskovec, 2013). Two classes, rating of 1 and
2 stars are represented as Bad and 4 and 5 as Good. Dataset contains 3000k train samples
and 650k test samples.(Zhang et al., 2015). Dataset contains 3600k train samples and 400k
test samples equally distributed.(Zhang et al., 2015).

We do not use any preprocessing strategy except the use of lowercase letters. No data enhancement
technique was employed.

4.2 COMPARISON MODELS

The baseline comparison models are the same of Zhang et al. (2015) where there is an extensive
description of them, we just reproduce theirs results, the only difference is that they report loss
error and for better comprehension, we translated it to accuracy. In Zhang et al. (2015) there is an
extensive description of them. In this paper, we just summarize the main information:

4.2.1 BASELINE MODELS

• Bag of Words (BOW) and its term-frequency inverse-document-frequency (Bow
TFIDF): For each dataset, they selected 50,000 most frequent words from the training
subset. For the normal bag-of-words, they used the counts of each word as the features and
for the TFIDF they used the counts as the term-frequency (Zhang et al., 2015).

• Bag-of-ngrams (Ngrams) and its TFIDF (Ngrams TFIDF): The bag-of-ngrams models
were constructed by selecting the 500,000 most frequent n-grams (up to 5-grams) from the
training subset for each dataset. The feature values were computed the same way as in the
bag-of-words model (Zhang et al., 2015).

• Bag-of-means on word embedding: Experimental model that uses k-means on word2vec
(Mikolov et al., 2013) learnt from the training subset of each dataset, and then used these
learnt means as representatives of the clustered words. Took into consideration all the
words that appeared more than 5 times in the training subset. The dimension of the embed-
ding is 300. The bag-of-means features are computed the same way as in the bag-of-words
model. The number of means is 5000 (Zhang et al., 2015).

• Long Short Term Memory - LSTM:LSTM (Mikolov et al., 2013) model used in our case
is word-based, using pretrained word2vec embedding of size 300. The model is formed
by taking mean of the outputs of all LSTM cells to form a feature vector, and then using
multinomial logistic regression on this feature vector. The output dimension is 512 (Zhang
et al., 2015).

4.2.2 CHARACTER LEVEL CONVOLUTIONAL NETWORK MODEL

The model that this paper builds upon is Zhang et al. (2015). It encodes each char as an one-hot
encoding in a vocabulary of 69. The non-space characters are letters, numbers and punctuation. The
model is composed of 9 layers, 6 of convolutions and 3 fully connected. Theirs architecture are
described in Table 3. They used stochastic gradient descent (SGD) with a minibatch of size 128,
using momentum 0.9 and initial step size 0.01 which is halved every 3 epochs for 10 times. So, their
results were obtained in at least 30 epochs.
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Table 3: Architecture of Zhang et al. (2015). Lg-Large, Sm- Small

CONVOLUTIONS
Layer Larg Feature Small Feature Kernel Poll

1 1024 256 7 3
2 1024 256 7 3
3 1024 256 3 -
4 1024 256 3 -
5 1024 256 3 -
6 1024 256 3 3

FULLY CONNECTED
Layer Lg Feature Out Sm Feature Out Dropout

7 2048 1014 .5
8 2048 1014 .5
9 Depends on the problem

4.3 NEURAL NETWORK ARCHITECTURE

To verify the efficiency of the encoding procedure, we realized 2 experiments, named CNN1 and
CNN2:

CNN1: At first we choose a network architecture that we used to classify text using an embedding
created by word2vec, the only difference is that instead of 300 features, we reduce the input size to
256. This architecture we named CNN1. It is based on concatenation of convolutions in a shallow
way, inspired on work of Kim (2014), who achieve state of the art results for some databases.

We trained this model for 5 epochs. The neural network architecture is described in Figure 2.

CNN2: Enthusiasmed by the results of the first experiment, we decided to investigate others possi-
ble architectures. We created another shallow but wide convolution architecture following the rec-
ommendations of Zhang & Wallace (2015) for choosing parameters, executing training on dataset
ag news, for being the shortest:

• Convolution width filter: a combination of region sizes near the optimal single best region
size outperforms using multiple region sizes far from the optimal single region size (Zhang
& Wallace, 2015). We scan the width from 1 to 7 comparing accuracy performance. In
these evaluations, convolution of width 1 was a better option.

• Pooling size: max pooling consistently performs better than alternative strategies for the
task of sentence classification (Zhang & Wallace, 2015).

The architecture CNN2 is illustrated in Figure 2. We trained this model for 12 epochs.

4.4 RESULTS

For all the experiments, we used the environment and parameters settings listed on Table 4.
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Table 4: Training environment and parameters

DESCRIPTION PARAMETERS OBSERVATION
Neural Net Lib. Keras 2.0
Tensor Backend Theano 0.9
GPU Interface Cuda 8 with cuBLAS Patch Update
CNN optimizer Nvidia Cudnn 5.1
Program. Lang. Python 3.6 using Anaconda 4.4.0
Superbatch 10000 Number of matrixes sent to gpu each time
Minibatch 32 Batch to update the network weights
Optimizer ADAM (Zeiler, 2012) lr = 10−3, β1 = 0.9, β2 = 0.999, ε = 10−8

Epochs 5
Op. System Windows 10
GPU Nvidia GeForce 1080ti Nvidia GeForce 930M for time comparison
RAM Memory 16 GB

Table 5: Accuracy comparison among traditional models and main model as found in Zhang et al.
(2015) and our approach. Bow-Bag of Words, lg.-large, sm-small.

MODEL AG SOGOU DBP YLP P YLP F YAH AMZ F AMZ P

Bow 88.81 92.85 96.61 92.24 57.99 68.89 54.64 90.40
Bow TFIDF 89.64 93.45 97.37 93.66 59.86 71.04 55.26 91.00
Ngrams 92.04 97.08 98.63 95.64 56.26 68.47 54.27 92.02
Ngrams TFIDF 92.36 97.19 98.69 95.44 54.80 68.51 52.44 91.54
Bag-of-Means 83.09 89.21 90.45 87.33 52.54 60.55 44.13 81.61
LSTM 86.06 95.18 98.55 94.74 58.17 70.84 59.43 93.90
Lg Conv Zhang 87.18 95.12 98.27 94.11 60.38 70.45 58.69 94.49
Sm Conv Zhang 84.35 91.35 98.02 93.47 59.16 70.16 59.47 94.50

Ours CNN1 87.67 95.16 97.93 92.04 58,00 68.10 58.09 93.69
CNN2 91.43 93.96 98.03 91.53 57.03 70.24 55.72 91.23

All the results and comparison with traditional models and the approach of Zhang et al. (2015) is
show in Table 5. On Table 6, we did a time execution comparison, based on reports available in
Zhang & LeCun (2015).

Table 6: Time per Epoch comparison between Zhang & LeCun (2015) and our CNN1 architecture
on different NVidia GeForce GPUs.Times for CNN2 architecture are very close to these.

DATASET # TRAIN # TEST Zhang & LeCun (2015) Ours
large small GF 1080ti GF 930M

ag news 120k 7.6k 1h 3h 3 min 25 min
sogou news 450k 60k - - 23 min 1h33 min

dbpedia 560k 70k 2h 5h 18 min 1h56 min
yelp polarity 560k 38k - - 21 min 1h59 min

yelp full 650k 50k - - 27 min 2h15 min
yahoo answers 1,400k 60k 8h 1d 47 min 4h50 min

amazon full 3,000k 650k 2d 5d 2h 10h20 min
amazon polarity 3,600k 400k 2d 5d 2h13 min 12h24 min

5 DISCUSSION

The main objective of this research was to evaluate the possibility of using a coding approach that
contemplated the construction of words using characters as basic tokens. Our main contribution
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is demonstrate that such approach allow reduce the dimensionality of the encoding matrix, allow-
ing substantial shorter optimization times and the use of devices with lower computational power.
Some datasets of text have peculiarities that was not addressed by word frequency methods (BOW,
Word2vec). The article of Zhang & LeCun (2015) was a great innovation in this regard. However,
the training times are still obstacles to the most effective use of the technique. We though of a better
representation should be a solution.

To make a comparison, perform the training of architecture CNN1 with an output of 4 classes make
necessary to optimize 1,837,188 parameters. As a comparison, in the architecture suggested by
Zhang and LeCun it is necessary to optimize 11,337,988 parameters (Zhang et al., 2015).

The major bottleneck for analyzing this gigantic amount of matrixed text is the need for intensive
use of RAM. Our approach generates a 128x256 matrix, smaller than 1014x69 generated by Zhang
& LeCun (2015), but a large set of them quickly occupy the available memory on the computer.
On the machine we used, there were 16 GB available, which is not uncommon in modern personal
computers. Therefore, the use of generators to control the number of matrices generated and sent to
GPU is an important detail in the implementation of this optimization algorithm. If your computer
has only 8 GB of RAM or less, you should reduce the number of superbatch to fit the memory.

The results that we obtained are very competitive with the approach o Zhang et al. (2015) and
traditional techniques. Observing our results, we see even that we could find parameters that results
in excellent performance on ag news dataset, following the suggestions of Zhang & Wallace (2015).
One of advantage of a faster algorithm is that if your dataset is not so big, you could scan the feature
width to find a solution that optimize accuracy. Another advantage is the possibility to realize k-
folds validation, to have a better perspective on how well it will perform for your specific dataset on
real life.

We are certain that our algorithm implementation could be even faster. For our inability, we could
not find a way to make CPU and GPU working in parallel. Using a GPU Geforce 1080ti, each of
the superbatch of 10000 arrays have its weights updated in 30 seconds. Only 6 seconds is consumed
by GPU, another 24 seconds is spent in codifying all the matrix and delivery it on GPU. Using a
multithread strategy could help in this regard.

The results obtained strongly indicate that the use of this coding is a possibility. We emphasize that
we used is a fairly simple network, enough to demonstrate the feasibility of the encoding approach
with the time and computational resources that we have. Possibly there are several architectures
that can generate better results. In addition, the dimensionality reduction provided enables several
architectures to be verified in a reasonable time.

6 FINAL REMARKS

The main conclusion is that using a compressing technique is a very convenient possibility to rep-
resent words for use in Convolutional Neural Networks to classify text. Codifying words using
characters could be relevant specially on less curated texts datasets, being robust to typos, slangs
and others usual characteristics of internet texts. With our results, we reinforce Zhang et al. (2015)
conclusions, which states that language could be treated as a signal, no different of any other. We
demonstrated that using the approach suggested reduce the dimensionality of matrix representation
of texts and allow the use of simpler hardware than character level one hot encoding, allowing a
drastic reduction of training time. We performed a comparative test with the approach of Zhang
et al. (2015) and others traditional techniques and found competitive results. We speculate that new
efforts should best employed in obtaining others architectures that may further favor this strategy.
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